The bridge between the materials and devices of thermoelectric power generators
Abstract
While considerable efforts have been made to develop and improve thermoelectric materials, research on thermoelectric modules is at a relatively early stage because of the gap between material and device technologies. In this review, we discuss the cumulative temperature dependence model to reliably predict the thermoelectric performance of module devices and individual materials for an accurate evaluation of the p–n configuration compared to the conventional model used since the 1950s. In this model, the engineering figure of merit and engineering power factor are direct indicators, and they exhibit linear correlations to efficiency and output power density, respectively. To reconcile the strategy for high material performance and the thermomechanical reliability issue in devices, a new methodology is introduced by defining the engineering thermal conductivity. Beyond thermoelectric materials, the device point of view needs to be actively addressed before thermoelectric generators can be envisioned as power sources.
- This article is part of the themed collection: 2017 Energy and Environmental Science HOT articles