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The self-assembly of low molecular weight gelators to form gels has enormous potential for cell culturing, optoelectronics, 

sensing, and for the preparation of structured materials. There is an enormous “chemical space” of gelators. Even within 

one class, functionalised dipeptides, there are many structures based on both natural and unnatural amino acids that can 

be proposed and there is a need for methods that can successfully predict the gelation propensity of such molecules. We 

have successfully developed computational models, based on experimental data, which are robust and are able to identify 

in silico dipeptide structures that can form gels. A virtual computational screen of 2025 dipeptide candidates identified 9 

dipeptides that were synthesised and tested. Every one of the 9 dipeptides synthesised and tested were correctly 

predicted for their gelation properties. This approach and set of tools enables the “dipeptide space” to be searched 

effectively and efficiently in order to deliver novel gelator molecules. 

Introduction 

Supramolecular hydrogels are formed when low molecular 

weight gelators (LMWGs) self-assemble in solution to form 

fibrous structures.
1-3

 These gels have interesting properties. 

For example, self-supporting gels are often formed at very low 

concentrations of gelator (typically less than 1 wt%), and the 

gels are reversible, returning to the solution state on heating. 

There are many applications of these gels, from sensing, cell 

culturing and electronics, all of which require not just that a 

gel is formed, but often that the gelator contains specific 

functional groups.
4-6

 Whilst there is significant current interest 

in these materials, progress is perhaps most hampered by the 

lack of design rules for these gelators.
2, 7

 An extremely large 

number of effective gelators are known, with a wide diversity 

of molecular structures. However, a priori design rules are few 

and far between and the majority of gelators are still 

discovered by serendipity or by close structural changes to a 

known gelator.
8
 Despite a number of pioneering reports where 

libraries of molecules have been formed by varying the 

molecular structures, it is also the case that many close 

structural analogues do not form gels.
9-11

 The reason for this is 

not clear, but is undoubtedly due to the fact that the self-

assembly leading to gelation arises from a fine balance of non-

covalent interactions. Hence, slight modifications in these 

interactions can very easily tip a gelator into becoming a non-

gelator. This is perhaps most easily seen by the fact that each 

gelator is normally capable of gelling only a small range of 

solvents.
2
 

A number of approaches have been used in an attempt to 

elucidate design rules. As mentioned above, library-based 

approaches have been used which usually comprises of 

synthesis of large numbers of closely related analogues. Other 

attempts have been made using structural-based design.
8
 

Here, specific functional groups are included in a molecule to 

drive one-dimensional assembly, whilst restricting 

crystallisation. Recent work has attempted to rationalise 

gelation with specific solvation properties.
10, 12-15

 However, a 

priori prediction of gelation is not possible using this approach 

as clearly not every molecule with specific Hammett 

parameters (for example) are gelators. Elsewhere, a number of 

groups have mined the Cambridge Crystallographic Structural 

Database for molecules with specific types of interaction.
16, 17

 

However, where specific moieties or parent structure are 

required in a gelator, this can present a considerable synthetic 

challenge to accommodate the desired functional group(s). 

Clearly, there are then a limited number of structural 

permutations that are possible whilst maintaining these 

groups. As such, arguably the most effective currently 

available option is a library approach. 

One approach that has not received much traction to date 

is the use of computational approaches to predict the gelation 

ability of specific molecules. Very recently, Tuttle’s group have 

examined the aggregation behaviour of dipeptides and 

tripeptides and successfully predicted the ability of these 

molecules to form gels.
18

 This is a major step forward; with 

8000 possible tripeptides, this approach saves significant 

synthetic effort. Here, we present a tool that enables 

researchers to obtain high quality predictions for the 
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propensity of a compound to form a gel. Employing this 

approach will greatly expedite the discovery of novel gelators 

compared with the traditional empirical approach. We have 

focussed on one family of gelator, functionalised amino acids 

and dipeptides.
19, 20

 

