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This study explores how the strategic material design introduced synergetic coupling of strong metal-
support interaction (SMSI) between copper (Cu) nanoparticles and titanium dioxide (TiO;) loaded on
dendritic fibrous nanosilica (DFNS), defects within TiO,, and localized surface plasmon resonance (LSPR)
of Cu. Mechanistic insights were gained using in situ high-energy radiation fluorescence detection X-ray
absorption near edge structure (HERFD-XANES) spectroscopy, electron microscopy, and finite-
difference time-domain (FDTD) simulations. The introduction of copper nanoparticles onto the TiO,
surface induces a change in the electronic structure and surface chemistry of TiO,, due to the electronic
interactions between Cu sites and TiO, at the interface, inducing SMSI. This resulted in enhancing light
absorption, efficient charge transfer, reducing electron—hole recombination and enhancing the overall
catalytic efficiency. The activation energy for CO, reduction was significantly reduced in light as
compared to dark. Control experiments revealed a dominant role of photoexcited hot carriers, alongside
photothermal effects, in driving CO, reduction, supported by super-linear light intensity dependence and
reduced activation energies. The unique interplay of O-vacancy defects, electron—hole separation in
TiO, and LSPR effects in Cu led to the excellent performance of the DFNS/TiO,—CulO catalyst. The
catalyst outperformed the reported photocatalytic systems with a CO production rate of ~3600 mmol
geu T h71 (360 mmol gear ! h™Y) with nearly 100% selectivity. A reaction mechanism was proposed based

on the intermediates observed using the in situ diffuse reflectance infrared Fourier transform
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Accepted 25th April 2025 spectroscopy (DRIFTS) and co-related to the electron transfer pathways to different reactants using

HERFD-XANES. The study concluded that the synergistic coupling of Cu LSPR, charge carrier separation
DOI: 10.1039/d5sc01166¢ via SMSI at the Cu-TiO; interface, and O-vacancy defects stabilized by SMSI enhance the photocatalytic

rsc.li/chemical-science CO, reduction performance of this hybrid system.

serving as a major step.” Many photocatalytic systems have
been developed to resolve this issue, including the semi-

Introduction

The rising amounts of carbon dioxide (CO,) in the Earth's
atmosphere have become a major worldwide problem, neces-
sitating the development of novel climate-change mitigation
techniques. Among the several options, photocatalytic CO,
reduction has emerged as a viable pathway for converting
carbon dioxide into useful fuels, with carbon monoxide (CO)
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conductor and plasmon-based catalysts.** While photo-
catalytic CO, reduction to CO is a promising approach, it is
essential to recognize that other reduction products, such as
methane (CH,) and methanol (CH;OH), are also commonly
produced in CO, reduction reactions. The selectivity of the
process, whether it favors the formation of CO, CH,, or CH;0H,
depends on various factors, including the catalyst, reaction
conditions, and the reaction pathway. The development of
catalysts with high selectivity for CO production remains
a significant challenge, as the competition between different
reduction pathways can reduce efficiency. Among semi-
conductors, titanium dioxide has been extensively used as
a photocatalyst.”™** To tackle the problems of limited visible
light response and high charge carrier recombination rate of
these photocatalysts, different strategies were employed like
defect creation,™” use of metal nanoparticles (NPs) as cocata-
lysts, etc.'®?* Yet their practical utility is still limited due to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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limited efficiency and CO production rate. Thus, a novel
approach to developing sustainable catalysts represents
a fundamental pursuit in catalytic materials research.

In this study, we propose an innovative strategy that utilizes
synergistic coupling of defects, strong metal-support interac-
tion (SMSI) and localized surface plasmon resonance (LSPR).
This study hypothesizes that manipulating plasmonic reso-
nance, defects, and SMSI can provide a novel way of tuning the
photocatalytic performance (production rate, selectivity and
stability) of the catalyst.

LSPR exhibited by various metal nanoparticles allows the
concentration of light energy and can pave new ways for
chemical transformations with better activities and
selectivities.”>** Defects have long been employed as a means to
fine-tune the catalytic behaviour of materials,”*™* yet their
potential for precisely modulating photocatalytic behaviours of
plasmonic catalysts remained relatively unexplored. Building
upon our ongoing research into defect-tuned catalysis,**">*
using dendritic fibrous nanosilica (DFNS)-based catalysts,>**
and plasmonic catalysis,>'>***” this work aims to develop
hybrid plasmonic-defected photocatalysts for CO, to CO
conversion. The hypothesis was that the activation energy could
be significantly reduced in light owing to the synergistic inter-
play of SMSI-stabilized oxygen vacancies, and enhanced charge
carrier separation.

Leveraging the electronic tuning of Ti conduction bands of
TiO, upon incorporation of Cu atoms and defect creation, the
electron transfers between the TiO, and Cu were enhanced.*®*°
Owing to this enhancement in charge transfer, the electron-
hole pair recombination was inhibited due to spatial separa-
tion. The electron transfer between the semiconductor TiO, and
plasmonic Cu under illumination was deduced by employing in
situ high-energy radiation fluorescence detection X-ray absorp-
tion near edge structure (HERFD-XANES), which also helped in
elucidating the charge transfer processes to the reactants.

Detailed spectroscopic analysis (HERFD-XANES, UV-Vis, IR),
as well as finite-difference time-domain (FDTD) simulations,
were performed to understand this synergy and the enhanced
electron transfer rate between active site and reactants was
understood, and a molecular reaction mechanism was deduced
using in situ DRIFTS studies. The synergistic interplay of defect
creation and efficient charge separation effect signifies this
remarkable improvement in catalytic performance, which is
discussed in the subsequent sections.

