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Ocean acidification is a major threat to coral reefs worldwide, with reduced growth already reported in the

hydrocoral Millepora alcicornis (Linnaeus, 1758) under these conditions. Inhibition of enzymes related to

energy metabolism is hypothesized as one of the mechanisms associated with the physiological impacts

of ocean acidification. Therefore, a mesocosm experiment was conducted to investigate whether three

levels of decreasing seawater pH could alter the activity of key enzymes involved in the energy

metabolism in M. alcicornis. Hydrocorals were acclimated to marine mesocosm conditions for 20 days

and then exposed to different seawater pH levels [ambient pH (8.1) and experimental pH (7.8, 7.5 and

7.2)] for 16 and 30 days. Endpoints analyzed included the activity of key enzymes involved in the

regulation of the glycolytic pathway (hexokinase and pyruvate kinase), aerobic energy production via the

Krebs cycle (citrate synthase) and anaerobic energy production via lactate formation (lactate

dehydrogenase). The results obtained show that only citrate synthase was affected by seawater

acidification, as a marked reduction in its activity was observed at all experimental pH levels tested (7.8,

7.5 and 7.2). This finding indicates that reduced growth previously reported for M. alcicornis under

seawater acidification conditions can be explained, at least in part, by a negative impact on the Krebs

cycle, a major pathway involved in aerobic energy production.
Environmental signicance

Ocean acidication is a key major threat to aquatic biota, including coral reefs. Despite the recognized negative effects of this global environmental stressor
on marine biota, little is known about its mechanism of action in corals and hydrocorals. In the present study, we evaluated seawater acidication effects on
the activity of energy metabolism-related enzymes in the hydrocoral Millepora alcicornis. Our ndings indicate that reduced growth previously reported for
this hydrocoral species under seawater acidication conditions can be explained by a negative impact on the Krebs cycle, a major pathway involved in
aerobic energy production. Negative impacts on the growth of reef calcifying organisms result in reduced ecological complexity and biodiversity of the entire
coral reef system.
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Introduction

Ocean acidication refers to the decrease in seawater pH
resulting from oceanic absorption of atmospheric CO2 emis-
sions associated with anthropogenic sources. It leads to
changes in both the carbonate buffer system and the calcium
carbonate (CaCO3) saturation state of oceans. Indeed, the pH
value of global seawater has remained stable at an average of 8.2
for millions of years. However, since industrialization began
around the 1760s, ocean acidication has increased by 26%
compared to the pre-industrial times and is expected to
continue rising in the future. Indeed, the ambient pH of surface
Environ. Sci.: Adv., 2025, 4, 447–455 | 447
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seawater was already reported to be 8.10.1 According to the
latest Assessment Report (AR6) of the Intergovernmental Panel
on Climate Change, it is projected to further drop by 0.3 to 0.4
units by 2100.2 This change would be equivalent to a 150%
increase in seawater acidity compared to preindustrial times.

Ocean acidication will likely affect all marine ecosystems,3–5

especially heavily calcied organisms, including corals.4,6

Indeed, coral reefs are one of the most sensitive ecosystems to
this global stressor due to their delicate and complex
physiology.7–11 The hydrocoral Millepora alcicornis shows
a branching morphology and is one of the main corals to
increase structural complexity on Brazilian reefs.12–14

Like scleractinian corals, hydrocorals feed heterotrophically
on a variety of resources (mostly planktonic feeders). They also
host unicellular dinoagellate endosymbionts (i.e. zooxan-
thellae). Therefore, like scleractinian corals, they rely on
a mutualistic symbiosis for autotrophic nutrition and calci-
cation.15 In the scleractinian coral Mussismilia harttii, seawater
acidication has been shown to negatively affect some key
biochemical biomarkers involved in the coral calcication
process and the photosynthetic metabolism of endosymbi-
onts.16 Also, seawater acidication has been reported to induce
oxidative stress and negatively affect the growth of the hydro-
coral M. alcicornis.17,18 Therefore, as reported for scleractinian
corals,9,10,16 hydrocorals are also prone to being affected by
ocean acidication.5,17,19,20

In corals and hydrocorals, the calcication site pH is regu-
lated relative to the surrounding seawater pH in order to
promote the calcareous skeleton formation.8 However, the
calcication site pH can be altered under conditions of ocean
acidication, thus compromising several biochemical and
physiological processes involved in the calcication of organ-
isms.16,18,20 Results reported in the literature indicate that the
magnitude of the seawater acidication effect on the growth of
corals and hydrocorals is species-specic.4,21,22 In the hydrocoral
M. alcicornis, a reduced growth rate was observed aer long-
term exposure to seawater acidication.18 At this point, it is
important to note that a reduced seawater pH would lead to
a similar reduced pH of the seawater present in the polyp's
gastrovascular cavity.7 In this context, it is worth noting that pH
regulation in the calcication medium is achieved by active
proton (H+) pumping, an energy demanding process. Therefore,
it is expected that this condition would lead to an increased
energy requirement for maintenance of the coral calcication
rate, thus resulting in a higher metabolic rate and reduced
growth.21

In the present study, the effects of seawater acidication on
the activities of hexokinase, pyruvate kinase, lactate dehydro-
genase and citrate synthase were evaluated. It is worth noting
that these enzymes catalyze irreversible key reactions involved
in two major metabolic pathways, i.e., glycolysis and Krebs
cycle. Therefore, the activities of these enzymes are nely
regulated, as they are responsible for the control of these
metabolic pathways in most organisms,23,24 including corals.25,26

Regarding glycolysis, the rst and last steps of this metabolic
pathway are regulated by hexokinase and pyruvate kinase,
respectively. At the end of glycolysis, two molecules of ATP and
448 | Environ. Sci.: Adv., 2025, 4, 447–455
two molecules of pyruvate are produced from one molecule of
glucose.24

Under anaerobic conditions, pyruvate formed in the glyco-
lytic pathway is converted into lactate, following a reaction
catalyzed by lactate dehydrogenase.24 Under aerobic conditions,
pyruvate formed in the glycolytic pathway is oxidized to acetyl-
coenzyme A, which carries the carbon atoms of the acetyl
group to the Krebs cycle for energy production. The rst step of
this metabolic pathway promotes the reaction of acetyl-
coenzyme A and oxaloacetate, thus generating a molecule of
citrate, with subsequent ATP, NADH and FADH2 production
throughout the Krebs cycle. In the next step, the reduced
coenzymes NADH and FADH2 are used by the electron transport
chain to produce ATP through oxidative phosphorylation.24,27 It
is important to note that the key reaction of acetyl-coenzyme A
and oxaloacetate condensation mentioned above is catalyzed by
citrate synthase.23,24

Considering the background described above, the aim of the
present study was to evaluate the effects of reduced seawater pH
on the activity of key enzymes involved in major energy
metabolism pathways in the hydrocoral M. alcicornis. The
enzymes evaluated included hexokinase, pyruvate kinase,
lactate dehydrogenase and citrate synthase. It is expected that
seawater acidication would lead to a reduced activity of
enzymes involved in energy production, except for lactate
dehydrogenase, since aerobic conditions are expected to occur
over the whole period of the experiment by using the marine
mesocosm system. In turn, a possible reduction in the activity of
at least one of the metabolic enzymes under aerobic conditions
would help to explain the previous reduced growth reported for
the hydrocoral M. alcicornis under the same experimental
conditions of seawater acidication tested in the present
study.18

Materials and methods
Coral collection, acclimation and exposure to seawater
acidication

Apical branches of four separate colonies of the hydrocoral M.
alcicornis were collected in the Recife de Fora Municipal Marine
Park (Porto Seguro, Bahia state, northeastern Brazil; S 16°
24037.300, W 38°59002.200). Colonies sampled were at least 200 m
apart. Hydrocoral branches collected (∼6 cm long) were xed on
ceramic plates with cyanoacrylate glue and acclimated for 20
days in the marine mesocosm system of the Coral Vivo Project
(Arraial d'Ajuda, Porto Seguro). Therefore, branches collected at
later experimental timepoints (0, 16 and 30 days) were already
broken off at this initial stage. The branches from each colony
were kept together in the same tank for the 20 day acclimation
phase. However, branches from different colonies were kept in
separate tanks in this initial phase. Hydrocorals fed only on
natural foods present in the seawater.

Aer the 20 day acclimation period, six branches (three
branches for each exposure time: 16 and 30 days) from each
original colony were randomly distributed in each of the four
experimental tanks used for the four different pH treatments.
Therefore, one separate tank was used for each colony subjected
© 2025 The Author(s). Published by the Royal Society of Chemistry
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to each experimental condition tested (pH: 8.1 – control, 7.8, 7.5
and 7.2), thus totaling sixteen tanks. Therefore, four biological
replicates were tested for each experimental condition, each one
represented by branches from the same original colony exposed
to the same experimental condition at each timepoint. In turn,
technical replicates were represented by the three branches
from each colony exposed to each experimental condition in the
same tank at each timepoint.

The mesocosm structure and functioning were described in
previous studies from our research group.16,18,20,28,29 Briey,
seawater, from the Mucugê reef located at 500 m from the
research station, was used to mimic the abiotic characteristics
and daily uctuations of natural reefs in the marine mesocosm
system. Reef seawater was continuously pumped into four
5000 L underground sumps. From there, seawater was again
pumped to four 200 L elevated reservoirs, which were connected
to the experimental tanks. The pH of the seawater from each of
these reservoirs was continuously monitored and adjusted to
reach the desired experimental conditions before reaching the
experimental tanks through gravity. The experimental setup
consisted of sixteen independent 100 L tanks. The seawater ux
in each tank was adjusted to 8.3 L min−1 using a owmeter (TM
050; GPI, Wichita, KS, USA).

The methodology for seawater acidication in the present
study was the same as previously reported by Marangoni et al.
(2019).16 Briey, mesocosm conditions were maintained at three
reduced pH levels (7.8, 7.5 and 7.2) with respect to the ambient
pH (8.1). Experimental pH conditions were selected considering
predictions based on models of atmospheric CO2 emissions
projected for years 2100 and 2300 under the IS92a scenario.2

Seawater acidication was achieved by bubbling CO2 into
natural seawater. The seawater acidication process was
controlled by means of a computerized system (Reef Angel®

Controller, Dublin, CA, USA) coupled to pH electrodes (Gehaka
09RBCN, São Paulo, SP, Brazil). The pH sensors were calibrated
every day, with pH 7.01 and pH 10.01 standard solutions
(Hanna instruments, Woonsocket, RI, USA). In this case, the
Reef Angel automatic calibration protocol was employed. Every
week, the sensor's dri and response time were checked using
a PG1800 Gehaka benchtop pHmeter test protocol (Gehaka, São
Paulo, SP, Brazil). In all cases, the free pH scale was employed.

The experiment was carried out under natural lighting. Light
intensity (LI-COR, LI 250A Light Meter, LI-193 Underwater
Spherical Quantum Sensor, Lincoln, NE, USA), pH (Gehaka
09RBCN pH electrodes, São Paulo, SP, Brazil), temperature and
salinity (Instrutemp ITREF 10 optical refractometer, São Paulo,
SP, Brazil) were monitored twice a day (08:00 a.m. and 08:00
p.m.). Every day (08:00 a.m.), seawater samples from each
experimental tank were collected for measurements of total
alkalinity and dissolved organic carbon concentration. Total
alkalinity and dissolved organic carbon concentration were
measured immediately aer seawater sample collection. Total
alkalinity was analyzed following Dickson et al. (2007)30 using
an alkalinity titrator (AS-ALK2, Apollo SciTech Inc., Bogart, GA,
USA) and certied reference material (ID: 132; Scripps Institute
of Oceanography, La Jolla, CA, USA). In turn, dissolved organic
carbon concentration was measured aer seawater sample
© 2025 The Author(s). Published by the Royal Society of Chemistry
ltration (0.45 mm mesh lter) using a total organic carbon
analyzer (TOC analyzer 5050A, Shimadzu, Japan). Levels of pCO2

and aragonite saturation state (Uar) values were calculated for
each treatment. Calculations were performed based on the total
alkalinity and mean pH data using CO2calc. version 1.2.9 so-
ware. The pCO2 values were 351.8 matm, 939.0 matm, 1683.4
matm, and 3494.3 matm for pH 8.1, pH 7.8, pH 7.5 and pH 7.2,
respectively. In turn, the Uar values corresponded to 3.89, 1.96,
1.23, and 0.64, respectively.

Aer the 20 day period of hydrocoral acclimation to the
mesocosm condition, twelve branches of M. alcicornis (three
branches of each of the four hydrocoral colonies) were collected,
individually placed into a cryovial and immediately frozen in
liquid nitrogen. Therefore, three technical replicates (three
branches of each colony) were collected per tank, while four
biological replicates (branches of the four different colonies)
were collected and frozen as described above. Samples collected
were further maintained in an ultra-freezer (−80 °C) until
laboratory analysis. The remaining branches were exposed to
the control condition or to the three different seawater acidi-
cation treatments, for 16 and 30 days. Three branches of each of
the four colonies were tested per tank, totaling twelve hydro-
coral branches for each replicate at each timepoint. Four
independent replicates (four raceway tanks) were tested for each
experimental condition (control or acidication treatment).
During the experiment, the hydrocorals fed only on natural
foods present in the seawater. A qualitative color gradient
ranging from six (darkest tone) to zero (white color), adapted
from a Coral Health Chart (https://coralwatch.org/), was used to
monitor variation in hydrocoral tissue color. Under all
experimental conditions, no clear sign of bleaching was
observed over the whole experimental time. Aer the exposure
period, hydrocoral samples were collected, frozen and stored
as described above for acclimated hydrocorals.

In the laboratory, samples (hydrocoral branches) were
macerated in liquid nitrogen, using a mortar and pestle.
Macerated samples were divided into aliquots, conditioned in
cryovials and immediately frozen in liquid nitrogen. Frozen
samples were stored in an ultra-freezer (−80 °C) until enzyme
activity analysis.
Enzyme assays

The activities of glycolytic and Krebs cycle enzymes were
analyzed according to Lallier and Walsh (1991),31 and Lauer
et al. (2012),32 with slight modications. Each sample aliquot
(∼0.5 g) was homogenized in ice-cold buffer (50 mM imidazole;
0.1 mM PMSF; pH 7.8), using a sonicator (Qsonica Model CL-
188, Newtown, CT, USA). The homogenate was then centri-
fuged (10 000 × g; 20 min; 4 °C) and the supernatant was used
as the enzyme source.

Enzyme activities were measured spectrophotometrically
using a microplate reader (ELx808IU, BioTek Instruments,
Winooski, VT, USA). Glycolytic enzyme (hexokinase, pyruvate
kinase and lactate dehydrogenase) assays were performed using
an imidazole buffer solution (75 mM; pH 7.4). Enzyme activity
was measured based on NAD+/NADH oxidation/reduction by
Environ. Sci.: Adv., 2025, 4, 447–455 | 449
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following the sample absorbance at 340 nm. Krebs cycle enzyme
(citrate synthase) assay was performed using a HEPES buffer
solution (50 mM; pH 8.1). Enzyme activity was measured based
on 5-50-dithio-2-nitrobenzoic (DTNB) reduction by following the
sample absorbance at 412 nm. Specic conditions were used for
each enzyme assay, as follows (nal concentrations): hexoki-
nase (150 mM MgCl2, 10 mM D-glucose, 1.2 mM NAD+, 120 U
mL−1 glucose-6-phosphate dehydrogenase from Leuconostoc
mesenteroides and 60 mM ATP); pyruvate kinase (150 mM
MgCl2, 750 mM KCl, 37.5 mM ADP, 3 mM NADH, 1500 U mL−1

lactate dehydrogenase and 5mM phosphoenolpyruvate); lactate
dehydrogenase (7.7 mM pyruvate and 3 mM NADH); and citrate
synthase (2.3 mM acetyl coenzyme A, 3.5 mMDTNB and 3.5 mM
oxaloacetate). All assays were performed at 25 °C. For each
experimental treatment, three branches of each hydrocoral
colony were analyzed, thus totaling twelve branches per pH
condition (pH 8.1, pH 7.8, pH 7.5, and pH 7.2) at each experi-
mental time (0, 16 and 30 days). Protein content in the sample
homogenate was determined based on the absorbance at
550 nm, using the Bradford reagent (Sigma-Aldrich, St. Louis,
MO, USA). Data were expressed as enzyme units (EU) per mg
protein (UE per mg protein).
Data presentation and statistical analysis

Data on seawater physicochemical parameters (pH, tempera-
ture and salinity: n = 60; alkalinity and dissolved organic
carbon: n = 30) and enzyme activity (n = 4, i.e., four coral
colonies; three branches of each coral colony were measured at
each exposure time) were expressed as mean ± standard devi-
ation. Data on seawater physicochemical parameters were
compared by one-way analysis of variance (ANOVA). Enzyme
activity data aer hydrocoral acclimation to the mesocosm
conditions and aer exposure to the control pH condition
(ambient seawater pH: 8.1) for 16 and 30 days were compared by
one-way ANOVA. In turn, enzyme activity data aer exposure to
different experimental conditions for 16 and 30 days were
subjected to two-way (exposure time and pH treatment) ANOVA.
Post-hoc signicant differences among the different experi-
mental treatments were evaluated using Fisher's Least Signi-
cant Difference (LSD) test. ANOVA assumptions, i.e., data
normality and homogeneity of variances, were previously
Table 1 Seawater chemistry under the different experimental condition
salinity, alkalinity (mg CO3 per L), dissolved organic carbon (DOC; mg C
mean ± standard deviation. Different capital letters indicate significantly d
0.05; one-way ANOVA, followed by the LSD test) for each parameter an

Parameter

Experimental condition

pH 8.1 pH 7.8

pH 8.10 � 0.096A 7.74 � 0.185B

Temperature 25.19 � 0.03A 25.00 � 0.03A

Salinity 35.11 � 0.39A 35.02 � 0.41A

Alkalinity 119.2 � 1.7A 117.1 � 1.5A

DOC 3.43 � 0.37A 3.56 � 0.36A

Light intensity 285.0 � 41.3A 296.4 � 41.5A

450 | Environ. Sci.: Adv., 2025, 4, 447–455
veried using the normal probability plot for raw residuals and
the Cochran C test, respectively. In all cases, the signicance
level adopted was 95% (a = 0.05). All statistical analyses were
performed using Statistica 7.0 soware (StatSo, Tulsa, OK,
USA).
Results

Data on seawater chemistry are presented in Table 1. The results
obtained showed that pH treatments were successfully achieved
and maintained throughout the experimental period. No
signicant difference was observed among replicates for the
same experimental condition (p > 0.05; one-way ANOVA).
However, a signicant difference was observed among the
different experimental conditions tested (p < 0.05; one-way
ANOVA, followed by the LSD test). General mean values (±
standard deviation) were 8.10 ± 0.096 (nominally pH 8.1; pH
range: 7.71–8.34), 7.74 ± 0.185 (nominally pH 7.8; pH range:
6.60–8.41), 7.51 ± 0.160 (nominally pH 7.5; pH range: 6.22–
8.36), and 7.21± 0.190 (nominally pH 7.2; pH range: 6.15–8.35).
No signicant difference in light intensity, temperature,
salinity, alkalinity and dissolved organic carbon concentration
was observed among the different replicates for the same
experimental condition, as well as among the different experi-
mental conditions (p > 0.05; one-way ANOVA). General mean
values for the whole experimental period corresponded to
285.95 ± 39.13 mmol photons per m2 per s, 25.12 ± 0.30 °C,
35.04± 0.38, 117.00± 1.77 mg CaCO3 per L, and 3.35± 0.35 mg
C per L, respectively.

Data on enzyme activities in hydrocoral collected aer the 20
day period of acclimation are presented in Table S1 (ESI).† For
each enzyme, no signicant difference was observed among
mean values for the four hydrocoral colonies (p > 0.05; one-way
ANOVA). Data on enzyme activities in hydrocoral collected aer
the 16 day and 30 day periods of exposure are presented in
Tables S2 and S3, respectively (ESI).† For each enzyme, no
signicant difference was observed (p > 0.05; one-way ANOVA)
among the mean values for the four hydrocoral colonies for
each pH condition (pH 8.1, 7.8, 7.5, and 7.3) at each exposure
time (16 and 30 days). Therefore, mean values for each pH
condition and exposure time were calculated based on the
s over the 30 day experimental period. Data on pH, temperature (°C),
per L) and light intensity (mmol photons per m2 per s) are expressed as
ifferent mean values among the different experimental conditions (p <
alyzed

pH 7.5 pH 7.2

7.51 � 0.160C 7.20 � 0.190D

25.16 � 0.03A 25.13 � 0.04A

35.13 � 0.37A 35.07 � 0.34A

115.8 � 2.6A 115.9 � 1.5A

3.20 � 0.31A 3.19 � 0.34A

285.5 � 33.9A 277.0 � 39.8A

© 2025 The Author(s). Published by the Royal Society of Chemistry
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twelve branches analyzed (three branches of each of the four
hydrocoral colonies).

In hydrocorals kept at ambient seawater pH (8.1), no
signicant change (p > 0.05; one-way ANOVA) was observed in
enzyme activity [hexokinase (Fig. 1), pyruvate kinase (Fig. 2),
lactate dehydrogenase (Fig. 3) and citrate synthase (Fig. 4)] over
the experimental period (0, 16 and 30 days). In hydrocorals
exposed to seawater acidication for 16 days, no signicant
change (p > 0.05; two-way ANOVA) was observed in hexokinase
(Fig. 1), pyruvate kinase (Fig. 2), lactate dehydrogenase (Fig. 3)
and citrate synthase (Fig. 4) activity. In hydrocorals exposed to
seawater acidication for 30 days, no signicant change (p >
0.05; two-way ANOVA) was observed in hexokinase (Fig. 1),
pyruvate kinase (Fig. 2) and lactate dehydrogenase (Fig. 3)
activity. However, citrate synthase activity was markedly
inhibited (p < 0.05; two-way ANOVA, followed by the LSD test) in
hydrocorals exposed to seawater acidication treatments
(Fig. 4).
Discussion

Based on the hypothesis outlined for the present study, the
reduced growth rate previously observed in the hydrocoral M.
alcicornis could be associated with lower energy production
related to the reduced activities of key enzymes linked to
glycolysis and the Krebs cycle. Therefore, we would expect the
activities of the tested enzymes to decrease under an ocean
acidication scenario. However, our data reported show that
CO2-driven seawater acidication, as low as pH 7.1, did not
Fig. 1 Hexokinase activity (UE per mg protein) in the hydrocoralMillepora
or exposed to different levels of CO2-driven seawater acidification (pH 7.8
expressed as mean ± standard deviation (n = 12). Different capital letters
followed by the LSD test) under the control condition (pH 8.1) at the diffe
indicate significantly different mean values (p < 0.05; two-way ANOVA, fo
time and pH treatment).

© 2025 The Author(s). Published by the Royal Society of Chemistry
affect hexokinase and pyruvate kinase activities, even aer 30
days of exposure to this environmental stressor. This nding
indicates that the pyruvate formation rate through the glycolytic
pathway was likely not affected aer M. alcicornis exposure to
the different levels of seawater acidication tested.