Quantitative structure-property relationships (QSPR) is a 

technology which links measured properties to compound 

chemical structure. It has proven successful in many aspects of 

molecular design particularly in the fields of drug discovery 

and crop protection. Indeed, several marketed drugs have 

been developed with the aid of such approaches.
21

 QSPR is 

based on the principle that experimentally measured 

endpoints are a function of molecular properties.
22

 QSPR 

models cannot be built directly but rather the molecules’ 

properties are encoded as descriptors, which capture 

numerically the chemical information of the molecule for 

computational processes. Molecular descriptors can be 

classified into zero-dimensional (0D)-descriptors (e.g. 

molecular weight), 1D-descriptors (e.g. counts of certain 

molecular fragments) and 2D-descriptors (e.g. molecular 

constitution in terms of atom types and their connectivity
23

). 

Statistical and machine learning methods, such as Bayesian 

modelling, random forests and support vector machines, are 

employed to link these descriptors to the measured endpoint, 

i.e. gelation.
24

 A successful QSPR model will shed light on the 

key molecular characteristics that are linked to the gelation 

ability of a compound and also, crucially, enable rapid 

computational screening of libraries of molecules to identify 

candidates that are likely to possess the desired gelation 

properties. 

Designing molecules with the desired physical and 

chemical properties for a particular application is a huge 

challenge. If reliable computational predictive methods can be 

realised then virtual screening of large in silico databases is 

possible, enabling rapid identification of candidates for 

experimental confirmation.
25

 Here we describe how 

computational models are built which link the real-world 

measured endpoint, i.e. gelator or non-gelator, to molecular 

structure. 

Experimental 

Synthesis & testing 

The functionalised amino acid and dipeptide library examined 

here is prepared from previously reported compounds,
9, 26-30

 

as well as a number of new molecules. The full synthetic and 

characterisation details for the new molecules are described in 

the Supporting Information. 

Gelation testing was carried out using standard protocols 

10 mg of the functionalised dipeptide was suspended in 

deionized water (2 mL) and an equimolar amount of NaOH 

added. The solution was stirred until a clear solution formed. 

The pH of the solutions was typically between 10 and 12. To 

adjust the pH, glucono--lactone (GdL, 8.7 mg/mL) was added 

to the solution. The sample was left to stand undisturbed 

overnight. After this time, a “yes” or a “no” was recorded 

based on the gelation ability of the samples. “Yes” refers to the 

formation of self-supporting gel (this was assessed after 

around 18 hours; further long term studies were carried out) 

and “no” refers to where no gel was formed. A small number 

of examples where a clear outcome was not reached (for 

example, a very weak material which was clearly structured, 

but was not self-supporting) were discounted from the study. 

These included 2-(2-(6-bromonaphthalen-2-

yloxy)acetamido)propanoic acid
26

 and (2-((4-

chloronaphthalen-1-yl)oxy)acetyl)phenylalanine. 

QSPR  

The molecules described above were generated in silico using 

ChemDraw,
31

 converted to SMILES format, The descriptors 

were calculated using Pipeline Pilot
32

. The Caret (Classification 

and Regression Training)
33

 library in R
34

 was used for both the 

visualisation and machine learning methods. The MODI index
35

 

was calculated using our own scripts in R. We chose H measure 

as our metric as it has recently been shown that the most 

popular measure of classification models, under the curve 

(AUC), is fundamentally incoherent, in that it treats the relative 

severities of misclassifications differently when different 

classifiers are used. The H measure does not have these 

inadequacies.
36

 The domain of applicability of a model was 

considered using the “model applicability filter” in Pipeline 

Pilot tracking property ranges and using OPS analysis. Settings 

for all methods were default unless otherwise specified. The 

virtual library was generated in Chemdraw
31

 and SmiLib, using 

the SMILES code to enable fast generation of the library 

containing all the possible compounds that fit into our desired 

category.
37

 (See Supporting Information for further details). 

Results and discussion 

Synthesis & testing 

The functionalised dipeptide library examined here is prepared 

from previously reported compounds as well as a number of 

new molecules (see Supporting Information for all compounds 

and synthetic details; generic structure shown in Figure 1).  

Figure 1. Generic structure of library (AA – amino acid); see Supporting 
Information for specific structures. 

In all cases, gelation was tested using a pH triggered approach, 

where we have used the hydrolysis of glucono--lactone (GdL) 

to gluconic acid
38

 as described elsewhere to lower the pH of a 

solution of each potential gelator at pH 11 to around 4.
39

 The 

method by which gelation is triggered can strongly affect the 

ability of a molecule to form a gel, as well as the mechanical 

properties of the resulting gel.
40

 As such, we have focussed on 

molecules synthesised and tested by ourselves, such that we 

can be certain that the protocol followed was identical in each 

case. A slow pH change was chosen as this removes issues with 
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stirring and mixing often associated with pH-triggered 

gelation.
39

 

For categorisation assessment after 18 hours, the materials 

were classified by whether a self-supporting gel had formed or 

not (“yes” or “no” respectively). A “yes” means that a fully self-

supporting gel was formed after around 18 hours. These gels 

were translucent, transparent, or turbid. A “no” means that no 

self-supporting gel was formed, with the sample usually being 

a fine powderous precipitate or a crystalline precipitate. In a 

small number of cases, a very weak material was formed, and 

these were discounted from the study as not giving a clear 

answer. We have focussed here on a single concentration of 

each potential gelator (5 mg/mL); in our experience, this is 

always above the minimum gelator concentration (mgc) for 

this family of materials.
26, 28, 29

 As such, we do not believe that 

the use of this concentration is restrictive. Since we are 

interested in whether or not a gel is formed, as opposed to the 

specific properties of the resulting gels, we have not 

attempted to measure the mgc of the gelators, nor the 

mechanical properties of the resulting gels.  

 

Gelators and non-gelators 

We have compiled sets of data consisting of i) a training set of 

34 compounds (17 gelators, 17 non-gelators) to build the 

predictive models, ii) a test set 21 compounds (4 gelators, 17 

non-gelators) to test the prediction ability of the models and 

iii) an external validation set of 9 compounds (4 gelators, 5 

non-gelators). The complete list of compounds and gelation 

properties is shown in the Supporting Information (Table S1). 

 

Predictive QSPR modelling 

No simple relationship was found between the descriptors and 

gelation properties using visualisation and data compression 

techniques (see Supporting Information for full discussion). We 

therefore developed QSPR classification models. These models 

are a more complex approach to linking the molecular 

descriptors with gelation ability than the visualisation 

approaches above. These models would ideally be able to 

successfully predict the gelation properties of dipeptides from 

their structural characteristics alone. The overall workflow of 

the QSPR modelling is shown in Figure 2. 

Before comprehensive QSPR modelling was undertaken, an 

assessment of the “modelability” of the training set data was 

performed using the MODI index.
35

 This index estimates the 

feasibility of obtaining predictive QSPR models from a binary 

classified data, i.e. gelators and non-gelators. If the MODI 

statistic is >0.65, then the data should be amenable to 

classification modelling. Both the training (MODI = 0.76) and 

test sets (MODI = 0.70) met this criterion. The computational 

QSPR models were generated using a variety of machine 

learning methods: Support Vector Machines (SVM)
41

, Random 

Forests (RF)
42

, k nearest neighbours (kNN), Neural Networks 

(NN)
43

, Partial Least Squares (PLS)
44

, Naïve Bayesian (NB)
45

 and 

C5.0
46

. All these modelling methods employed used both 

physicochemical descriptors and molecular fingerprints to 

capture molecular properties. 

Figure 2. Overall QSPR Modelling, Synthesis and Testing Workflow. 

