A.
La
a,
T.
Nguyen
a,
K.
Tran
a,
E.
Sauble
a,
D.
Tu
a,
A.
Gonzalez
a,
T. Z.
Kidane
a,
C.
Soriano
a,
J.
Morgan
a,
M.
Doan
a,
K.
Tran
a,
C.-Y.
Wang
b,
M. D.
Knutson
b and
M. C.
Linder
*a
aDepartment of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA. E-mail: mlinder@fullerton.edu
bDepartment of Food Science and Human Nutrition, University of Florida, Gainsville, FL 32611, USA
First published on 4th December 2017
Much evidence indicates that iron stored in ferritin is mobilized through protein degradation in lysosomes, but concerns about this process have lingered, and the mechanistic details of its aspects are lacking. In the studies presented here, 59Fe-labeled ferritin was induced by preloading hepatic (HepG2) cells with radiolabeled Fe. Placing these cells in a medium containing desferrioxamine resulted in the loss of ferritin-59Fe, but adding high concentrations of reducing agents or modulating the internal GSH concentration failed to alter the rates of ferritin-59Fe release. Confocal microscopy showed that Fe deprivation increased the movement of ferritin into lysosomes and hyperaccumulation was observed when lysosomal proteolysis was inhibited. It also resulted in the rapid movement of DMT1 to lysosomes, which was inhibited by bafilomycin. Ferrihydrite crystals isolated from purified rat liver/spleen ferritin were solubilized at pH 5 and 7 by GSH, ascorbate, citrate and lysosomal fluids obtained from livers and J774a.1 macrophages. The inhibition of DMT1/Nramp2 and siRNA knockdown of Nramp1 each reduced the transfer of 59Fe from lysosomes to the cytosol; and hepatocyte-specific knockout of DMT1 in mice prevented the release of Fe from the liver responding to EPO treatment, but did not inhibit lysosomal ferritin degradation. We conclude that ferritin-Fe mobilization does not occur through changes in cellular concentrations of reducing/chelating agents but by the coordinated movement of ferritin and DMT1 to lysosomes, where the ferrihydrite crystals exposed by ferritin degradation dissolve in the lysosomal fluid, and the reduced iron is transported back to the cytosol via DMT1 in hepatocytes, and by both DMT1 and Nramp1 in macrophages, prior to release into the blood or storage in ferritin.
Significance to metallomicsHow stored iron – inside the hollow protein ferritin – is made available when needed is not fully understood. Here we show that treating cells with chelating and reducing agents externally or by manipulating them internally does not induce the release of iron from ferritin. Instead, the movement of ferritin from the cytosol into lysosomes and the breakdown of its protein “shell” are required, and intact ferritin accumulates when lysosomal proteases are inhibited. The ferrihydrite crystals exposed by the degradation are readily dissolved by lysosomal “juices” and by glutathione and ascorbate found in lysosomes. DMT1, which accompanies ferritin trafficking to lysosomes, and Nramp1 then transport the dissolved and reduced iron back to the cytosol in ionic form, and hence it can be used internally or be sent to other cells and organs via the blood. These new findings not only corroborate the earlier ones but also provide a much fuller picture of the process by which stored iron in mammalian cells is mobilized. |
Iron is important not just for the transport of oxygen by red blood cells and muscle myoglobin but also as a cofactor for electron transport proteins as well as a variety of enzymes ranging from aconitases and catalases to ribonucleotide reductases. A large quantity of iron (about 20 mg in human adults) cycles in and out of the red blood cell hemoglobin daily, which particularly involves the spleen, liver and bone marrow.1 As a result, cells in these organs tend to be the richest in iron and ferritin. The amounts of iron to be stored determine the amounts of ferritin protein to be synthesized or degraded, and hence the levels of the ferritin protein reflect the levels of iron stored in ferritin. This balance occurs through the regulation of ferritin synthesis by iron at the translational level – through a well-known mechanism involving iron response elements (IREs) and IRE-binding proteins (IRPs),5 as well as through the regulation of ferritin stability by iron.6 The latter is less well understood but appears to involve the inhibition by iron of ferritin binding7 to the cargo receptor NCOA4, which mediates its entry into lysosomes,8,9 as well as the promotion by iron of NCOA4 degradation.10 The levels of iron in the cytosolic “labile iron pool” (which fluxes in and out of functional and storage compartments) cause changes in the binding of IRPs of the IRE in the 5′UTR of ferritin mRNA, binding (occurring with low iron concentration) resulting in the inhibition of translation/ferritin biosynthesis, and the reverse occurs when extra iron enters in and removes the IRP, leading to increased production.5 Ferritin is a large, 24-subunit, hollow, very efficient iron storage molecule. It has been estimated that up to 4500 iron atoms can be accommodated within a single molecule,11 where they deposit as ferrihydrite crystals that can be visualized using electron microscopy. At any given moment, individual ferritin molecules will have different amounts and patterns of ferrihydrite crystals in their interior. Therefore, iron entering into the cells can initially be accommodated within partially filled and already existing ferritin molecules, while at the same time increasing the formation of new ferritin molecules through the removal of IRPs from ferritin mRNA. Storage in ferritin also provides a means of detoxifying iron ions that might otherwise stimulate the production of reactive oxygen species (ROS) through Fenton chemistry, resulting in cell damage,1,11,12 although other effects of excess iron may contribute.13 Iron enters ferritin through eight 3-fold channels, the deposition of ferrihydrite resulting from the oxidation of Fe(II) by direct interaction with O2 or through the catalytic ferroxidase activity of H ferritin subunits, one of the two kinds of subunits (H and L) that make up the overall structure.14 Excess iron is thus driven to deposit innocuously within ferritin.