Results and discussions
Photocatalytic CO, reduction

The catalysts were synthesized by TiO, coating on each fibre of
DFNS, followed by loading different amounts of Cu NPs
(0.05 wt%, 4 wt%, 10 wt% and 20 wt%) (Table S17), via depo-
sition—-precipitation of Cu salt directly on TiO, surface followed
by calcination in air and thermal reduction in H, environment
(refer ESIt for detailed protocol). The photocatalytic CO,
reduction was carried out in a flow reactor, utilizing a xenon
lamp as the light source (5.1 W em 2, 230-1100 nm) and
a quartz window to facilitate the light irradiation (Scheme S17).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The catalyst powder was loaded in a porous alumina crucible of
a flow reactor. Carbon dioxide and hydrogen were introduced at
flow rates of 80 mL min~"' and 1 mL min ', respectively, with
a total flow rate of 101 mL min~", balanced with argon. The
products were monitored through online micro-gas chroma-
tography (micro-GC). Under the influence of light, the catalytic
reaction proceeded without the need for additional external
heating.

Among the various Cu-loaded catalysts studied, the DFNS/
TiO,~-Cul0 catalyst exhibited the highest activity, achieving
nearly 100% selectivity for the production of CO (Fig. 1a).
Subsequently, we optimized the total flow rate for the best
DFNS/TiO,-Cul0 catalyst under the light conditions (wave-
length range of 230-1100 nm and intensity of 5.1 W cm™?),
operating at 1 bar pressure. The optimization process identified
a total flow rate of 101 mL min ™' as the most effective flow,
resulting in a CO productivity of 3601 mmol g, ' h™’
(360 mmol g.,. " h™") (Fig. 1b). Notably, increasing the flow rate
beyond this optimal flow reduced catalytic activity due to the
reduced residence time of reactant gases on the active sites,
attributed to the high space velocity of the reactant gases. We
further investigated the impact of different CO, : H, ratios while
maintaining the total flow rate at 101 mL min ', balanced with
argon. Argon was used as the inert gas to maintain the optimal
gas hourly space velocity (GHSV) and thus the residence time of
the reactant gases on the active sites. It was observed that the
CO productivity was maximized at a CO,:H, ratio of 80:1
(Fig. 1c). It is worth noting that a very less H,:CO, ratio is
required to achieve this high productivity along with high
selectivity towards CO, which makes this system even more
sustainable. Also, this finding suggests that the CO, activation
is the challenging step of the process, therefore requiring a high
concentration of CO, in the feed.

The long-term stability of DFNS/TiO,-Cul0 for photo-
catalytic CO, reduction was assessed for ~100 hours. Initially,
there was a decrease in catalyst activity, with the CO production
rate falling from 3601 to 1700 mmol g¢, ' h™* during the first
30 hours of the reaction.

However, after this initial decline, the catalyst exhibited
consistent stability throughout the entire 100 hour period
(Fig. 1d). The initial loss could be due to some agglomeration of
the Cu NPs which was observed in the STEM EDS mapping of
the spent catalyst after 30 h (Fig. S17). After this initial loss, the
extended stability was attributed to the interaction established
between the TiO, support and the active Cu sites within the
catalyst. This allowed a controlled degree of agglomeration
while ensuring a high dispersion of Cu nanoparticles (due to
SMSI), a key factor contributing to this sustained stability. The
high dispersion of stable Cu active sites on TiO, as a result of
defect-tuned SMSI was confirmed by the high-angle annular
dark-field scanning transmission electron microscopy (HAADF
STEM) imaging and STEM EDS mapping of the spent catalyst
(Fig. S1t).

The control experiments were carried out using only
hydrogen or carbon dioxide and different catalyst components
singularly. These experiments revealed no observable catalytic
activity (Fig. 1e). Importantly, without Cu loading, DFNS/TiO,
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Fig. 1 Catalytic performance of DFNS/TiO,—-Cu for photocatalytic CO, reduction, (a) CO productivity using various Cu-loaded DFNS/TiO,
catalysts (x denotes the Cu wt¥%) at 1 bar pressure, 80 : 1 CO, : H; ratio with a total flow rate of 101 mL min~%; Impact of (b) total flow (with 80: 1
CO, : Hj, ratio), (c) influence of CO; : H, ratio (at 101 mL min~* total flow) on CO production rate using DFNS/TiO,—Cul0 catalyst; (d) long-term
stability of DFNS/TiO,—Cul0 catalyst; (e) control experiments using different catalysts under various reaction conditions; (f) mass spectra of
13CO, when labelled **CO, was used as the feed gas (inset: gas chromatogram of CO).

showed no CO production. This underlines the crucial role of
Cu in activating the DFNS/TiO, catalyst, reaffirming its signifi-
cance in the CO, reduction process. To unequivocally confirm
that the supplied CO, was the exclusive carbon source for CO
production, we conducted an isotope experiment, replacing the
standard '>CO, feed gas with isotopically labelled **CO, gas.
The resulting gas chromatography-mass spectrometry (GC-MS)
analysis showed a distinctive signal corresponding to *CO

9768 | Chem. Sci., 2025, 16, 9766-9784

(m/z = 29) in the mass spectrum (Fig. 1f). This analysis provided
evidence that the product CO indeed originated from the *CO,
feed gas.

Structural characterization of the DFNS/TiO,-Cul0 catalyst

To understand the structure-activity relationship, it is of high
importance to investigate the crystalline nature of the catalyst

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and further understand the catalytic performance and mecha-
nism. The transmission electron microscopy (TEM) images of
the fresh DFNS/TiO,-Cu10 catalyst after H, treatment displayed
uniform loading of Cu nanoparticles on the DFNS/TiO, sphere
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(Fig. 2a—f). Scanning transmission electron microscopy coupled
with energy dispersive X-ray spectroscopy (STEM-EDS)
elemental mapping indicated the high dispersion of Cu active
sites on the TiO, support, with Cu and Ti signals appearing
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Fig.2 DFNS/TiO,—-Cul0 catalyst characterisation, (a) and (b) HRTEM images; (c) HAADF-STEM images; (d)—(f) STEM-EDS elemental mapping; (g)
HRTEM image showing anatase phase of TiO,; XPS spectra for (h) Cu 2p and (i) Ti 2p; (j) TPR profile of DFNS/TiO,—Cul0 as prepared (ASP)
catalyst; (k) UV-Vis DRS (diffuse reflectance spectra) for DFNS/TiO, and DFNS/TiO,—Cul0 (reduced) catalyst; (1) N, sorption isotherms for DFNS/

TiO,, DFNS/TiO,—Cul0 (ASP) and reduced catalyst.
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uniformly on the catalyst's surface (Fig. 2d-f). HAADF STEM
images showed Cu NPs with varying particle size distribution
with variable loading, with a mean particle size of 6.5 nm for
DFNS/TiO,-Cu10 (Fig. S2t). The high-resolution (HR) TEM
images showed the lattice fringes of the anatase phase of TiO,
(Fig. 2g) and (111) planes of Cu and Cu,O (Fig. S31).** Powder X-
ray diffraction (PXRD) patterns of DFNS/TiO,-Cul0 did not
show patterns for anatase TiO, or Cu (Fig. S471), which may be
due to small crystallite size or the amorphous nature of the
deposited sites.”>*> X-ray photoelectron spectroscopy (XPS)
indicated the presence of Cu® and Cu" species (Fig. 2h). Two
sets of 2p peaks were seen in the Cu XPS 2p core level spectra;
the first set included Cu 2p;/, and Cu 2p,,, peaks at 932.6 and
952.89 eV, respectively, which indicate the presence of copper
with low valences, such as Cu® and Cu" (Fig. 2h).®* The weak
peaks of Cu 2p;z, at 934.5 eV and Cu 2p,,, at 953.8 eV in
combination with the satellite peaks at 942 eV are typical
characteristics of Cu®>*, which could occur due to oxidation
during the XPS sample preparation.®>® In the high-resolution
XPS spectrum of Cu-loaded DFNS/TiO,, spin-orbit splitting
results in the doublets, Ti 2p;/, at binding energy 458.6 €V and
Ti 2p;, at binding energy 464.4 eV (Fig. 2i). These peaks
correspond to TiO, with Ti*" sites.®® Also, the shoulder at
binding energy 459.7 eV corresponds to Ti** in TiO,. The pres-
ence of Ti** state could be directly linked to the formation of
oxygen vacancies, which was also confirmed by the
temperature-programmed reduction (TPR) analysis of DFNS/
TiO,-Cu10 (Fig. 2j). It showed three distinct peaks corre-
sponding to the reduction of Cu®*" to Cu’, Cu” to Cu® and
creation of oxygen vacancies. The resulting Cu® in contact with
TiO, would interact with the oxygen from the network and form
Cu'{0,]-Ti**, which exhibited a reduction signal at ~337 °C
and finally, this oxygen was lost, creating vacancies at ~520 °©
C.**% These partially positive Cu sites are attributed to Cu
undergoing SMSI with the TiO, support.

To probe the changes in the absorption profile of the catalyst
after the incorporation of Cu, UV-Vis diffuse reflectance spec-
troscopy (DRS) data was recorded (Fig. 2k), which showed
a broad band absorption profile for DFNS/TiO,-Cu10, unlike
DFNS/TiO, which showed a typical TiO, absorption profile lying
entirely in the UV region. DFNS/TiO,-Cu10 catalyst has highly
dispersed Cu sites, which assisted in the formation of oxygen
vacancies. The incorporation of defects as well as Cu helped to
absorb a wide range of wavelengths by virtue of its LSPR effect.*”
The N, sorption isotherm analysis BET surface area calculations
and the pore-size distribution analysis showed that the pores
were occupied by loading the Cu salt on DFNS/TiO, and were
then partially recovered by reduction due to the formation of
highly dispersed Cu NPs (Fig. 21, S5 and Table S27).

In situ HERFD-XANES studies for insights into defects & SMSI

The variations in the Ti K-edge with reduction at various
temperatures were investigated by measuring the Ti 1s core
level HERFD-XANES spectra of TiO, (Fig. 3a-g and S67). The
spectral profiles conformed to the anatase phase of TiO, as also
affirmed by HRTEM analysis (Fig. 2g).°*7° The highest energy,

9770 | Chem. Sci,, 2025, 16, 9766-9784
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most intense dipolar region of the spectrum (main edge ~ 4.98
keV) primarily arises from the dipolar excitation of Ti 1s elec-
trons to unoccupied Ti 4p states (Fig. S67).°® A decrease in
energy and intensity of this edge, with increasing reduction
temperature, was observed, resulting from poorer core hole
screening and a reduced number of metal-ligand states (Ti
4p-0 2p hybrid orbitals in this system) available for 1s electron
excitation.®® The peak position energy difference is about 1.5 eV,
compared to 0.9 eV between six- and five-coordinate Ti in
glasses as reported by Farges et al.®® This suggests an increase in
five-coordinated Ti sites due to the formation of oxygen vacan-
cies and the reduction of Ti*" sites to Ti** with increasing
temperatures.

In addition to the changes in the main-edge portion of the
spectrum, significant variations in the energy and intensity of
the Ti K-pre-edge peaks were observed, depending on the
charge, bonding environment, and coordination number
(CN).**> As the CN decreases from 6, the loss of inversion
symmetry allows the Ti 3d states to partially overlap with 4p
states, introducing a dipolar component to the excitation and
causing the peak intensity to increase. The reduction in the pre-
edge energy with decreasing CN is likely due to alterations in
final-state core-hole screening.”””® The splitting of the Ti 3d
band of DFNS/TiO,-Cu10 into t,, and e, states due to the crystal
field effect is sensitive to the degree of hybridization and the
number of ligand coordination.” This splitting results in four
distinct peaks in the pre-edge region of Ti-K edge spectra,
labelled A1-A4. The A1 peak is attributed to the quadrupolar 1s
— 3d (ty) transition, while the A3 peak is attributed to the
dipolar transition of 1s — 3d (t,g)-4p hybridized states, with
a minor quadrupolar 1s — 3d (e,) component. The A2 peak is
linked to the quadrupole transitions of 1s to 3d (e,)-4p
hybridized states and A4 corresponds to the pure dipolar tran-
sitions of 1s — 3d (ey)-4p hybridized states.”** Although the
peak assignments have been widely debated, it is generally
accepted that A1 and A3 primarily probe the t,; band, while A2
and A4 probe the e, band. The absorption intensity of t,; and e,
increases with rising catalyst reduction temperature, indicating
the reconstruction of these bands through induced disorder/
distortion in the structural matrix.** The separation of pre-
edge peaks reflects the effect of the core-hole potential, which
depends on the localization of the final states reached. Thus, A1
and A2 are associated with transitions to states strongly local-
ized on the Ti atoms in the DFNS/TiO,-Cul0 system.

On the other hand, studies on nanosized TiO, have shown
that A2 is particularly sensitive to crystallinity and nanoparticle
size, with its intensity correlating to low-coordinated Ti sites on
the surface.®*® The intensity ratio of the two peaks (A2/A3)
exhibited a linear increase with the reduction temperature up
to 550 °C. However, at 650 °C, there was a sudden and marked
increase in the A2 peak intensity. This abrupt change can be
correlated to the enhanced oxygen vacancy formation at
a higher reduction temperature. Such an increase in oxygen
vacancies indicates significant lattice distortion within the TiOg
octahedra, leading to a decrease in the coordination number of
Ti sites. These findings are consistent with the spectral analysis
conducted by Yogi et al.”* At the surface, a five-coordinated

© 2025 The Author(s). Published by the Royal Society of Chemistry
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In situ electronic and structural characterization of the catalyst. /n situ HERFD-XANES of oxidized DFNS/TiO,—Cul0 catalyst during in situ

~1 (a) Ti K-edge pre-edge region spectra;

Gaussian curve fittings of anatase TiO, in the pre-peak region at different temperatures (b) 50 °C, (c) 140 °C, (d) 350 °C, (e) 550 °C, and (f) 650 °C;
(g) A2/A3 ratio from the pre-edge of Ti K-edge versus temperature plot, (h) Cu-K edge XANES spectra.

geometry predominates, accounting for the observed distorted
environments. This correlation suggests that the formation of
oxygen vacancies plays a critical role in altering the local coor-
dination and structural arrangement of Ti sites within the
lattice.

A series of Cu K-edge XANES spectra recorded under in situ
conditions (Fig. 3h) consisted of three major features labelled as
A-C. The pre-edge feature at 8.980 keV (feature A) arises from
transitions to spatially localized 3d states.®**” The shape of this
pre-edge is influenced by the number of d-shell electrons, with
its intensity proportional to the 3d-4p hybridization with its
energy indicating the oxidation state. The presence of this
feature, which is prominent in as-prepared catalysts, signifies
Cu*" since Cu and Cu" have filled 3d orbitals.** Upon exposure

© 2025 The Author(s). Published by the Royal Society of Chemistry

to a reducing environment, Cu®" is readily reduced at 140 °C.
Feature B, at 8.993 keV, corresponds to the 1s — 4s dipole
transitions, with intensity directly proportional to the partial
positive charge on Cu sites due to increased empty states in the
4s orbitals.*”"® Feature C, the most intense white line at 8.996
keV, is attributed to 1s — 4p dipole transitions.*>*® As the
catalyst reduction temperature increases, the spectra shift to
lower energies, indicating the reduction of Cu®" and Cu" to
metallic Cu. Even at 650 °C, the XANES pre-edge positions lie
between those of Cu foil and Cu,O, suggesting an oxidation
state between 0 and +1.* This further supported the conclu-
sions from H,-TPR analysis that Cu sites in contact with TiO,
exist in the Cu'’ state. In situ XANES analysis elucidated the
interaction dynamics between TiO,, its defects and the Cu NPs

Chem. Sci., 2025, 16, 9766-9784 | 9771
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within the DFNS/TiO,-CulO catalyst, revealing significant
oxidation states and electron density distribution shifts among
the Cu sites and TiO,. It indicated the creation of oxygen
vacancies or reduced Ti*" species in TiO,, which are associated
with enhanced catalytic activity due to improved charge carrier
dynamics. This reduction was accompanied by the oxidation of
Cu sites at the interface from Cu® to Cu'. This change is crucial
for stabilizing the reduced Ti’" sites and oxygen vacancies
formed as well as for catalytic processes as it impacts the acti-
vation and transformation of reactants. These interactions
between Cu and TiO, thereby alter the electronic states and
band gap which result in enhanced photocatalytic performance
because of better electron transfer rates, which is discussed in
later sections. These investigations emphasise the crucial role
of electronic structure adjustments, facilitated through SMSI, in
optimising the catalyst's performance.

Comparison with best-reported photocatalytic systems

In the quest for superior photocatalytic systems for the
conversion of CO, to CO, DFNS/TiO,-Cul0, owing to the SMSI
and plasmonic effects discussed above, the catalyst can surpass
other photocatalysts in terms of CO productivity and selectivity.
Thus the catalyst was evaluated against some of the most
reported for

prominent photocatalysts that have been

e 3400 8
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photocatalytic CO, reduction.'®'>¢****>* Notably, DFNS/TiO,—
Cul0 exhibited good performance in terms of both CO
production rate and CO selectivity (Fig. 4 and Table S3+1). This
indicates that our catalyst achieved the highest CO production
rate, surpassing previously reported values, although this
comparison is not perfect due to variations in reactor setup,
reaction conditions and light intensities used by various
reports. We chose to normalize the activity based on the active
metal sites, as DFNS was used solely as a support to maximize
metal dispersion. This approach did not apply to previously
reported catalysts, such as Ni;N and In,O;3_,, as they lacked
a support structure. The synergistic interplay of defect creation,
plasmonic effects and efficient charge separation due to tuning
of its band structure signifies this remarkable improvement in
catalytic performance, which is discussed in the subsequent
sections.

Insights into inhibitions of electron-hole recombination by
coupling of defects & SMSI

The intricate mechanisms governing this photocatalytic CO,
reduction process using DFNS/TiO,-Cul0 were then studied.
We explored the dependency of CO production rates on varying
light intensities (Fig. 5a) while monitoring the catalyst bed
temperature by inserting a thin thermocouple directly onto the

Y DFNS/TiO2-Cu10 (This Work)
@ DPC-C4-Ni (57)
@ Ni3N (9)

@ Ni12P5/Si02 (90)
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Fig. 4 Comparison of photocatalytic CO; reduction activity of DFNS/TiO,—-Cul0 catalyst with previously reported catalysts.
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Cul0; (c) variation in CO production rate using different spectral regions of the Xe light source under constant light intensity of 3 W cm~2; (d) EPR

signal for oxygen vacancy in DFNS/TiO,—Cul0 under inert (argon) and
TiO,—Cul0 at 582 nm (source Eg = 6197.8 V m™) (5.1 W cm?) using
spectra.

catalyst bed, as outlined in Scheme S1.f Photocatalytic CO,
reduction experiments were conducted at various light inten-
sities (without external heating) and also in the dark (with
external heating) (Fig. 5a and S67). Under the light illumination
intensity of 5.1 W cm™?, an excellent CO production rate of
3601 mmol g¢, ' h™' was achieved, accompanied by nearly
100% CO selectivity. Moreover, the super linearity of the light

© 2025 The Author(s). Published by the Royal Society of Chemistry

reaction (CO, + H,) conditions (e) electric field enhancement in DFNS/
FDTD simulations; (f) optical band gap determination from UV-Vis DRS

intensity dependence of CO production rate, characterized by
the power law exponent of ~5.1 (Fig. 5a) is a signature of the
hot-carrier multielectron mediated catalysis over plasmonic Cu
(Fig. 5a).”>* A range of catalyst bed temperatures was attained at
various light intensities without any external heating (Fig. 5a).
To understand the contribution of photothermal effects, CO,
reduction reactions were also carried out in the dark at these
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catalyst bed temperatures using external heating (Fig. S77).
Even at the highest temperature, only ~10% CO productivity
compared to light was observed. This further highlights the
significance of light in enhancing the CO, reduction rate.

To get better insight into the mechanism, activation energy
was calculated from the Arrhenius plots plotted for light and
dark conditions. The activation energy in light was found to be
less than half of that required in dark (Fig. 5b). To understand
the effect of plasmonic activation in detail, catalytic activity was
evaluated at various wavelengths spanning the visible region
and the CO production rate was found to be closely following
the extinction profile of DFNS/TiO,-Cu10 catalyst (Fig. S8at).
Wavelength-dependent apparent quantum efficiency (AQE) also
corroborated with the extinction profile confirming the plas-
monic activation-induced catalysis (Fig. S8b,T ESI note 1). To
understand if the excited charge carriers formed in TiO, were
also contributing to the chemical reaction, the impact of illu-
mination in different regions of the light spectra on the catalytic
performance was investigated (Fig. 5c). It was observed that
when reaction was initiated under UV-Vis-IR light irradiation,
a substantial increase in the CO productivity was witnessed as
compared to visible light illumination with same intensity
(Fig. 5¢). The IR region had a less prominent effect on the
catalyst activity as depicted by a lesser difference in the CO
production rates obtained in Vis and Vis-IR illumination. An
increase in UV-Vis-IR illumination depicted that the TiO, charge
carriers were also actively contributing to the reaction after the
incorporation of Cu (Fig. 5¢) which was not observed in DFNS/
TiO, under the same illumination (Fig. 1e). This was due to
enhanced charge carrier separation by the formation of SMSI at
Cu NP and TiO, interface that facilitated the charge trans-
fers.?»'** As TiO, excitons, plasmonic resonance and enhanced
charge carrier separation played their role in enhancing the
catalytic activity, attempts were then made to understand the
role of oxygen vacancies during the CO, reduction reaction.
Electron paramagnetic resonance (EPR) analysis of DFNS/TiO,-
Cu10 catalyst in argon flow showed a signal corresponding to
the g factor of ~2.005 (Fig. 5d), which was attributed to the
oxygen vacancies.*”** This signal intensity decreased as soon as
the catalyst was exposed to reactant gases (CO, and H,), which
indicated the participation of oxygen vacancies during the
reaction.

To visualize the local electric field enhancement due to LSPR
of Cu, FDTD simulations were employed. The model consisted
of a TiO, sheet over which Cu nanoparticles (5 nm) were
deposited at a distance of 1.5 nm (Fig. 5e). The electric field was
greatly enhanced (~8x) in the ‘hot spot’ formed between the Cu
NPs, which could potentially polarise the reactant molecules.

To understand the dominance of TiO, interband and Cu
LSPR in different regions of the UV-Vis spectrum in the catalyst,
a wavelength-dependent FDTD simulation analysis was carried
out, which showed the change in the direction of the electric
field within the Cu NP in the range 380-400 nm (Fig. S9t). This
change was consistent with the switching of the dominant light
excitation behaviour from TiO, interband transitions to Cu
LSPR in the visible region.’”® During the investigation of the
changes in the band structure of TiO, after the incorporation of
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Cu via Tauc plot analysis, we observed a decrease in the band
gap to 3.12 eV from 3.40 eV. It was due to its interaction of Cu
with the Ti 3d bands in the TiO, network altering its electronic
structure by the formation of an SMSI (Fig. 5f)."*>'** This
contributed to reducing the charge carrier recombination rate
as evidenced by the photoluminescence (PL) spectra in which
the depletion in the intensity with increasing Cu loading indi-
cated a lesser rate of recombination (Fig. S10%).>*'** Our
HRTEM analyses confirmed that TiO, in DFNS-TiO,/Cu exhibit
the anatase phase, further corroborated by HERFD-XAS of the Ti
K pre-edge/edge. Furthermore, in this concentration range our
XAS analysis indicated an increase in five-coordinated Ti and
oxygen defect as well as a lattice distortion in the octahedra
which is enhanced by SMSI effects after incorporating Cu.

