Issue 6, 2017

A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques

Abstract

After rapid progress in the past few years, emerging solar cells based on metal halide perovskites have become a potential candidate to rival and even outperform crystalline silicon photovoltaics (PV) in the marketplace. With high material utilization, easy manufacturing processes, and high power conversion efficiencies >20%, many experts anticipate that perovskite solar cells (PSCs) will be one of the cheapest PV technologies in the future. Here we evaluate the economic potential of PSCs by developing a bottom-up cost model for perovskite PV modules fabricated using feasible low-cost materials and processes. We calculate the direct manufacturing cost ($31.7 per m2) and the minimum sustainable price (MSP, $0.41 per Wp) for a standard perovskite module manufactured in the United States. Such modules, operating at 16% photoconversion efficiency in a 30-year, unsubsidized, utility-level power plant, would produce electricity at levelized cost of energy (LCOE) values ranging from 4.93 to 7.90 ¢ per kW per h. We discuss limitations in comparing calculated MSPs to actual market prices, determine the effect of module lifetime, examine the effects of alternative materials and constructions, and indicate avenues to further reduce the MSP and LCOE values. The analysis shows that PSCs can emerge as a cost leader in PV power generation if critical remaining issues can be resolved.

Graphical abstract: A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques

Supplementary files

Article information

Article type
Analysis
Submitted
17 Бер 2017
Accepted
12 Тра 2017
First published
12 Тра 2017

Energy Environ. Sci., 2017,10, 1297-1305

A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques

Z. Song, C. L. McElvany, A. B. Phillips, I. Celik, P. W. Krantz, S. C. Watthage, G. K. Liyanage, D. Apul and M. J. Heben, Energy Environ. Sci., 2017, 10, 1297 DOI: 10.1039/C7EE00757D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements