Semiconductor and carbon-based fluorescent nanodots: the need for consistency
Abstract
Fluorescent nanodots have become increasingly prevalent in a wide variety of applications with special interest in analytical and biomedical fields. The present overview focuses on three main aspects: (i) a systematic description and reasonable classification of the most relevant types of fluorescent nanodots according to their nature, quantum confinement and crystalline structure is provided, starting with a clear distinction between semiconductor and carbon-based dots (graphene quantum dots, carbon quantum dots and carbon nanodots). A new set of abbreviations and definitions for them to avoid contradictions found in literature is also proposed; (ii) a rational classification allows the establishment of clear-cut differences and similarities among them. From a basic point of view, the origins of the photoluminescence of the different nanodots are also established, which is a relevant contribution of this overview. Additionally, the most outstanding similarities and differences in a great variety of criteria (i.e. year of discovery, synthesis, the physico-chemical characteristics like structure, nature, shape, size, quantum confinement, toxicity and solubility, the optical characteristics including the quantum yield and lifetime, limitations, applications as well as the evolution of publications) are thoroughly outlined; and (iii) finally, the promising future of fluorescent nanodots in both analytical and biomedical fields is discussed using selected examples of relevant applications.
- This article is part of the themed collection: Most cited Features from 2016, 2017