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We assessed private-well drinking water (DW) at the point of use (i.e., tapwater, TW) within a rural Nebraska

community around a state-closed biofuel facility, which used pesticide-treated corn seed as feedstock for

ethanol production. Organic (485), inorganic (34), and microbial (13) analytes were assessed at 15 locations

in June 2022, to evaluate the relative contribution of facility-consistent pesticides (seed-treatment

fungicides and insecticides) to overall TW-contaminant exposures and predicted human-health risks.

Thirty-three organics (12 pesticides) and 28 inorganics were detected, the former including the fungicide

sedaxane, insecticide chlorantraniliprole, and multiple neonicotinoid insecticides/degradates, all consistent

with seed treatment and respective biofuel-facility waste. Assessment of pesticides only at extant point-of-

use (POU) treatment taps at three sites demonstrated complete elimination of all TW-pesticide detections.

Based on detection of maximum pesticide concentrations in a home located downstream along a creek

capturing facility runoff, pesticides only were assessed in January 2023 again at this home and at three

adjacent locations, confirming results at the former and documenting decreasing TW-pesticide

concentrations, including neonicotinoids, with increasing distance from the creek. Human-health DW

benchmarks are not available for many detected pesticides, including the detected fungicide and

insecticides, but precautionary screening levels were exceeded frequently due to multiple inorganics. The

results indicate that exposures to multiple (median: 4.5; range: 1–7) co-occurring TW contaminants of

potential human-health concern are common, warranting consideration of point-of-entry or POU

treatment(s) throughout the community to reduce or eliminate unrecognized exposures to TW

contaminants, including facility-associated pesticides in down-gradient locations. More broadly, results

emphasize the importance of continued characterization of private-TW exposures, employing a

environmentally informative analytical scope, to identify and mitigate risks of unrecognized exposures in

private-well-dependent rural communities.

1 Introduction

Drinking water (DW) safety and sustainability are priorities
in the United States (US) and globally,1–5 given the biological
prerequisite for water6–8 and consequent role as an
increasingly vulnerable route of potential human exposures
to numerous environmental contaminants, including a wide
range of inorganic (e.g., nutrients) and organic (e.g.,
pesticides) chemicals associated with contemporary
agricultural practice,3–5,9 such as pesticide seed-treatments to
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Water impact

Private-well-dependent rural agricultural communities incur elevated risks of unrecognized tapwater exposures and human-health effects of agrochemical
and naturally occurring contaminants, due to owner-dependent and generally limited private-well monitoring. A broad-analytical-scope assessment around
a state-closed biofuel facility illustrates the importance of private-well monitoring and precautionary tapwater treatment to reduce cumulative risks of a
range of unrecognized contaminant exposures.
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improve corn and soybean crop production.10 DW-
agrochemical contamination has long been a public-health
concern,11–13 notably in agriculturally-intensive areas like US
midwestern states and China,14–19 due to prolific use,20–22

landscape-scale sources and routes to ground and surface
DW resources,15,17,19,23–27 and well-documented DW
exposures.11,14,15,28–32 Associated DW-organic exposure
concerns14,33 include pesticide links to cancers,34–39

Parkinson's disease,40 endocrine disruption,41 reproductive42

and cardiovascular toxicities,43 and developmental
neurotoxicity,44 while example DW-inorganic concerns14,33

include nitrate-nitrogen (NO3–N) links to infant (<6 months)
methemoglobinemia45 and, more recently,46,47 cancers,48–53

thyroid disease,54,55 and neural tube defects.56

Pesticides and NO3–N have been documented in all three
primary point-of-use (POU) DW supplies (private-well tapwater
[TW], public-supply TW, and bottled water).5,11,15,57 The risk of
unrecognized exposures, however, is notably higher for private-
well TW (private-TW) due to a comparative lack of information
on associated contaminant exposures.5,58 The US
Environmental Protection Agency (EPA) is not authorized to
regulate or monitor private-TW,59 and about 14% of the US
population relies on private wells,60–62 with concomitant
homeowner-monitoring/-maintenance burdens.59 High
analytical costs, limited technical training/awareness, and
conflation of safety and aesthetic quality severely undermine
homeowner private-well monitoring;5 accordingly, TW data,
where available, typically comprise only a few analytes (e.g.,
microbial).63–65 The resultant TW-contaminant-exposure data
gap in private-well-dependent remote/rural locations,
including in agriculturally-intensive regions, undermines
individual and community DW-risk-management decision
making5,65 and contributes to water insecurity66,67 and
attendant physical- andmental-health burdens.68,69

An ongoing, unusual agrochemical-contamination
“hotspot/hot event”70 at and around a bioenergy plant in
Mead, Nebraska has raised water insecurity concerns for the
largely private-well-dependent community.71–77 In operation
from 2015 until closed under state order in February
2021,78,79 the facility utilized unused, expired pesticide-
treated corn seeds as feedstock for ethanol production,
resulting in onsite accumulation of wastewater and “wet
cake” (estimated at 67 000 m3 and 77 000 metric tons,
respectively, at site closure) highly contaminated with
fungicides and insecticides, including neonicotinoids. Field
applications in the surrounding area during 2017–2019,73

combined with aerial (e.g., windblown dust) and hydrologic
(e.g., digester tank and storage-lagoon breaches to surface-
water and groundwater systems, respectively75,78,79) transport
offsite, have raised notable environmental73,75,76,80 and
human73,74,77,81 exposure concerns, including through
private-TW.

Addressing TW insecurity requires extensive inorganic/
organic/microbial characterization of respective exposures
and cumulative-risks, to disentangle perceived versus actual
risks and support community and individual-consumer risk-

mitigation actions. The U.S. Geological Survey (USGS)
partners with communities, universities, Tribal Nations and
colleges, state and federal agencies, utilities, and others to
inform DW-exposure data gaps by assessing TW inorganic/
organic/microbial contaminant mixtures and associated
distal (e.g., ambient source water) and proximal (e.g., premise
plumbing, point-of-entry [POE]/POU treatment) drivers in a
range of US socioeconomic and source-water-vulnerability
settings.5,18,82–90

In 2022, USGS partnered with University of Nebraska
Lincoln, University of Nebraska Medical Center, and the
community of Mead to assess exposures to a broad suite of
potential inorganic/organic/microbial TW contaminants in 15
locations surrounding and downgradient of the facility.
Research goals included 1) assessing contaminant-mixture
exposures and cumulative risks to human health91–93 in
private-TW, 2) quantifying TW exposures and relative risks
attributable to biofuel-facility, seed-coat pesticides, and 3)
continued expansion of the national perspective on
contaminant mixture exposures at the TW point of use by
maintaining the same general sampling protocol and
analytical toolbox employed in previous studies across the
US.5,18,82–89

TW exposures were operationally represented as
concentrations of 485 organics, 34 inorganics, and 13
microbial indicators in private-TW samples, for this study.
Potential human-health risks of individual and aggregate TW
exposures were screened5,94–96 based on individual and
cumulative benchmark-based toxicity quotients (TQ and

P
TQ,

respectively)84,97 and supported by cumulative exposure-
activity ratio(s) (

P
EAR),

84,98 as described previously.5 Due to the
limited availability of organic benchmarks (e.g., circa 100 in
Safe Drinking Water Amendments [SDWA] National Primary
Drinking Water Regulations [NPDWR]45,99) relative to organic
chemicals in global commercial use,100 potential human-
health risks of individual TW exposures also were explored
based on detections/concentrations of designed-bioactive
chemicals (e.g., pesticides, pharmaceuticals).101 In line with
published results by this research group,5,18,82–89 and by
others,9,64,102–106 simultaneous exposures to multiple organic,
inorganic, and microbial constituents of potential human-
health interest were hypothesized to occur in private-TW.
Specific hypotheses addressed herein included:

I. Human exposures to insecticide(s) and fungicide(s)
consistent with pesticide-treated-seed feedstock occurred via
private-TW in the vicinity and downgradient of the biofuel
facility.

II. Systematic TW-organic-contaminant exposures of
potential human-health concern comprised primarily co-
occurring agricultural pesticides, including fungicides and
neonicotinoid insecticides, with detections of other organic
classes generally limited and sporadic.

III. Extant POU treatments effectively removed pesticide
contaminants from private-TW samples.

IV. Co-occurring inorganic exposures of potential human-
health concern were common in private-TW samples.
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V. Due to limited human-health DW-pesticide
benchmarks, private-TW cumulative risk was driven primarily
by co-occurring inorganic exposures.

