Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution†
Abstract
High entropy materials involving the incorporation of five or more metal species into single-phase crystal structures have received extensive attention in many reactions. These materials achieve tailored and unexpected properties due to the interactions among the various metal species. Here, we report the synthesis of a high entropy metal–organic framework (HE-MOF) with five near-equimolar components by a solution phase method under ambient temperature. When serving as an electrocatalyst, the obtained HE-MOF demonstrates high electrocatalytic activity toward the oxygen evolution reaction in an alkaline system. This strategy represents a general method to expand the library of high entropy materials and promoters for efficient electrochemical water splitting.
- This article is part of the themed collection: 2019 Journal of Materials Chemistry A HOT Papers