 

We employed several modelling techniques as each 

technique has its own strengths, and ultimately we want to 

deploy a set of models for making predictions on molecules 

yet to made and tested based on predictions that they would 

form a gel. Through a consensus of predictions (from several 

QSPR models), there can be a dramatic increase in the quality 

of virtual screening outcomes. Such a virtual screening 

approach using many robust models can show improved 

performance over single model predictions
47

 due to fact that 

the mean of repeated samplings is closer to the true value 

than one single measurement. Also, different methods in silico 

agree more on the ranking of “actives” than “inactives”, which 

arises from the fact that different ligand-based virtual 

screening protocols focus on different aspects of the ligand 

thus lead to different false positives. In the realm of drug 

discovery, it has been suggested that actives are clustered 

more tightly than inactives; thus, multiple samplings will 

recover more actives than inactives. 

A repeated 5-fold cross-validation approach was used to 

select the optimal QSPR model for each method based on the 

largest H measure value. An ideal model has a H measure 

value of 1, with a random model taking a value of 0.5. Using a 

cross-validated approach gives a good estimate of the 

predictive power of the models
48

. The models generated from 

each machine learning method with associated statistics are 

shown in Table 1. Once the optimal model had been selected, 

we further assessed the models’ merits using a range of 

measures, Cohen’s kappa, balanced accuracy and H measure 

(Table 1). We chose Cohen’s kappa
49

 as a figure of merit due to 

its ability to assess the actual agreement of outcomes 

compared with chance agreement (kappa can range between -

1 and +1 with a perfect model having a value of +1). As can be 

seen, the kappa values are very good for all models (>0.4). 
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Table 1. Optimisation and performance statistics of the QSPR models developed for the training set 

 

Balanced accuracy is a measure of the number of 

correctly classified molecules and can vary between 0 and 1 

with an ideal model having a value of 1 and an acceptable 

value being >0.7. An assessment of the probability of the 

model found being better than the no-information rate (the 

accuracy rate that can be achieved without a model
48

 has 

been made and the very small values (< 1x10
-5

) adds further 

strength that these models are good. Overall, it can be seen 

that the models developed are defined as “good” passing all 

of the desired criteria (H > 0.6, Kappa > 0.4, Balanced 

accuracy > 0.7, P value < 1x10
-5

). 

The only way to truly assess the true predictive power of 

a model is to use the models developed on a set of 

compounds that the model has never seen before. When 

using models to make predictions, it is vital that the models 

are applied to molecules that are within the applicability 

domain of the model, as previously mentioned.
25

 This 

means that the chemistry of the molecule that one is 

making a prediction on is not too dissimilar from what the 

model has encountered previously. Hence, we applied the 

models to a test set of functionalised dipeptides (see 

Supporting Information for structures). 

Of the 21 compounds in the test set, 14 (2 gelators, 12 

non-gelators) lay within the “applicability domain” of the 

model as defined by the descriptors (physicochemical and 

fingerprint) used in the model building (see Experimental 

Section).  

The data in Table 2 indicates the overall performance of 

all the models to predict correctly the gel forming properties 

this test set of compounds. As can be seen, three models 

satisfy the criteria as described above for a “good” model. 

They are random forest, support vector machine and neural 

network. 

It is notable that H measure of the test set is correlated 

with the H measure from repeated cross-validation during 

model building (r
2
 = 0.727) demonstrating that the repeated 

cross-validation approach did indeed give a good indication 

on the performance of models on future compounds – thus 

these models are highly predictive for compounds that the 

models have never seen before.  

 

 

 Performance on external test set of 14 compounds in 

models applicability domain 

Method Kappa Balanced 

Accuracy 

H 

Measure 

Quality of 

predictions 

SVM 0.417 0.708 0.703 Good 

RF 0.759 0.958 1.000 Good 

kNN 0.286 0.7941 0.311 Bad 

NN 0.462 0.875 1.000 Good 

PLS 0.177 0.625 0.526 Bad 

NB 0.286 0.791 0.526 Bad 

C5.0 0.103 0.583 0.334 Bad 

Table 2. Performance on the models predicting the gelator properties of the 

12 external test set compounds within the model domain of applicability. 

Green – meets criteria. Red – fails criteria. (Criteria for good: Kappa > 0.4, 

Balanced accuracy > 0.7, H > 0.6). 

The excellent predictive performance of these models 

can also be seen in Figure 3, which displays the ROC 

(Receiver Operator Characteristic) curves for these 

models.
50

 The NN model is perfect predicting each 

molecule’s gelation abilities correctly with the RF and SVM 

models only slightly worse. This is indicated in the plots for 

RF and SVM diverting away from the vertical line of 

specificity equal to 1. A model which provides no predictive 

ability is indicated by the grey line – clearly all three good 

models are significantly better than this. 

In order to increase confidence further in the three 

predictive models identified, a randomisation test was 

performed in which the measured gelation outcome for the 

training set compounds was randomised and the whole 

model building process repeated as was performed for the 

true data.
51

 The predictive power of models developed on 

the randomised data should be markedly inferior to the 

models developed using the true data. All of the statistical 

measures (kappa, balanced accuracy and H measure) for the 

performance of the models generated using the randomised 

data for the predictions of the 12 compounds in the test set 

are much worse than the equivalent models found using the 

true data (see Table S4, Supporting Information). This data 

further increased our confidence in the good SVM, RF and 

NN models identified. 

Method 
Resampling results of 

optimal model 
Performance of optimal model on training set 

 H measure ± SD Kappa Balanced Accuracy P value H Measure Overall Quality of Model 

SVM 0.764 ± 0.28 0.941 0.971 2.04x10-9 1 Good 

RF 0.771 ± 0.22 0.941 0.971 2.04x10-9 1 Good 

kNN 0.570 ± 0.26 0.824 0.912 3.83x10-7 0.738 Good 

NN 0.774 ± 0.24 0.941 0.971 2.04x10-9 0.907 Good 

PLS 0.751 ± 0.22 0.529 0.765 1.47x10-3 0.761 Good 

NB 0.701 ± 0.24 0.765 0.882 3.08x10-6 0.761 Good 

C5.0 0.646 ± 0.25 1 1 5.82x10-11 1 Good 
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Figure 3. ROC curves for the SVM ( ), RF ( ) and NN ( ) models 

(RF and NN plots lie on top of each other) 

Thus, with the set of models (SVM, RF and NN) that were 

demonstrated to perform excellently in predicting the gelation 

properties of dipeptides in the test set, we wished to use these 

models prospectively to identify candidate dipeptides from a 

large in silico library to synthesis and testing. This set of 

compound would act as a validation set and demonstrate the 

ability of our approach in successfully identifying both 

compounds that form gels and those that do not. 

Virtual Library Design, generation and screening 

An in silico library of N-protected amino acids and dipeptides 

was generated with the generic form as shown in Figure 1. The 

aromatic/long alkyl chain portion of the dipeptide included 1-, 

2-substituted naphthalenes, 5,6,7,8-tetrahydronapthalenes, 

carbazole, fluorene, C15-alkyl, C13-alkyl and substituted 

aromatic rings. The amino acid (AA) side chains studied were 

glycine, valine, leucine, alanine, phenylalanine, isoleucine, 

methionine and tyrosine (see Supporting Information for full 

list of aromatics/long alkyl chains and amino acids).  

The library in total contained 2025 compounds (Supporting 

Information, Table S5), each of which had the same set of 

descriptors calculated as for the training set of molecules. Even 

though we had identified three robust models for gelation 

predictions, these models have limitations. Their predictions 

will not be equally good for all possible molecules. Generally, 

the more similar a compound whose properties we wish to 

predict is to the molecules in a model's training data set, the 

better we expect the model's predictions to be. In other 

words, if a sample lies within the model’s applicability domain 

(MAD), we expect the prediction to be trustworthy. If the 

sample lies outside the MAD, we expect the prediction to be 

less trustworthy. The MAD for the SVM, RF and NN models 

was defined using the molecular descriptors calculated 

(further information in the experimental section and 

references therein). For the virtual library of 2025 compounds, 

those molecules which lay outside the model applicability 

domain for SVM, RF and NN models were removed, leaving 

699 compounds. 

