Rational design and engineering of polypeptide/protein vesicles for advanced biological applications
Abstract
Synthetic vesicles have gained considerable popularity in recent years for numerous biological and medical applications. Among the various types of synthetic vesicles, the utilization of polypeptides and/or proteins as fundamental constituents has garnered significant interest for vesicle construction owing to the unique bio-functionalities inherent in rationally designed amino acid sequences. Especially the incorporation of functional proteins onto the vesicle surface facilitates a wide range of advanced biological applications that are not easily attainable with traditional building blocks, such as lipids and polymers. The main goal of this review is to provide a comprehensive overview of the latest advancements in polypeptide/protein vesicles. Moreover, this review encompasses the rational design and engineering strategies employed in the creation of polypeptide/protein vesicles, including the synthesis of building blocks, the modulation of their self-assembly, as well as their diverse applications. Furthermore, this work includes an in-depth discussion of the key challenges and opportunities associated with polypeptide/protein vesicles, providing valuable insights for future research. By offering an up-to-date review of this burgeoning field of polypeptide/protein vesicle research, this review will shed light on the potential applications of these biomaterials.
- This article is part of the themed collections: Journal of Materials Chemistry B Recent Review Articles, Journal of Materials Chemistry B Emerging Investigators and #MyFirstJMCB