How iron stored in ferritin is then released (as needed) has been the subject of many different kinds of studies carried out by a large number of investigators, including ourselves. The knowledge of these processes has been detailed in a recent review.1 However in brief, there is robust evidence that the main route used by cells to extract iron from ferritin requires its protein “shell” to be degraded in lysosomes. This means that ferritin moves from the cytosol into lysosomes for this to occur, a process that involves the specific autophagic cargo receptor (NCOA4) already mentioned.7–10 The resulting complex interacts with ATG proteins (LC3, ATG5 and ATG7) associated with the membranes of the autophagosomes,15,16 which has recently been explored and related to a new form of non-apoptotic cell death (ferroptosis)17–19 and is also of interest in cancer.20,21 Within the lysosomes it is clear that the digestion of the protein part of ferritin is needed for the iron inside to be released and return to the cytosol, as demonstrated by us and others in many different cell types, using specific inhibitors of lysosomal proteases, as well as chloroquine (which increases the lysosomal pH), and by other means.1,22,23 Finding that this is the main mechanism for releasing iron from ferritin was initially unexpected and even seemed counterintuitive for some investigators – which is not surprising. In test tubes, the iron in ferritin is easily removed by dialysis in solutions containing reducing and chelating agents that can penetrate the ferritin protein shell (to produce apoferritin).24 However, this is not what has been observed by studies in vivo, and there is no published evidence that the in vitro process does occur in real life in mammalian cells.1 Moreover in retrospect, it would seem disadvantageous for cells to release iron from ferritin in response to the influx (or production) of high concentrations of reducing or chelating agents (such as ascorbate or citrate), since this is unlikely to be a specific or well-controlled process, and might lead to un-needed recycling of ferritin iron that could promote ROS formation. Some of the studies reported here further address this issue, showing that the influx of ascorbate, glutathione (GSH) and other reducing agents does not result in the efflux of iron from ferritin intracellularly.
In previous studies of ferritin turnover6 and release of iron from ferritin,25 we have demonstrated that both ferritin iron and ferritin protein turned over rapidly and with parallel kinetics6 when cultured cells loaded with iron were depleted of it by exposure to the strong chelator DFO (desferrioxamine) or incubating in a low-iron medium.6,25 The half-lives for both the ferritin iron and ferritin protein were virtually identical in a given cell type (in the range of 10–24 hours), and the half-lives were markedly increased when cells were exposed to inhibitors of lysosomal proteases or chloroquine, but not when exposed to inhibitors of the proteasome.25 This occurred in cells modeling different kinds of iron utilization, from enterocytes (Caco2 cell monolayers) to hepatocytes (rat hepatoma cells), and reticulocytes (K562 cells treated with tributyrin to induce hemoglobin production). The studies reported here provide additional evidence of ferritin movement to lysosomes and address two further questions, namely how the iron in ferrihydrite crystals from ferritin is solubilized, and how it is then transported back into the cytosol, to be used by the cell for endogenous iron-dependent proteins/enzymes, or released to the blood to support iron needs in other parts of the organism.
Fig. 1 Effects of exposing whole cells to reducing and chelating agents on the release of iron from ferritin. HepG2 cells preloaded with 59Fe-labeled FAC to induce ferritin accumulation were washed and transferred to a culture medium containing 100 μM DFO to induce iron deprivation, in the absence and presence of various agents that reduce and/or chelate iron, for various periods of time, and the resulting cells were then assayed for ferritin protein and ferritin iron-radioactivity using rocket immunoelectrophoresis (IEP). (A) An example of an autoradiograph of 59Fe-labeled ferritin rockets for triplicate cell batches exposed to DFO (without other additions) for various periods of time. The areas of such rockets were used to determine the ferritin protein concentration per mg cell protein, and the densitometry of the rockets determined the relative 59Fe content. (B) The levels of ferritin iron (dark bars) and ferritin protein (grey bars) and the ratios of 59Fe/protein (light bars) after exposure of cells to various reducing/chelating agents for 48 h. Data are percent of 2 h values for a given experiment, and the results of two separate experiments were combined (means ± SD, N = 6). Treatment agents were thioglycolate (TGC; 1 mM, which reduces and chelates Fe); reduced flavin mononucleotide (FMN; 5 mM); glutathione (GSH; 10 mM); alpha-lipoic acid (LPA; 0.5 mM), which increase intracellular GSH concentrations;29,30 2-cyclohexen-1-one (Cyc; 1 mM), which lowers GSH concentrations rapidly31 and dimethylmaleate (DEM; 1 mM), which also lowers GSH concentrations.35 (C) Combined data for changes in the ferritin iron, protein and ferritin Fe/protein ratios for cells exposed or not exposed to the same agents for 2 or 6 h, and relative to controls (not exposed to reducing/chelating agents) within the same experiment (means ± SD, N = 9). (D) Data for the effects of incubation with DFO ± 1 mM ascorbate on ferritin iron (dark bars), ferritin protein (grey bars), and the ratios of 59Fe/protein (light bars) over 64 h. Values are means ± SD (N = 6) for data from two different experiments given as percent of controls (data obtained 2 h after the start of treatment). |
The effects of much shorter treatments (0.5, 2 and 6 h) were also examined and led to the same conclusions. Although the loss of ferritin protein and iron was much less (as seen for the combined data for 2 and 6 h; Fig. 1C), the ratios of ferritin iron to ferritin protein were virtually unchanged by any of the treatments, including 2-cyclohexene-1-one or diethyl maleate. The effects of ascorbate were also examined in this cell line (Fig. 1D). As reported previously,34–36 we found that high levels of ascorbate decreased the degradation of the ferritin protein and the release of its iron, i.e. the opposite of what would be expected if ascorbate promoted the release of iron from ferritin by acting upon it directly, in cells. After 64 h of iron deprivation (without ascorbate), the levels of ferritin iron and protein (as well as the Fe/protein ratio) fell markedly, but three times more ferritin iron and protein remained when ascorbate was present, and the Fe/protein ratio at 64 h was the same as that of the control.
Further evidence of ferritin accumulation in lysosomes upon protease inhibition was obtained by comparing the sedimentation of the 59Fe-labeled ferritin and lysosomes in iodixanol gradients. (Fraction 1 was at the bottom of the gradient, and fractions 14–15 were at the top.) Fig. 2D shows (top graph) the sedimentation of lysosomes detected by measuring beta-hexosaminidase activity (fluorescence), which was increased (from about fraction 11 to fraction 9) when cells were treated with the lysosomal protease inhibitor leupeptin, implying larger size and/or density. The same was the case for ferritin in the lysosomes (Fig. 2D, bottom graph, detected as 59Fe in fractions 9–11). The bottom graph also shows that some ferritin (not with lysosomes) sedimented much more rapidly; the non-lysosomal ferritin (identified with 59Fe) was found near the bottom of the gradient (fractions 1–4). [Ferritin has a variable iron content, which explains the spectrum of densities. Purified ferritin alone, applied to the same kind of gradient (data not shown), sedimented to the bottom fractions like the non-lysosomal ferritin.] The bottom graph in Fig. 2D also shows that there was more ferritin in the lysosomes (radioactivity was higher) upon leupeptin treatment (dashed lines). Also, since leupeptin increased the degree of sedimentation of the lysosomes and their ferritin content, it seems likely that the density of ferritin contributed to this outcome.
Fig. 3A–C show the time course of the release of iron from the ferrihydrite by 1 and 10 mM ascorbate, GSH and citrate at lysosomal pH (pH 5). With ascorbate (Fig. 3A), a substantial portion of the iron was already solubilized after 15 min of incubation but then increased further in a fairly linear fashion over the next 105 min. There was a slightly higher rate of solubilisation with higher ascorbate concentration. The effect of solubilisation in both concentrations of glutathione (Fig. 3B) was almost immediate and very strong, but then seemed to reverse, the concentrations of the solubilized iron falling back to lower levels. Interestingly, the non-reducing iron chelator, citrate (Fig. 3C), also solubilized some of the iron, the effect also being more pronounced initially and falling back. The reversal of ferritin iron solubilization seen with GSH and citrate is most likely the result of exposure to oxygen during aeration caused by the shaking of the incubated samples and is less likely to occur in vivo, within the lysosomes, where there is less oxygen.
Further studies were then carried out using shorter incubation times, to obtain a better sense of the magnitude of the effects, and to examine some other variables. Fig. 3D shows data obtained for the incubation of 10 mM reducing and chelating agents for 45 min at pH 5, or in buffer alone (far right on the graph). The latter failed to release any iron from the ferrihydrite crystals, but the addition of ascorbate or GSH released a large percentage. Citrate seemed to be just as good as GSH and ascorbate in solubilizing the iron from ferritin ferrihydrite crystals. Studies at pH 7 (incubated for 60 min) gave similar results (Fig. 3E). Ascorbate, GSH or citrate at 1 mM concentrations solubilized 25–40% of the ferrihydrite iron, and solubilized almost all of it at 10 mM concentrations in the same time period. Combinations of citrate with ascorbate or GSH were even more effective (Fig. 3F). Thus, substances found in high concentrations in lysosomes (GSH and ascorbate), as well as citrate (which may or may not be present in lysosomes), were able to directly and rapidly bring the iron in ferrihydrite crystals from ferritin into solution, in the absence of its protein “shell”. In this kind of a strongly reducing environment, the resulting iron would be in the Fe(II) state, ready for transport back to the cytosol through DMT1 or other iron transporters. Thus, intervention by reductases or other enzymes would not be required. Furthermore, many in-depth studies would be needed to fully explore and decipher the possible mechanisms by which, alone or together, these reducing and chelating agents are acting to solubilize and reduce the iron, although it is clear that reduction by GSH and solubilisation by citrate are rapid and almost equally effective, and that the ascorbate effect is more sustained.
To verify that lysosomes themselves can dissolve the iron in ferritin-derived ferrihydrite crystals, we isolated them from the macrophage cell line (J774a.1) as well as from mouse livers and kidneys using differential centrifugation and gradient sedimentation, lysed the lysosomal fractions, and tested the resulting fluids for ferrihydrite solubilization. As shown in Fig. 3G, the lysosomal fluids were also able to directly dissolve iron crystals derived from ferritin. The rates of ferritin iron release were linear and slower (data not shown) than those in our studies with reducing and chelating agents, and lysosomes from cell cultured macrophages were more active than those isolated from cells in the liver and spleen, most likely because these tissues also have many other cell types, and lysosomes are most abundant in macrophages.
Evidence that DMT1 was involved in mobilizing iron stored in ferritin via movement into lysosomes was sought using confocal microscopy and the same approach for the quantitation of co-localization already described for ferritin (Fig. 2). The colocalization of DMT1 with the lysosomal marker (LAMP2) was followed in HepG2 cells preloaded with iron to form ferritin and then deprived of iron with DFO. As shown in Fig. 4A, there was a rapid increase in the area of DMT1–lysosome colocalization in response to iron deprivation. Colocalization increased 10-fold over 2.5 h, a dramatic and rapid change, indicating marked trafficking of this transporter in connection with the movement of ferritin into lysosomes.
Fig. 4 The movement of DMT1 to lysosomes during iron deprivation, effects of bafilomycin, and stability of the DMT1 protein after siRNA treatment. (A and B) Quantitation of the co-localization (total area) of DMT1 with the lysosomal marker LAMP2 in confocal images was as described for ferritin in Fig. 2, (A) over time in hours (h) following placement of HepG2 cells in a medium containing DFO to deplete the cells of Fe, or (B) at 30 and 120 min, without and with the added proton pump inhibitor, bafilomycin A. Data are means ± SD (N = 12). (C and D) The effect of siRNA on the levels of DMT1 mRNA and protein in rat hepatoma cells, (C) mRNA 3 days after treatment with specific (DMT1) or scrambled (Scrbl) siRNA, determined by qPCR (average values for duplicate determinations), and (D) DMT1 protein levels determined by western blotting after 3 and 6 days of treatment (days 1 and 3) with scrambled (Scrbl), Zip 8, or DMT1-specific siRNAs. The 3 day blot is representative of two experiments and shows the same samples applied to SDS-PAGE at different dilutions. The 6 day blot is representative of two experiments in which treatment with siRNA against Zip 8 had been included (and served as another control). |
Since the degradation of ferritin is dependent on lysosomal enzymes with low pH optima, we used the lysosomal protein pump inhibitor, bafilomycin, to determine whether it affected the migration of DMT1 to the lysosomes. Fig. 4B shows that the decreased proton pump activity greatly reduced the rates of co-localization, suggesting complex signaling to coordinate this process.
To obtain evidence that the movement of DMT1 to lysosomes is associated with returning ferritin iron to the cytosol, we attempted to knock down DMT1 expression with RNAi. Although the expression of DMT1 mRNA was almost completely abolished over three days of treatment (Fig. 4C), this did not result in a marked decrease in the levels of the DMT1 protein, even with multiple treatments (Fig. 4D), suggesting that it is fairly stable and turns over slowly.
As an alternative, we used a specific DMT1 inhibitor (6f), developed by Xenon Pharmaceuticals, Inc.26 to test the involvement of DMT1 in lysosome-to-cytosol iron return. Here, the lysosomal loading of iron was accomplished by the incubation of murine-derived macrophage-like cells (J774a.1) with iron-dextran, a polymer that is endocytosed to lysosomes. The iron-loaded cells were then treated with the Xenon inhibitor (Xen) or the DMSO vehicle in which it was dissolved, to monitor differences in the rates of lysosomal iron release (hepcidin was not added). Total cell iron and ferritin concentrations were then measured after 24 h. Ferritin concentrations would reflect the transfer of lysosomal iron into the cytosol – which induces ferritin synthesis and accumulation. Thus, the ferritin levels would be a measure of the amount of iron transferred from the lysosomes. As shown in Fig. 5A, treatment with the DMT1 inhibitor reduced the amount of ferritin produced by 40% compared to what occurred in the vehicle-treated control cells. In these experiments we also used siRNA treatment to reduce the activity of the alternative transporter, Nramp1. Treatment with the DMT1 inhibitor (Xen) plus control (scrambled) siRNA had the same effect as treating with Xen alone. However, adding siRNA specific to Nramp1 on top of Xen significantly further reduced the amount of iron entering the cytosol. Total cellular iron levels (Fig. 5B) showed the opposite trend: Xen and Nramp1 siRNA increased the retention of iron in the cells in an additive way, the least being retained in controls and the most when the DMT1 inhibitor and Nramp1 siRNA were used together. These results implied that both DMT1 and Nramp1 are involved in shuttling iron from lysosomes into the cytosol, at least in macrophages, and that a good portion of the iron released to the cytosol was leaving the cells, the rest accumulating in ferritin. The effects of the DMT1 inhibitor or Nramp1 siRNA alone on the formation of ferritin in response to iron released from lysosomes were also tested numerous times (Fig. 5C). The average drop in ferritin production due to Xen was highly significant; Nramp1 siRNA treatment also significantly inhibited the entry of iron into the cytosol from the lysosomes.
Fig. 5 The effects of inhibiting DMT1 and knocking down the expression of Nramp1 on the retention of Fe by lysosomes, using cultured macrophages (J774.1). Macrophage lysosomes were preloaded with iron by exposing the cells to iron dextran, then transferred to new culture medium for 24 h that did/did not contain the DMT1 inhibitor (Xen) [6f],26 and/or scrambled or Nramp1-specific siRNA. (DMSO was the vehicle for Xen.) Cytosolic ferritin concentrations (μg mg−1 cell protein) (A) and total cellular iron (μg mg−1 cell protein) (B), determined in cell extracts for controls (DMSO only), and those cultured with only the drug (Xen-DMSO), the drug and scrambled siRNA (scrambled Xen), and with both the drug and Nramp1 siRNA (siRNA-Xen). Values are means ± SD (N = 4) for two separate experiments. *p < 0.01 for difference from control; **p < 0.02–0.001 for difference from “scrambled-Xen”. (C) The effects of the DMT1 inhibitor alone (Xen) and Nramp1-siRNA alone on the accumulation of cytosolic ferritin in response to the transfer of lysosomal iron, expressed as percent of controls: DMSO vehicle for the drug and scrambled siRNA for the siRNA. Values are means ± SD (N = 8) for 5 experiments. *p < 0.01 for difference from control; **p < 0.02 for difference from control. |
The importance of DMT1 for the transfer of ferritin-derived iron from lysosomes to the cytosol was also studied in adult male mice in which the gene for DMT1 was knocked out only in hepatocytes. Iron release from ferritin stores was stimulated either by bleeding of about 10% of their blood from the submandibular vein or by daily subcutaneous injections of erythropoietin (EPO). After bleeding and during EPO treatment, rats were fed a low iron diet to ensure that they could not replenish most of their iron losses from the diet. Care was taken to use WT and conditional DMT1 KO (hDMT1 KO) mice of the same age and sex (male) and with the same dietary history for a given study. Preliminary data indicated that bleeding reduced total iron in the liver over 3 days by about 30% in WT mice. However, in subsequent experiments with WT and hDMT1 KO mice, there were relatively small changes in either total iron or ferritin over the three day period, but the EPO treatment was more effective. We thus carried out several studies on male rats given 5 days of EPO treatment, and the results are presented below.
Five days of EPO treatment resulted in an average increase in the hematocrit in both WT and hDMT1 KO mice, from 47 ± 8 to 56 ± 6 (mean ± SD; N = 7). The total liver iron (Fig. 6A) concentrations fell significantly by about 30% in the case of the WT controls. The initial concentrations of total iron were lower in the hDMT1 KO mice. However, the important point was that EPO treatment resulted in no loss of total liver iron in the mice where DMT1 was knocked out in the hepatocytes. This supported our contention that knocking out DMT1 would diminish the ability of the liver to respond to iron deprivation. In contrast to total liver iron, hDMT1 knockout mice started with the same ferritin protein concentrations as the wild type (determined by rocket immunoelectrophoresis), and treatment with EPO resulted in the same marked drop in ferritin concentrations as in the WT (Fig. 6B). This indicated that ferritin had moved to lysosomes and been degraded. Thus, in the case of hDMT1 KO mice, the iron remained in the cells, not in ferritin but presumably in the lysosomes, implying again that DMT1 was essential for releasing the lysosomal iron derived from ferritin so it could leave the hepatocytes. Our finding that the hDMT1 KO mice had somewhat lower total iron concentrations in their livers than the WT controls differs from what has been reported earlier,27 but is mostly likely explained by the fact that in these last studies, the WT control mice were bred commercially, and although of the same age (and sex) as the KO mice, were only on the same diet as the “home-bred” hDMT1 KO mice for a few weeks before the experiments. Similar measurements of the responses of total iron and ferritin to EPO treatment or bleeding were made for the spleens of the WT and hDMT1 KO mice (data not shown). However, as anticipated,43,44 these treatments caused splenomegaly and induction of erythropoiesis in the spleens, which would prevent us from being able to differentiate between the mobilization of ferritin iron for bone marrow erythropoiesis versus retention and use for erythropoiesis within the spleen.
The degradation of the ferritin protein is required for the release of the iron in its interior. Thus, the crystals of ferrihydrite inside will become exposed to the lysosomal fluid as degradation proceeds. The question then arises as to whether enzymatic activity is required to solubilize the ferrihydrite iron. Our data show that this is not the case. The lysosomal levels of at least two powerful reducing and chelating agents for iron (glutathione and ascorbate) are high,37,38 and our data clearly demonstrate that physiological concentrations can rapidly solubilize the iron in ferrihydrite, and that this also occurs in lysosomal fluids but at a slower rate. Although the exact concentrations in lysosomes are unknown, it is well established that iron release in lysosomes (from ferritin or after endocytosis of iron particles) lowers the cellular GSH concentrations substantially;45–47 cytosolic concentrations are in the range of 2–5 mM;37,38 lysosomes are a favorable milieu for Fenton reactions due to their content of reducing agents (GSH and ascorbate, as well as cysteine);48–50 and the formation of reactive oxygen species (ROS) in lysosomes is dependent not only on iron but also on reducing agents like GSH,37,47,48 and probably mainly on GSH.47 Indeed there is a great deal of interest in the role of lysosomal ROS formation (via iron and these reducing agents) in various diseases that result in cell death, which might even be exploited to kill cancer cells.51 Thus, although lysosomes may not have as high a redox potential as the cytosol,52 and their lower pH may somewhat reduce the rates of reduction, there is plenty of evidence that GSH is present in lysosomes53 and plays an important role in that organelle that can, in certain circumstances (such as when lysosomes are loaded with extra iron through endocytosis), lead to high ROS concentrations and increased cell death (termed “ferroptosis”, currently under investigation).47 We would suggest that normally, the formation of ROS does not occur, since after entry into the lysosomes, the rate of ferritin protein degradation, which is required for ferrihydrite crystals to be dissolved, plus the rate of returning solubilized iron to the cytosol by at least two transporters, prevents the accumulation of excess iron ions that might generate the acute production of ROS, i.e. as the ferritin protein shell is degraded, the ferrihydrite is rapidly solubilized and then rapidly returned to the cytosol, and this is a continuous process.
