Recent innovative configurations in high-energy lithium–sulfur batteries
Abstract
The detrimental shuttle effect of lithium polysulfides in ether-based liquid electrolytes upon cycling and their reduction/deposition on the lithium metal anode surface have severely restricted the practical application of rechargeable lithium–sulfur (Li–S) batteries. Much effort has been devoted to blocking the undesirable diffusion and shuttling of lithium polysulfides. In this review, recent developments of novel configurations for Li–S batteries, including hierarchical gradient cathodes, modified separators, solid-state electrolytes and lithium anode protection, are presented. It should be emphasized that the specific energy and cycling life are the most important parameters in the future production of Li–S batteries. Moreover, there are still enormous probabilities for the further development of novel configurations to improve the performance of the current Li–S batteries for portable devices and electric vehicles. Hence, these effective and reasonable configurations represent a significant step towards the commercialization of Li–S batteries.
- This article is part of the themed collections: Recent Review Articles and 2017 Journal of Materials Chemistry A HOT Papers