Regarding the lack of response of the lactate dehydrogenase,
it is important to note that this enzyme plays a crucial role,
especially under anaerobic conditions. In fact, pyruvate formed
in the glycolytic pathway is converted into lactate, following
a reaction catalyzed by this enzyme.24 Therefore, the lack of the
seawater acidication effect on lactate dehydrogenase activity
observed in the present study is evidence that hydrocorals
maintained aerobic metabolism throughout the whole experi-
mental period.

Differently from the other enzymes analyzed, the activity of
the citrate synthase was markedly reduced in the hydrocoral M.
alcicornis exposed to any of the seawater acidication condi-
tions (pH 7.8, 7.5 and 7.2) for 30 days. Therefore, aerobic energy
production was certainly compromised in M. alcicornis chroni-
cally exposed to seawater acidication. The reduced citrate
synthase activity together with the lack of change in lactate
dehydrogenase activity observed in hydrocoral exposed to
seawater acidication in the 30 day exposure indicates that M.
alcicornis was likely not able to sustain an energy production
steady state. This nding can thus explain, at least in part, the
reduced growth previously reported for this hydrocoral
species.18 This statement is in line with other biochemical and
molecular studies on corals subjected to seawater acidication.
In fact, Edmunds and Wall (2014)33 reported that protein
alcicornis kept under the control condition (ambient seawater: pH 8.1)
, 7.5 and 7.2) for 16 and 30 days in amarinemesocosm system. Data are
indicate significantly different mean values (p < 0.05; one-way ANOVA,
rent experimental times (0, 16 and 30 days). Different lowercase letters
llowed by the LSD test) among the experimental conditions (exposure
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Fig. 2 Pyruvate kinase activity (UE per mg protein) in the hydrocoralMillepora alcicornis kept under the control condition (ambient seawater: pH
8.1) or exposed to different levels of CO2-driven seawater acidification (pH 7.8, 7.5 and 7.2) for 16 and 30 days in a marine mesocosm system.
Data are expressed as mean± standard deviation (n = 12). Different capital letters indicate significantly different mean values (p < 0.05; one-way
ANOVA, followed by the LSD test) under the control condition (pH 8.1) at the different experimental times (0, 16 and 30 days). Different lowercase
letters indicate significantly different mean values (p < 0.05; two-way ANOVA, followed by the LSD test) among the experimental conditions
(exposure time and pH treatment).

Fig. 3 Lactate dehydrogenase activity (UE per mg protein) in the hydrocoral Millepora alcicornis kept under the control condition (ambient
seawater: pH 8.1) or exposed to different levels of CO2-driven seawater acidification (pH 7.8, 7.5 and 7.2) for 16 and 30 days in a marine
mesocosm system. Data are expressed as mean± standard deviation (n= 12). Different capital letters indicate significantly different mean values
(p < 0.05; one-way ANOVA, followed by the LSD test) under the control condition (pH 8.1) at the different experimental times (0, 16 and 30 days).
Different lowercase letters indicate significantly different mean values (p < 0.05; two-way ANOVA, followed by the LSD test) among the
experimental conditions (exposure time and pH treatment).
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Fig. 4 Citrate synthase activity (UE permg protein) in the hydrocoralMillepora alcicornis kept under the control condition (ambient seawater: pH
8.1) or exposed to different levels of CO2-driven seawater acidification (pH 7.8, 7.5 and 7.2) for 16 and 30 days in a marine mesocosm system.
Data are expressed as mean± standard deviation (n = 12). Different capital letters indicate significantly different mean values (p < 0.05; one-way
ANOVA, followed by the LSD test) under the control condition (pH 8.1) at the different experimental times (0, 16 and 30 days). Different lowercase
letters indicate significantly different mean values (p < 0.05; two-way ANOVA, followed by the LSD test) among the experimental conditions
(exposure time and pH treatment).
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synthesis was negatively affected by high pCO2 in recruits of the
scleractinian coral Seriatopora caliendrum, with consequences
on aerobic respiration. In turn, Kaniewska et al. (2012)34 re-
ported that genes involved in the Krebs cycle were down-
regulated in the scleractinian coral Acropora millepora exposed
to pH 7.8–7.9 and 7.6–7.7 for 28 days. Also, Vidal-Dupiol et al.
(2013)21 reported that exposure to pH # 7.4 for 21 days induced
a downregulation of genes coding for proteins involved in coral
calcication, as well as heterotrophic and autotrophic related
proteins in the scleractinian coral Pocillopora damicornis. More
recently, Glazier et al. (2020)10 reported a lowered expression of
genes involved in the energy metabolism of the scleractinian
coral Lophelia pertusa exposed to pH 7.6 for six months in
comparison to those kept at ambient pH (7.9).