Upon solubilisation in lysosomes, the iron from ferrihydrite would then be in the Fe(II) state and thus capable of being transported out of the lysosomes back to the cytosol by known iron transporters that take up reduced iron, which we investigated. Divalent metal transporter 1 (DMT1, also known as Nramp2 and Slc11A2) is the main player in the uptake of dietary iron by intestinal epithelial cells and is also important for the transfer of Fe(II) from endosomes carrying the holo-transferrin–transferrin receptor complex after the receptor-mediated uptake of Fe(III) circulating on transferrin in the blood, after its reduction (in the endosomes) by the ferrireductase, Steap 3.39 The association of DMT1 with the lysosomes of HEp-2 cells had also previously been reported.41 Here we confirmed with confocal microscopy that DMT1 is associated with the lysosomes of hepatic cells and show for the first time that the amount of DMT1 associated with lysosomes increases markedly and rapidly in response to iron deprivation and the entry of ferritin into lysosomes. This implies a connection between the entry of storage iron into lysosomes and its transfer back into the cytosol as Fe(II) with the help of this transporter, from which the Fe(II) could be released into the blood (via ferroportin) to support bone marrow erythropoiesis. Interestingly, the migration of DMT1 to lysosomes was dependent on the lysosomal proton concentration, since inhibition of proton pumping with bafilomycin A inhibited the process. This also fits with the fact that the transport of metal ions by DMT1 is proton dependent.54
Further support for the involvement of DMT1 in returning iron from the lysosomes to the cytosol was obtained using livers from whole animals (mice) and cultured macrophages. Our studies with hepatocyte-specific DMT1 knockout mice and age and sex-matched controls indicated that DMT1 was indeed important for the mobilization of iron stored in the liver. In fact, hepatocyte-specific DMT1 knockout prevented the significant 30% loss of total liver iron that occurred in wild type mice responding to daily injections of erythropoietin (EPO) over 5 days. It did not however prevent the movement of ferritin into lysosomes and its degradation, implying that without DMT1 in the hepatocytes, iron was stuck in the lysosomes. This indicates not only that DMT1 is the primary transporter in hepatocytes responsible for the transfer of lysosomal iron to the cytosol and for exit from these cells, but also that the liver storage iron pool mobilized by excess EPO occurs primarily in hepatocytes and that these cells may also be holding most of the stored iron.