2 Methods
2.1 Site selection and sample collection

Mead, Nebraska, and the closed biofuel facility (Fig. 1) are
located within Saunders County in the Todd Valley, an
abandoned channel of the Platte River.107,108 The facility lies
within the drainage basin of Clear Creek, which flows southeast,
discharging in turn to Wahoo Creek, Salt Creek, and the Platte
River near the southeast corner of Saunders County.107 The
unnamed, intermittent, tributary network, draining the Eastern
Nebraska Research, Extension and Education Center (ENREEC)
south of the facility, includes a branch (labelled previously75

and herein as ENREEC creek) that headwaters within the
biofuel-facility grounds, combines into a single streamflow,
and passes through a run-of-stream pond near site 4, shortly
before the confluence with Clear Creek. Groundwater flow
through the Todd Valley, including in the unconfined
surficial Quaternary alluvial aquifer, likewise, is generally
northwest to southeast toward the Platte River.79,107,108

Fifteen private-well sample locations in the area
surrounding the biofuel facility, including upgradient
[northwest] of Mead and downgradient [southeast] of the
facility on ENREEC creek, were selected for broad-scope
organic/inorganic/microbial analysis (Fig. 1; Table S1).109

Sites 1 and 2 were facilities with on-site chlorine
disinfection of the respective private-well TW. Kitchen taps
(cold water) were sampled for broad-analytical-scope
assessment once each in June 2022. Because three of these
private-TW locations had POU treatment installed in parallel
to the kitchen tap (reverse osmosis [RO]: site 1; under-sink
carbon filter: sites 4 and 6), pesticide samples also were
collected from the POU-treatment fixture, at the request of
the study participants, to assess the efficacy of pesticide-
contaminant removal. Samples were collected at the
participant's convenience throughout the day, without pre-
cleaning, screen removal, or lead and copper rule stagnant-
sample requirements.110,111 Based on maximum observed
pesticide concentrations, including insecticides and a
fungicide consistent with biofuel-facility feedstock, in a
private-TW sample location (site 4) downgradient on
ENREEC creek, this and three additional nearby homes
(sites: 17, 19, 20), located north (sites 19, 20) and south (site

Fig. 1 Map of study area near Mead, Nebraska, United States, showing private-TW locations sampled for broad-scope organic/inorganic/microbial
analysis in June 2022 (color circles; sites: 01–15) and for pesticides only in January 2023 (empty squares; sites: 17, 19, 20). Number next to symbol
indicates site number in Table S1. Size and color of circles indicate number of exceedances of human-health benchmarks for detected analytes.
Sample locations are anonymized.
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17) of Site 4 and orthogonal to the general flow of ENREEC
creek (Fig. 1) and presumptive southeast groundwater flow
direction from facility,79 were resampled/sampled for
pesticides only in January 2023, to provide insight into
potential pesticide-contaminant hydrologic-transport
mechanisms. Complete sampling details are provided
elsewhere.109,112

2.2 Methods, quality assurance, and statistics

Briefly, TW samples were analyzed by USGS using 8 organic
(7 classes; 499 total/485 unique analytes), 6 inorganic
(34 ions/trace elements), 13 microbial (13 indicators), and
2 field (3 parameters) methods (Table S2), as
discussed.5,82–84,86,112,113 Organic analytes included
cyanotoxin, disinfection byproduct(s) (DBP), pesticide, per/
polyfluoroalkyl substance(s) (PFAS), pharmaceutical, semi-
volatile organic compound(s) (SVOC), and volatile organic
compound(s) (VOC) classes; additional method details and
links to source publications are in the SI (Table S2). All
results are in Tables S3a–S6 and in Meppelink et al.109

Quantitative (≥limit of quantitation, ≥LOQ) and semi-
quantitative (between LOQ and long-term method detection
limit, MDL114,115) results were treated as detections.114,116,117

Quality-assurance and quality-control included analyses of
one field blank and laboratory blanks, spikes, and stable-
isotope surrogates. No organic or inorganic analytes or
microbial indicators were detected in blanks at
concentrations in the range observed in TW samples (Table
S6). The median surrogate recovery (Table S4c) was 92.6%
(interquartile range: 78.5–104%).

2.3 Individual and cumulative contaminant risk assessments

Individual-contaminant private-TW exposures were
compared to public-supply-applicable NPDWR maximum
contaminant level(s) (MCL)45,99,118 as a frame of reference
for exposures of potential concern for the general-consumer
population (i.e., not sensitive subpopulation(s)). However,
because the EPA MCL rule-making process includes
technical and financial considerations,45,118 the potential for
apical human-health effects of individual contaminant
exposures was screened based on health-only MCL goal(s)
(MCLG), “the maximum level of a contaminant in drinking
water at which no known or anticipated adverse effect on
the health of persons would occur, allowing an adequate
margin of safety”, when considering sensitive (infants,
children, elderly, immune- or disease-compromised)
subpopulations,118 and other similar federal, state, and
international health-only DW advisories.