From an ecological perspective, our ndings suggest the
possibility of ocean acidication impacts on reef-builder corals.
Indeed, it was recently demonstrated that two natural coral reef
communities on the back reef of Mo'orea (French Polynesia)
showed a decreased net calcication of the natural coral reef
community subjected to a high pCO2 condition (949 matm)
compared to that exposed to the ambient pCO2 condition (393
matm).35 In the context of global changes, it is interesting to note
that citrate synthase activity was also shown to be inhibited in
the hydrocoral M. alcicornis and the scleractinian corals Mus-
sismilia hispida and Porites branneri subjected when exposed to
combined seawater acidication and increased temperature
(pH 7.8 and 28.5 °C) compared to the control conditions (pH 8.1
and 26.0 °C).36 Therefore, the inhibition of citrate synthase
activity induced by reduced seawater pH, as demonstrated in
© 2025 The Author(s). Published by the Royal Society of Chemistry
the present study with the hydrocoral M. alcicornis and scler-
actinian corals,36 can be a good biomarker of the reduced
growth observed in hydrocorals and scleractinian corals aer
chronic exposure to ocean acidication.16,18 Indeed, it was
demonstrated that the hydrocoral M. alcicornis is capable of
coping with acidic conditions only for a short period of time (16
days). However, it shows clear negative responses (oxidative
stress) aer chronic exposure (30 days) to seawater acidication,
which could compromise hydrocoral health.17 Interestingly, we
also found a signicant and marked reduction in the citrate
synthase activity only aer 30 days of M. alcicornis exposure to
seawater acidication. Based on these ndings, it is expected
that both corals and hydrocorals would negatively respond to
ocean acidication over the long term, showing compromised
health, a lower growth rate and gross production.
Conclusion

The observed lack of changes in the activity of hexokinase and
pyruvate kinase provides some evidence that the glycolytic
pathway in the hydrocoral M. alcicornis is functioning normally
even aer 30 days of exposure to seawater acidication (pH 7.8,
7.5 and 7.2). In turn, the observed inhibition of the citrate
synthase activity indicates that the rst step of the Krebs cycle
for energy production is compromised, leading to a reduced
activity of citrate synthase in the hydrocoral M. alcicornis. This
would be implicated in a reduced energy availability to sustain
an adequate metabolic rate. Such a condition could thus
explain, at least in part, the reduced growth previously reported
Environ. Sci.: Adv., 2025, 4, 447–455 | 453
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in this hydrocoral species subjected to seawater acidication for
30 days. Therefore, future work would be focused on the
establishment of a direct connection between lower energy
production through the Krebs cycle and the reduced growth in
hydrocorals and corals long-term exposed to an ocean acidi-
cation scenario.
Data availability

The data that support the ndings of this study are available on
request from the corresponding author, [AB].
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Duarte, Débora de Oliveira Pires, Clovis Barreira e Castro,
Emiliano Nicolas Calderon, and Adalto Bianchini. Project
administration: Débora de Oliveira Pires, Clovis Barreira e
Castro, Emiliano Nicolas Calderon, and Adalto Bianchini.
Resources: Andrea Carlina Jesulich, Mariana Machado Lauer,
Laura Fernandes de Barros Marangoni, Joseane Aparecida
Marques, Yuri Dornelles Zebral, Cristiano Macedo Pereira,
Gustavo Adolpho Santos Duarte, Débora de Oliveira Pires,
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