In situ HERFD-XANES studies for insights into electron-hole
dynamics

An in situ XAS measurement under UV-Vis illumination helped
to probe the changes in electronic structure under light irradi-
ation that can create electron-hole pairs and structural modu-
lation. The in situ XAS Ti K-edge and Cu K-edge for DFNS/TiO,~
Cul10 were performed (Fig. 6a and b) and the difference in
absorption intensity (A4) was plotted (Fig. 6d-i). An increase in
the intensity of the Ti K-edge peak for the DFNS/TiO,-Cul0
samples with a maximum at ~4965.5 eV was observed under
UV-visible-light illumination (Fig. 6d). It indicates that the
incorporation of Cu nanoparticles in TiO, altered the electronic
structure of the catalyst.®®®* Furthermore, this increase in the
absorption intensity of DFNS-TiO,/Cu-10 could be due to the
LSPR effect of Cu NPs. It is well known that bare TiO, absorbs
only in the UV range (Fig. 2k). The irradiation of DFNS/TiO,-
Cu10 sample with UV-visible light provided sufficient energy
to generate excited electrons that flowed from the Ti 3d band of
TiO, through the Schottky barrier junction (~0.6 eV between Cu
and TiO,) to the d orbital of the Cu NPs.?** This charge transfer
was further confirmed by Cu K-edge XANES spectra of the DFNS/
TiO,-Cu10 (Fig. 6g). The increase in AA for DFNS/TiO,-Cul0
implies a significant decrease in the population of Ti 3d
orbital under UV-Vis illumination. Because the band gap of TiO,
lies in the UV region, the electrons present in the valence band
get promoted to the Ti 3d band (conduction band) by UV
light.*>*"** Further investigations of the electronic properties of
Cu sites in light and dark were carried out using the XANES
absorption profile for the Cu-K edge. An in situ XAS measure-
ment under visible (420 nm) and UV (360 nm) illumination was
carried out to observe the changes in the electronic structure
under ultraviolet and visible irradiation that can create elec-
tron-hole pairs in TiO, and Cu, respectively. To understand the
electronic properties of the Cu-TiO, interface, Cu K-edge
XANES and extended X-ray absorption fine structure (EXAFS)
spectra were recorded for DFNS/TiO,-Cu20 and DFNS/TiO,-
Cu0.05 catalysts (Fig. S11-S141). The sample with a lower
concentration (~0.05% Cu) is expected to have more Cu-TiO,
interfaces due to the smaller size of Cu nanoparticles formed
and lower Cu-Cu coordination number (Fig. S13 and Table S47),
hence a better system to understand the electronic properties of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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In situ HERFD-XANES of reduced DFNS/TiO,—Cul0 catalyst during in situ conditions under visible light illumination and dark conditions.

(a) Ti—K pre-edge region, (b) and (c) Cu-K edge, pre-edge region; difference in absorption intensity (AA) between samples under irradiation and
dark from panels a and b of (d)—(f) Ti—-K edge during (d) H, flow, (e) CO; flow, (f) CO, + H, flow and Cu-K edge during (g) H, flow, (h) CO, flow, (i)
CO; + H, flow (d) with 10 mL min~ H, and 10 mL min~* CO, flow (AA it was obtained after subtracting the intensity obtained during UV-visible
illumination of the catalyst under different gaseous atmospheres with the corresponding absorption intensity in the dark in a similar atmosphere).

Cus sites directly in contact with TiO,. As evident from feature A
(Fig. S12at), the pre-edge energy of Cu atoms in DFNS/TiO,Cu-
0.05 is shifted towards higher energy compared to DFNS/
TiO,Cu-20 indicating the latter possesses more Cu' character.®’

The extent of SMSI and charge transfer efficiency in the
DFNS/TiO,—Cu catalysts is strongly influenced by Cu particle
size, which varies with Cu loading. Smaller Cu nanoparticles
offer a higher fraction of interfacial atoms in contact with TiO,,
strengthening SMSI and facilitating efficient electron transfer.
The defect concentration also depended upon the Cu size and
dispersion (Fig. S12b and ct), however, DFNS/TiO,-Cul0 dis-
played the best balance between interfacial Cu atoms and
exposed surface atoms, maximizing both SMSI and charge
transfer as indicated by the suppressed PL intensity, and thus,
catalytic activity. Higher loadings lead to agglomeration and
reduced interfacial contact, lowering performance. When the

© 2025 The Author(s). Published by the Royal Society of Chemistry

catalyst DFNS/TiO,Cu-0.05 was irradiated with light of wave-
lengths belonging specifically to UV (360 nm) and visible
regions (420 nm), the Cu-K pre-edge was shifted to higher
energy when compared to the dark (Fig. S111) owing to the
plasmonic excitation and related excitation of electrons to
higher levels as a consequence of LSPR damping.'** However,
the shift in the pre-edge was less when the catalyst was irradi-
ated with a 360 nm laser, where some interband transitions of
TiO, are possible along with plasmonic excitations in Cu in
comparison to 420 nm where absorption is dominated by Cu
LSPR. This may be attributed to the transfer of excited state
electrons from TiO, to the copper conduction band, as indi-
cated by PL studies as well, following inter-band transitions
upon 360 nm irradiation. This causes a slight increase in elec-
tron density on Cu in comparison to the pure plasmonic state at
420 nm where there is no electron density transfer from TiO,.

