Vesna
Stanic
*a,
Francisco Carlos Barbosa
Maia
a,
Raul de Oliveira
Freitas
a,
Fabiano Emmanuel
Montoro
b and
Kenneth
Evans-Lutterodt
c
aBrazilian Synchrotron Light Laboratory, CNPEM, Campinas, SP 13083-970, Brazil. E-mail: vesna.stanic@lnls.br; Tel: +55 19 3512 1044
bBrazilian National Nanotechnology Laboratory, CNPEM, Campinas, SP 13083-970, Brazil
cNational Synchrotron Light Source – II, Brookhaven National Laboratory, Upton, NY 11973, USA
First published on 16th July 2018
In situ characterization of the chemical and structural properties of black and white sheep hair was performed with a spatial resolution of 25 nm using infrared nano-spectroscopy. Comparing data sets from two types of hair allowed us to isolate the keratin FTIR fingerprint and so mark off chemical properties of the hair's melanosomes. From a polarization sensitive analysis of the nano-FTIR spectra, we showed that keratin intermediate filaments (IFs) present anisotropic molecular ordering. In stark contrast with white hair which does not contain melanosomes, in black hair, we spatially resolved single melanosomes and achieved unprecedented assignment of the vibrational modes of pheomelanin and eumelanin. The in situ experiment presented here avoids harsh chemical extractive methods used in previous studies. Our findings offer a basis for a better understanding of the keratin chemical and structural packing in different hair phenotypes as well as the involvement of melanosomes in hair color and biological functionality.
Melanosomes are specialized cell organelles which produce melanin or pigment16,17 and can be found in the hair, skin, eyes and brain. Also, it has been reported that melanosomes exist in four distinct stages of maturation.16,17 Pigment production and structural and chemical changes during melanogenesis in these four stages are highly complex and still not completely known. It is important to point out that hair contains mostly mature melanosomes of the fourth stage of maturation.18
Several methods have been proposed for the extraction of melanosomes19 from hair, but usually such chemical treatments of the hair alter the chemistry and structure of the extracted melanasomes. Recently, T. Gorniak et al.20 investigated iridial melanosomes from inbred strains of mice, reporting genotype-specific differences in their granularity and surface morphology. Furthermore, they found that melanosomes with different origins are constituted of different building blocks, leading to different final packing and sizes with the consequence of different bulk properties of different types of melanosomes. It is important to also mention that melanosomes have many complex biological functions, since they are correlated to different diseases like Alzheimer's, albinism and skin cancer. For that reason, it is critical to understand and connect the physical and chemical characteristics of melanosomes with their biological properties.
Here we will limit our discussion only to the black and white sheep hair. We use nano-resolved Fourier transform infrared (nano-FTIR) spectroscopy to depict and discriminate, for the first time, the native vibrational state of two kinds of melanosomes: pheomelanin and eumelanin, directly in hair and without any chemical treatment. We chiefly focus on keratin and on the two types of melanosomes: pheomelanin, which has a red-brown color, and eumelanin with brown-black color. These melanosomes possess distinct chemical and physical properties, e.g. color and response to oxidative stress.
In previous studies, Fourier transform infrared micro-spectroscopy (μ-FTIR) was used for studying the chemistry of hair under label-free conditions.21,22 Most of the hair components is IR active in the fingerprint region (500 cm−1 to 1700 cm−1) and in the C–H stretching region related to lipids (∼2900 cm−1 or ∼3.4 μm). However, as a diffraction-limited technique (Abbe limit), μ-FTIR was unable to access the sub-micron internal structures of the hair, such as the melanosomes of interest here, which are typically less than 0.5 μm in size.
