An efficient strategy to boost the directed migration of photogenerated holes by introducing phthalocyanine as a hole extraction layer†
Abstract
Although the sluggish water oxidation kinetics could be optimized by the decoration of cocatalysts, the transport of photogenerated charges in the bulk photoanodes is still a critical bottleneck in cocatalyst modified semiconductor photoanodes. Herein, we have firstly proposed the concept of modulating the photogenerated charge migration in the bulk photoanode by inserting phthalocyanine as the hole extraction layer between the semiconductor (Ti-Fe2O3) and the cocatalyst (CoPi). Benefitting from the gradient band structure of Ti-Fe2O3, metal-free 2,3,9,10,16,17,23,24-octacarboxy phthalocyanine (H2Pc(COOH)8) and CoPi, as well as the coplanar binding mode of Ti-Fe2O3 and H2Pc(COOH)8, the photogenerated holes of Ti-Fe2O3 would be migrated directionally to CoPi through H2Pc(COOH)8, hence more photogenerated holes arrive at CoPi and participate in the water oxidation reaction. As expected, the triphasic photoanode (CoPi/Pc/Ti-Fe2O3) exhibits not only a higher photocurrent density but also a more negative onset potential than CoPi/Ti-Fe2O3.
- This article is part of the themed collection: FOCUS: Photocatalysis