Using a specific DMT1 inhibitor, kindly provided by Xenon Pharmaceuticals (6f),26 we found that DMT1 was also important for the transfer of lysosomal iron to the cytosol in macrophages. Macrophages in the spleen and those in liver (Kupffer cells) are important in processing large quantities of red blood cell iron daily, which involves the autophagy of aged erythrocytes into lysosomes, the degradation of hemoglobin, and the return of the iron to the cytosol, where it is incorporated into ferritin for temporary storage and/or released into the blood for return to bone marrow erythropoiesis and/or transfer to hepatocytes. To examine the role of DMT1 in macrophages, we used the murine cell line J774.a1, which expresses both DMT1 and Nramp1.55 Lysosomes were loaded with iron by the exposure of cells to iron dextran (which is autophagized), and the levels of ferritin produced were measured to assess the amounts of iron released from the iron dextran in the lysosomes. [As described earlier, iron stimulates cytosolic ferritin synthesis through a translational mechanism involving iron response elements and iron response proteins (IREs and IRPs).5] Despite high iron levels in the lysosomes from the iron dextran, the DMT1 inhibitor consistently and significantly decreased the accumulation of ferritin in these cells, indicating that it diminished the transfer of lysosomal iron into the cytosol, and that DMT1 participated in this process. Since the related transporter, Nramp1, plays a role in macrophage iron metabolism and was detected in phagolysosomes,55,56 we also investigated its potential involvement in lysosomal iron release in the same macrophages. We found that the siRNA knockdown of Nramp1 mRNA also had a consistent negative effect on the transfer of lysosomal iron to the cytosol. Our findings that both Nramp 1 and 2 are differentially involved in this process are consistent with evidence from some previous reports, namely that Nramp1 is an Fe(II) transporter,57 the expression of which is mainly confined to macrophages (and neutrophils);55 it co-localizes with phagolysosomes;56 and the knockout of its expression results in the retention of iron in the spleen (rich in macrophages) rather than in the liver,58 particularly when the turnover of red blood cells was enhanced by phenylhydrazine. Collectively, these results indicate that in hepatocytes, DMT1 is the main transporter involved in the lysosome to cytosol transfer step in ferritin iron mobilization, whereas in macrophages both DMT1 (Nramp 2) and Nramp 1 participate, as also concluded by Soe-Lin et al.59
When we began these studies, there was some skepticism about the autophagy mechanism of ferritin iron mobilization,1 since in vitro, the iron in ferritin can be removed by direct treatment with small reducing and chelating agents that enter the interior compartment (where the ferrihydrite crystals are located) through channels in the protein structure, and the chelated dissolved Fe(II) can then diffuse out.1 In response to these concerns, we pre-treated cultured cells with 59Fe-ferric ammonium citrate to induce 59Fe-labeled ferritin production, then treated them with high concentrations of various reducing and chelating agents, or treated them with modulators of intracellular glutathione concentrations. The cells were monitored for levels of ferritin iron and ferritin protein over many hours, during which cells not treated with the reductants and chelators lost ferritin iron and protein in parallel, while growing in a medium deprived of iron. None of the treatments enhanced the loss of iron from ferritin, nor decreased the ferritin iron/protein ratio, as would be expected if these agents were removing iron from intact ferritin within the cells. Two agents that decrease the cystosolic levels of GSH (diethylmaleate and 2-cyclohexene-1-one) by conjugating with it and causing excretion32 did have some effects on ferritin that were contradictory, and could not be attributed directly to GSH. [Less GSH resulted in greater iron release (cyclohexene) or increased ferritin degradation (diethylmaleate).] So it is clear that these agents also have effects other than depleting cells of GSH. More importantly, their effects failed to support the idea that GSH directly removes iron from undegraded, cytosolic ferritin.
Our studies with reducing and chelating agents applied externally to cells also reconfirmed the results of others that ascorbate treatment actually decreases rather than increases the release of ferritin iron,1,34–36,60 and showed that the rate of turnover of ferritin (protein as well as iron) was slowed by ascorbate. This fits perfectly with earlier findings of Bridges61 that ascorbate inhibits the entry of ferritin into lysosomes, and suggests that ascorbate interferes with the mechanism of autophagy, or the signal which triggers this process for ferritin, in response to the need for the release of storage iron. These studies reconfirm the conclusions from multitudes of previous work,1 indicating that the iron in ferritin is not released in the cytosol by endogenous reducing and/or chelating agents that can carry out this process in vitro. Also, since the data from virtually all studies with mammalian cells,1 including those presented here, show that the degradation of ferritin depends upon first degrading the ferritin protein “shell”, it is highly unlikely that the kind of protein–protein interaction mechanism recently identified for bacterioferritin62 also occurs in mammals.
The inability of high concentrations of reducing and chelating agents to release ferritin iron in living cells is noteworthy and also makes physiological sense: taking large doses of vitamin C (or related iron reducers and chelators) might otherwise inadvertently promote the formation of reactive oxygen species by increasing the levels of Fe-ascorbate (etc.) in an uncontrolled manner, in contrast to what seems clearly to be the case, namely that iron release from ferritin only occurs through a complex-controlled response to iron deprivation (or need for more active iron) and is confined to a specific compartment to protect other parts of the cell. However, just how the process of ferritin autophagy (to bring ferritin into lysosomes) is triggered still remains to be discovered.
This journal is © The Royal Society of Chemistry 2018 |