Scattering scanning near-field optical microscopy (s-SNOM)23–25 has emerged as a powerful tool for the study of nano-localized chemical domains. Initially developed to operate with narrow-band laser sources for nanoscale-resolved imaging, s-SNOM made broadband mid-IR nano-spectroscopy feasible when it is combined with broadband IR sources (nano-FTIR).26–31 As a novel spectroscopy modality, nano-FTIR has been a decisive tool in several multidisciplinary investigations such as nano-heterogeneity of polymer blends,32,33 nano-mapping of individual protein complexes,34 nano-chemistry of multi-phase bio-minerals35 and local physics of atomically-thin materials.36–40 Organic materials are still the most challenging systems to be investigated by nano-FTIR due to their low scattering power compared to polar crystals. In this scenario, a variety of new developments aim at the study of the sub-wavelength organic chemistry of materials such as local thermal expansion,41–45 peak-force IR microscopy,46 synchrotron AFM-IR47 and opto-nanomechanical spectroscopy.48 Most of these techniques are based on the local expansion of the materials; hence, the mechanical detection allows for higher sensitivity to organic vibrational resonances as well as provides a more direct interpretation of the data. On the other hand, the spatial resolution in thermal expansion microscopies is defined by the thermal diffusion of the beam power into the material, which is a complex and non-controlled phenomenon. In s-SNOM and nano-FTIR, the optical probe is only defined by the AFM tip radius; therefore, it is still the only technique able to perform ultra-broadband IR spectroscopy with 25 nm resolution.
In this study, we apply nano-FTIR and scanning transmission electron microscopy (STEM) to study the morphological and chemical properties of virgin sheep black and white hair (for simplicity we will use the general term hair instead of wool). In the cortex region nano-FTIR unveils the chemical differences between keratin and melanosomes.
For nano-FTIR measurements we first embedded the hair in resin (Pelco Eponate 12 with BDMA) in order to cut slices of 30 nm thickness. Several hair strands were placed horizontally in a mold on a flat silicon wafer that keeps the hair centered in the middle of the mold and leveled. No stretching, pressure, or deformations were applied to the hair. After that, the resin was poured over the hair and allowed to cure at room temperature. Before the nano-FTIR measurements, the hair was sliced to ∼30 nm thickness using an ultramicrotome (model: RMC Boeckeler PowerTome X). The slices were deposited on a clean gold substrate (100 nm thick Au film sputtered on silicon wafer) as shown in Fig. 1 and dried at room temperature to evaporate the excess of water which is used in the ultramicrotome cut. Thus, on each Au substrate, we obtained several samples (hair cross-section and longitudinal slices).
To differentiate the complex morphology of the cortex of the black and white sheep hair, STEM analyses were performed on different slices of the hair samples. The results are shown for the cross-section, in Fig. 2A and B, and for the longitudinal cuts, in Fig. 2C and D.
The evident morphological contrast between two virgin hairs is shown, indicating unambiguously that melanosomes are present only in black sheep hair (see Fig. 2A and C). Virgin white sheep hair (see Fig. 2B and D) does not contain any pigment and this has been reported previously.9 From Fig. 2A and C we note the granular clusters of melanosomes, and that they had an elliptical shape with an aspect ratio of about 2.5:1. Taking in account the poly-dispersion as one of the properties of the sheep's melanosomes, the average size is approximately: 250 nm (shorter diameter) × 800 nm (longer diameter).
Fig. 3 Direct observation of keratin chemical bands and texture in the cortex of white sheep hair using synchrotron nano-FTIR. (A) The schematic of tip axis orientations with respect to the crystal substrate; θ indicating the angle between the z-axis (effective polarization) of the tip and the axis of the molecular dipole of the crystal c-axis. (B) IR broadband image of the hair longitudinal section with illustration of the molecular orientation with respect to tip polarization. θ = 90° means the effective polarization and the IR molecular dipole are orthogonal (⊥). * shows one of the positions where the spectra are acquired. (C) Nano-FTIR spectra of the keratin in the ⊥ geometry. (D) IR broadband image of the hair cross-section with the illustration of the molecular orientation with respect to tip polarization. θ = 0° means the effective polarization and the IR molecular dipole are parallel (‖). * shows one of the positions where the spectra are acquired. (E) Nano-FTIR spectra of the keratin in the ‖ geometry (detailed figures are shown in the ESI†). |
Hair origin | Color | Wave number [cm−1] | Assignments |
---|---|---|---|
Sheep | White | Keratin⊥geometry | |
1122 | (SO); cysteic dioxide | ||
1271 | Amide III; β-sheet | ||
1406 | Amide III | ||
1461 | Amide II | ||
1509 | Amide II | ||
1543 | Amide II | ||
1601 | Amide I; β-turn | ||
1654 | Amide I; α-helix | ||
1679 | Amide I; β-sheet; random coil | ||
1710 | –COOH | ||
Sheep | White | Keratin‖geometry | |
1048 | SO; cysteic monoxide | ||
1205 | Amide III | ||
1436 | Amide II | ||
1512 | Amide II | ||
1586 | Amide II; β-turn | ||
1652 | Amide I; α-helix | ||
Sheep | Black | Eumelanin | |
1123 | (S–O); cysteic dioxide | ||
1276 | (COH); phenolic stretching | ||
1310 | CN | ||
1422 | δ(NH), δ(CH), ν(CN) | ||
1467 | ν ring, ν(CN), δ(NH), δ(OH) | ||
1540 | ν ring, δ(NH), δ(CH) | ||
1575 | ν ring, indole NâH bending | ||
1606 | ν(CO) | ||
1640 | CC, CO, and/or COO– stretching in the aromatic cycle | ||
1689 | –COOH | ||
Sheep | Black | Pheomelanin | |
1124 | (S–O); cysteic dioxide | ||
1172 | (S–O); cysteic acid | ||
1213 | (S–O) | ||
1272 | (COH); phenolic stretching |
Fig. 3 shows the nano-FTIR fingerprint of keratin obtained from the cortex region of white sheep hair. Nano-FTIR spectra were averaged over several points collected from different positions in slices cut longitudinally to the hair's axis (see Fig. 3B, the AFM tip axis is ⊥ to the keratin IFs) and cross-section slices (see Fig. 3D, the AFM tip axis is ‖ to the keratin IFs). Our X-ray nano-diffraction results8 demonstrate that keratin has a preferential, anisotropic behavior and the discovery of the keratin polarization effect (see Fig. 3C and E) is just an additional confirmation of such behavior.
There are mainly 4 characteristic IR bands in the white sheep hair nano-FTIR spectrum: (1) band related to S–O stretching around 1122 cm−1, (2) IR bands of amide III, from 1200 cm−1 to 1300 cm−1, (3) amide II bands, from 1400 cm−1 to 1600 cm−1 and (4) bands associated with the stretching vibrations of amide I, from 1600 cm−1 to 1700 cm−1. We attribute the relative intensity of these peaks to the orientation of the IFs with respect to the polarization of the optical-near field parallel to the tip axis50,53 (see Fig. 3C and E). As recently demonstrated by Muller et al. (2016),50 the distribution of the molecular orientation and disorder can be determined by correlating the polarization of the exciting optical near-field with the direction of the infrared dipole of molecular groups on the sample. Nevertheless, hair has a complex and heterogeneous structure at the nanometer length scale,8 and the randomness should be considered during such measurements of molecular orientation and crystallinity.
The prominent amide I region in Fig. 3C is split into four peaks, where the most intense peak of around 1654 cm−1 is characteristic of α-helix, the peak of around 1679 cm−1 is related to β-sheet, the peak at 1601 cm−1 is related to β-turn and the peak at 1710 cm−1 is assigned to the –COOH stretching.54,55 However, we have to point out that in our spectra, the frequency around 1672 cm−1, typical of beta turn,54 is not resolved. It may be hidden between the peaks at 1654 cm−1 and 1679 cm−1, which are most pronounced. The transformation from α-helix to β-pleated structure can occur during the breakage of the disulfide bonds (S–S bonds). Such breakage can be induced in different ways, for example: sunlight, weathering, stretching or by application of chemical products to the hair. For example, the formation of cysteic acid, which is one of the possible by-products of S–S breakage, has been reported previously.56–58 The excessive de-colorization of melanin as well as the oxidation of cysteine, which is a prime constituent amino acid of keratin, may create the by-product of cysteic acid. However, the localization of cysteic acid and the spatial distribution inside the hair were not clarified until now. Furthermore, it has been shown in untreated hair58 that the photo-oxidation of the hair can produce minor amounts of cysteic acid as well as traces of cysteine-S-monoxide as well as cysteine-S-dioxide.57,59 In our case we do exclude chemical and stretching factors, since such treatments were not applied and considering the low intensity of the peak at 1122 cm−1 of S–O stretching, it indicates that the oxidation process is reduced.
Fig. 4 In situ observation of melanosomes in the cortex of black sheep hair by nano-FTIR. (A) IR broadband image of a melanosome showing the position (*) where the spectra are acquired. (B) Nano-FTIR spectra of eumelanin; inset: schematic representation of the eumelanin partial chemical formula. (C) IR broadband image of a melanosome showing the position (*) where the spectra are acquired. (D) Nano-FTIR spectra of pheomelanin; inset: schematic representation of the pheomelanin partial chemical formula. (E) IR broadband image of clusters of melanosomes showing the position (*) where the spectra are acquired. (F) Mixed nano-FTIR signal of eumelanin and pheomelanin; inset: schematic representation of the eumelanin and pheomelanin chemical formula (detailed figures are shown in the ESI†). |
Fig. 4A shows the first native eumelanin FTIR spectra obtained directly from the virgin black sheep hair without any chemical manipulation or extraction. The inset shows the infrared near-field image of a melanosome in the cortex region of black sheep hair with the schematic chemical formula of eumelanin. The majority (95%) of the melanosomes investigated in the black sheep hair contains eumelanin. However, the very small amount of the melanosomes present the characteristic pheomelanin oxidation state (see Fig. 4B) or sometimes it is a combination of the two FTIR spectra found in the cluster regions of melanosomes (see Fig. 4C), shown also by ref. 60.
We note that there is a compelling difference in the nano-FTIR spectra of pheomelanin and eumelanin. The region from 1000 cm−1 to 1300 cm−1 can be characteristic only for pheomelanin with extremely strong peaks at 1124 cm−1, 1172 cm−1 and 1213 cm−1 which are given by S–O symmetric stretching vibration, generated by the oxidation of sulfonic groups present in pheomelanin. On the contrary, for eumelanin we found the characteristic IR bands from 1400 to 1770 cm−1 with peaks clearly resolved at 1422 cm−1, 1467 cm−1, 1540 cm−1 and 1572 cm−1, which are unique for eumelanin.
To further discuss the differences between eumelanin and pheomelanin we have to point out that hair is rich in elements such as: Ca, Cu, Fe and Zn, but it is still unclear how exactly the elements are distributed in the hair. The recent results by Edwards, N. P. et al. (2016),61 from studies in bird feathers, show that the elemental distribution is controlled mainly by melanin. They found that the key difference between eumelanin and pheomelanin is the metal bonding. For example, in pheomelanin, Zn is bonded to S, as compared with the Zn–N/O in eumelanin. Studies on eumelanin have found metals to be predominantly bound to oxygen either in carboxyl groups, or in hydroxyl groups. We note that white sheep hair also contains the same elements, but in smaller quantities compared to black sheep hair; most probably these elements are bound to keratin, considering that white sheep hair does not contain melanosomes. Our nano-FTIR data do address the complexity due to these elements (concentration and bonding of these elements). So, it is unclear if such elements are involved in the oxidation processes of the hair and if they are detectable by IR, but we should not exclude the possible presence of Zn sulfate in pheomelanin.61,62
This is the direct in situ distinction of the chemical fingerprint of two melanosomes, performed without any chemical labeling. With this finding we can demonstrate that nano-FTIR is a non-destructive technique capable to detect and spatially resolve the chemical heterogeneity of hair.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: 10.1039/C8NR03146K |
This journal is © The Royal Society of Chemistry 2018 |