Chem. Sci., 2025, 16, 9766-9784 | 9775
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The Ti-K edge spectra provided additional proof of this electron
transfer from TiO, to Cu upon irradiation with light. The main-
edge feature of the Ti-K edge XANES spectra (Fig. S147) arises
due to the transition between 1s orbitals to the hybridized Ti 4p
states with the bonding states of nearest and next-nearest
neighbouring atoms."*** An increase in the intensity of this
feature was observed in the Ti K-edge under UV-light (360 nm)
illumination for the DFNS/TiO,Cu-0.05 sample, indicating an
increase in Ti unoccupied states. This result implied an excited
electron charge transfer from Ti states to Cu empty states
through the SMSI at the interface when the samples were illu-
minated by UV light (360 nm). This charge transfer would alter
the band structure at the Cu nanoparticle-TiO, interface,
resulting in the charge separation of photogenerated electron—
hole pairs. Following this, the difference in absorption intensity
(AA) obtained during UV-visible illumination of the catalyst was
determined in an oxidizing atmosphere (CO,). There was an
increase in the overall intensity upon illumination with light in
both the Ti K-edge and Cu K-edge. This means that the inter-
actions with CO, under dark conditions were weak. The electron
transfers from both TiO, and Cu active sites increased as the
catalyst was impinged with light, implying that the activation of
the CO, molecule was enhanced upon light illumination.
When the catalyst was provided with a redox atmosphere
(CO, + H,) in the presence of light, the CO, reduction to CO was
feasible. The CO, molecule is activated when the O of CO,
occupies the oxygen vacancy. Following this in the presence of
H,, the CO, molecule dissociates via a redox mechanism and
leaves behind a weakly bonded oxygen in TiO, lattice. The hole
of the electron-hole pairs generated in Cu due to LSPR was
quenched by the H, and the labile oxygen to form H,O, leaving
behind high-energy hot electrons. These electrons are trans-
ferred into 3d bands of TiO,, which are now effectively trans-
ferring them to the CO, molecule. Thus, increasing the electron
density of TiO,, which was also observed in the A4 plots in the
presence of CO, + H, as the oxygen vacancies were regenerated
and H,0 was formed. The A2 peak indicates the presence of Ti**
species and confirms that SMSI-stabilized oxygen vacancies
persist during the reaction (Fig. 6a). Although oxygen vacancies
are occupied by oxygen atoms from CO,, they are simulta-
neously regenerated by the dissociation of H,. Thus, the in situ
detection of Ti** supports the dynamic nature and stability of
these oxygen vacancies under catalytic conditions. On the other
hand, not much change was observed in the overall electron
density of Cu sites, as both electrons and hole were taken care of
via different pathways. It was concluded from these studies that
various phenomena can occur in DFNS/TiO,-Cu system upon
illumination with UV and visible light, like interband transi-
tions from valence band of TiO, to conduction band upon
irradiating it with UV light, the consequent charge carrier
separation by transfer of excited electron density to Cu states
and hot electron generation from the 4s-band of Cu (intraband
excitation) and from the 3d-band of Cu (interband
transition)."****® These investigations strongly indicate a syner-
gistic coupling of Cu LSPR, charge carrier separation by an SMSI
at the interface of Cu-TiO, and O-vacancy stabilized by Cu-TiO,
SMSI in this hybrid DFNS/TiO,-Cu system, which was
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responsible for its superior performance for photocatalytic CO,
reduction.

Molecular mechanism of CO, to CO reduction by in situ
DRIFTS

CO, reduction mechanisms generally follow two pathways: the
redox mechanism and the dissociative mechanism.”*" To
understand the mechanism of CO, reduction, an in situ diffuse
reflectance infrared Fourier transform spectroscopy (DRIFTS)
study was carried out using DFNS/TiO,-Cu10 in light and dark
conditions (Fig. 7).

No signal corresponding to CO was observed when only CO,
was introduced in the reaction chamber (Fig. S157). In the CO, +
H, conditions, bands observed at 2934 cm " and 2854 cm ™"
were attributed to the combination band (C-H) + v (OCO) and v
(C-H) of bidentate formate species, respectively (Fig. 7b).*3>'33
The broad signals from 2200-2000 cm ' were assigned to
gaseous CO."* The signal at ~1914 cm ' corresponded to the
C-O stretch of CO, adsorbed on oxygen vacancies in DFNS/
TiO,-Cu.'® Additional band at 1776 cm ™" was attributed to the
vibrational stretching mode of the OCO group of bicarbonate
species®® while the band 1585 cm ™" arose due to the formate
species (Fig. 7¢).»*>'3* Based on these intermediates, we propose
a reaction mechanism for CO, reduction over DFNS/TiO,-Cu10
catalyst; (i) it involves the adsorption of CO, utilizing the O-
vacancies causing the electron density to shift from Ti as
observed in XANES, and plasmon-assisted H, dissociation over
Cu NPs surface which led to increase in electron density on Cu
as compared to only CO,, suggested by XANES, (ii) the second
step involves the formation of bicarbonate after the attack by
terminal hydroxyl of the TiO, support, (iii) in the third step, one
of the dissociated hydrogens attack the bicarbonate species
resulting in the formation of formate which consequently leads
to the loss of CO and H,O resulting in the regeneration of
oxygen vacancies (steps iv-vi).

Disentangling thermal and non-thermal pathways

Upon decay, plasmonic excitations generate non-equilibrium
hot carriers (electrons and holes) on femtosecond timescales,
followed by localized lattice heating via electron-phonon
coupling on the order of picoseconds. These distinct energy
dissipation pathways can activate surface-bound molecules via
fundamentally different mechanisms.”*”*** To delineate the
contribution of photothermal versus non-thermal (hot carrier-
mediated) effects in the observed photocatalytic performance,
we conducted a series of control experiments under dark,
thermally heated, and light-irradiated conditions. A key obser-
vation is the markedly higher CO production rate under light
irradiation compared to that in the dark at equivalent catalyst
bed temperatures (Fig. S7). This suggests that the enhance-
ment cannot be solely attributed to photothermal heating but
implicates the direct involvement of photoexcited charge
carriers in driving the reaction.

To further probe the role of hot carriers, we examined the
dependence of CO production on incident light intensity
(Fig. 5a). The reaction rate exhibits a super-linear relationship,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Molecular mechanism of CO, reduction. (a) Proposed reaction mechanism for CO, reduction over DFNS/TiO,—-Cul0; (b) and (c) in situ
DRIFTS spectra for DFNS/TiO,—Cul0 under CO, + H, environment in light and dark conditions.

with a power-law exponent of n = 5. Such behaviour is
emblematic of multi-electron-driven catalytic processes,*®”
wherein a high flux of photoexcited electrons promotes
sequential excitations prior to energy dissipation. This dynamic
facilitates vibrational excitation and eventual bond cleavage,
yielding an improved catalytic response that exceeds what is

expected from photothermal effects alone. By contrast, purely
photothermal processes display fundamentally different scaling

behaviours. The temperature rise due to light absorption was
approximately linear with incident light intensity (Fig. 5a).

© 2025 The Author(s). Published by the Royal Society of Chemistry

However, the corresponding reaction rate, governed by the
Arrhenius equation, exhibits an exponential dependence on
temperature. Therefore, unlike charge carrier-driven mecha-
nisms, photothermal catalysis does not produce a super-linear
dependence of reaction rate on light intensity.

Further support for a hot-carrier-mediated mechanism was
derived from the comparison of apparent activation energies
under dark and illuminated conditions (Fig. 5b). The substan-
tial reduction in activation energy upon illumination indicates
a mechanistic shift from classical thermally activated pathways
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to those facilitated by non-thermal charge carriers, affirming
the dominant role of plasmonically generated hot electrons in
catalysing the CO, reduction reaction."*” Nevertheless, it is
important to emphasize that while these experiments strongly
support the involvement of hot carriers, photothermal effects
are also contributing significantly to the overall activity. The two
mechanisms, hot carrier-driven and photothermal, are inher-
ently intertwined, operating concurrently under
illumination.”” " Thus, a complete deconvolution of their
individual contributions remains experimentally challenging,
and both are likely to synergistically influence the catalytic
performance under real reaction conditions.

Conclusions

The study reports a unique catalytic material synthesis protocol
which integrates concepts of defects and plasmonics. It also
demonstrates how the cooperative actions of SMSI between Cu
and TiO,, defects in TiO,, and localized surface plasmon reso-
nance collectively enhance the efficiency of the DFNS/TiO,~Cu
photocatalytic system in converting CO,, using in situ HERFD-
XANES spectroscopy.

In pursuit of a more sustainable and effective photocatalytic
CO, reduction catalyst, in this work, we introduced a novel
approach of material design that synergistically couples defects,
SMSI at TiO,—Cu interface, and localized surface plasmon
resonance to enhance the photocatalytic performance of the
catalyst. Our catalyst design involved coating TiO, on the fibres
of DFNS, followed by generating varying-sized Cu NPs via
heterogeneous nucleation on the TiO, surface. The DFNS/TiO,—
Cu10 catalyst, in particular, displayed a uniform distribution of
Cu NPs on the DFNS/TiO, sphere, as confirmed by TEM, STEM-
EDS, HAADF STEM imaging, XPS and in situ HERFD-XANES
analysis. The TPR analysis of this catalyst revealed key
features, including the reduction of Cu species and the creation
of oxygen vacancies, which were essential for the establishment
of SMSI and stabilizing the active sites. The DFNS/TiO,-Cu10
catalyst exhibited exceptional activity (3601 mmol gc, " h™)
and nearly 100% selectivity for CO production. The synergy of
defect creation, efficient charge separation, and LSPR effect was
pivotal in achieving these outcomes. In terms of long-term
catalyst stability, although an initial decrease in activity was
observed, attributed to Cu NP agglomeration, the catalyst
maintained consistent performance over a 100 hour test period.
This stability was credited to the inhibition of sintering and
agglomeration due to strong electronic interactions between the
defects in TiO, support and the active Cu sites through SMSI.

Our investigation into the synergistic coupling of defects,
interface SMSI, and plasmonic effects by using EPR, PL and in
situ XAS revealed intricate mechanisms of photocatalytic CO,
reduction. The catalyst showed significantly higher CO
productivity under light than in dark conditions, confirming the
critical role of light in enhancing CO, reduction rates. FDTD
simulations demonstrated an enhanced electric field concen-
trated in ‘hot spots’, aiding in reactant polarization. The
inclusion of Cu also resulted in a reduced band gap, owing to
the formation of SMSI with TiO,. The molecular mechanistic
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understanding of CO, reduction was furthered by in situ DRIFTS
studies. We proposed a multi-step reaction mechanism
involving CO, adsorption, bicarbonate and formate formation,
and product desorption, enhanced by the LSPR-induced
concentrated electric field near Cu NPs. The mechanism eluci-
dated by in situ XAS and DRIFTS underscores the pivotal role of
oxygen vacancies and the LSPR generated hot electrons in
enhancing the catalytic performance. This study demonstrated
that the interplay between SMSI effects, plasmonic properties,
and surface defects significantly enhances the catalytic perfor-
mance for CO, reduction under both visible and UV-Vis irradi-
ation. The integration of plasmonic materials with strong
metal-support interactions and engineered defect sites can be
extended to photocatalytic systems for water splitting, nitrogen
reduction, and selective oxidation reactions. This strategy is
a general platform for designing advanced catalysts for a wide
range of energy and environmental applications.
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