For each of the 699 compounds, predictions were made on 

their gel forming ability using the SVM, RF and NN models. 

Nine candidate molecules were chosen (4 gelators, 5 non-

gelators) to be synthesised and tested using the combined 

likelihood from the three machine learnt models. As can be 

seen there is an exact agreement between the predictions and 

measurements indicating a remarkable predictive power and 

performance of these models (Table 3). Additionally, it can be 

seen that the models predict compounds to be gelators where 

both amino acids are non-aromatic. Typically, these are much 

less likely to form gels as opposed to those that contain 

aromatic amino acids.
29

 
 

Compound 

Prediction 

 

% likelihood 

Measure

ment 

 

No 

 

85% 

No 

 

No 

 

85% 

No 

 

No 

 

85% 

No 

 

No 

 

82% 

No 

 

No 

 

83% 

No 

 

Yes 

 

83% 

Yes 
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Yes 

 

75% 

Yes 

 

Yes 

 

79% 

Yes 

 

Yes 

 

63 % 

Yes 

Table 3. Structures of molecules predicted, synthesized and tested for gelation 
property. %likelihood is the average probability from SVM, RF and NN models 
that the prediction is as indicated. 

Whilst we stated earlier that to be certain of an identical 

protocol, we focused on molecules synthesised and tested by 

ourselves, we have nonetheless applied our protocols to a 

number of literature examples. A significant number fell 

outside the applicability domain. However, those that did all 

followed exactly our predictions. These included Fmoc-GF 

(predicted not to be a gelator in line with the experimental 

data
28, 52

), as well as two naphthalene-based gelators (Nap-Gly-

Val and Nap-Gly-Leu correctly predicted not to form gels
53

), 

benzimidazole-diphenylalanine (correctly predicted to form 

gels
54

), and Azo-Phe-Ala (correctly predicted to form a gel
55

). 

As noted above, design rules are few and far between for 

low molecular weight gelators. Examination of the most 

influential descriptors in these complex models may reveal 

some key parameters which are highly influential on molecules 

with gelation ability. Amongst the 12 physicochemical 

descriptors calculated, five were important - the number of 

rings, predicted molecular aqueous solubility, polar surface 

area, solvent accessible surface area, AlogP and number of 

rotable bonds. However, for all models (SVM, RF, NN), there 

were a significant number of molecular fingerprint descriptors 

that were also very important (see Supporting Information). 

Unfortunately, these fingerprint descriptors are difficult to 

interpret by eye. Rather, the information that is encoded in 

them is best utilised in a virtual screening campaign, as we 

successfully employed here. 

Conclusions 

In conclusion, we believe we have demonstrated the first 

successful predictive models of gelation properties of 

mono/dipeptides. It is clear that complex machine learning 

based approached are needed in order to make predictions as 

it is not solely by physical properties of the molecules that 

govern gelation propensity, but it is more subtle information 

encoded in the molecules structure. The online tool developed 

by us, provides predictions for the gelation property of any 

molecule that is submitted – both those similar and dissimilar 

to those encountered previously. An indication of the 

probability (as a percentage) of the prediction of a given 

molecule is given along with the prediction gelation 

propensity. In addition to this, the molecule is annotated 

whether it is within the “applicability domain” of the model. 

The “applicability domain” is the chemical space in which the 

predictive model can be used with confidence. 

  The applicability domain has been defined using the 

molecular fingerprints and physicochemical properties of each 

molecule within the training set. If a molecule lies outside of 

the applicability domain, it does not mean the prediction is 

incorrect, it just provides the user with extra information with 

which to make a decision via this applicability domain 

“warning”. These additional features (above a simple yes/no 

answer) allows the user to make their own informed decision 

on whether to make and test any given molecule given the 

predicted likelihood of a molecule forming a gel. We invite 

researchers to use the online interface through which users 

can predict the gelation properties under the conditions 

discussed in this paper, and (www.liv.ac.uk/~ngberry/gel.html, 

username Gel, password gel123).  
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