A human-health-only, DW-benchmark-based precautionary
screening of cumulative organic/inorganic contaminant risk
was conducted consistent with World Health Organization/
International Programme on Chemical Safety [WHO/IPCS]
framework tier 1 hazard index risk screening,94 European
Food Safety Authority tier 1 reference point index (RPI) risk
screening,95 and 2023 EPA96 guidance, as described

previously.5 The toxEval version 1.4.0 package119 of the open
source statistical software R120 was used to sum (broadly
applicable non-interactive concentration/dose addition
model121–126) the TQ (ratio of detected concentration to
corresponding health-based DW benchmark) of individual
detections to estimate sample-specific cumulative TQ
(
P

TQ).
5,97 Departures from approximate concentration

addition (e.g., ref. 127–130) are uncommon, limited in
magnitude, and increasingly improbable with increasing
mixture complexity.125,131,132 The most protective human-
health DW benchmark (i.e., lowest benchmark concentration)
among the following was employed, for each detected
analyte: NPDWR MCLG,45,133 EPA Drinking-Water Health
Advisory(ies) (DWHA),134 WHO guideline value (GV),135 state
MCL or DWHA (e.g., ref. 136), or USGS Health-Based
Screening Level (HBSL) or Human Health Benchmarks for
Pesticides (HHBP).137 EPA sets MCLG at “zero” for DW
contaminants (e.g., bromodichloromethane, lead [Pb]), which
“may cause cancer” and for which “there is no dose below
which the chemical is considered safe”, including for
sensitive (infants, children, elderly, immune- or disease-
compromised) subpopulations.45,118,133 For this

P
TQ

assessment, MCLG values of “zero” were set to 0.1 μg L−1 for
metals (arsenic [As], lead [Pb], uranium [U]), DBP, and VOC,
as described.5

P
TQ results and respective health-based

benchmarks are summarized in Table S7a and b.
Potential molecular-level effects of mixed-organic

contaminant exposures also were explored, using an
exposure-activity ratio (EAR) approach based on Toxicity
ForeCaster (ToxCast)138,139 high-throughput data.140 In
contrast to the human-health DW-concentration
benchmarks employed in the mathematically-analogous
P

TQ assessment above, ToxCast metrics are in vitro
estimates of chemical-specific exposure-response relations at
the site of molecular activity. The approach herein and
previously5,18,82–87,141 assumes that the measured TW
concentration provides a reasonable first-level estimate of
in vivo molecular-level exposure. Accordingly, the R
package120 toxEval version 1.4.0 (ref. 119) was employed to
sum (approximate concentration addition model121–126)
individual-contaminant EAR (ratio of the detected
contaminant concentration to the contaminant-specific
“activity concentration at cutoff” for a positive response
(ACC) metric from ToxCast140) to estimate sample-specific
cumulative EAR (

P
EAR).

5,98 ACC data in the toxEval v1.4.0
employed in the present study were from the September
2023 invitroDBv4.1 release of the ToxCast database.142 Non-
specific-endpoint, baseline, and unreliable response-curve
assays were excluded.82,83,98

P
EAR results and exclusions are

summarized in Table S8a–c. Approximate contaminant-
specific equivalency of the widely-employed TQ = 0.1
screening-level threshold of concern and EAR = 0.001 has
been reported.97 Thus, EAR (and

P
EAR) = 0.001 was

employed to screen for potential concern (i.e., for additional
investigation and characterization) but not necessarily apical
health risk, the latter due to uncertainties in in vitro to
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O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
N

dz
ha

ti 
20

25
. D

ow
nl

oa
de

d 
on

 2
02

6-
01

-3
1 

09
:1

5:
00

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ew00490j


2576 | Environ. Sci.: Water Res. Technol., 2025, 11, 2572–2594 This journal is © The Royal Society of Chemistry 2025

in vivo extrapolation143,144 and the fact that measured
bioactivities are not necessarily adverse and may, in some
cases, reflect adaptive (e.g., activation of xenobiotic
metabolism145) responses.

3 Results and discussion
3.1 Target-analyte TW exposures

Multiple regulated and unregulated chemical (organic,
inorganic) and microbial analytes were routinely detected
in private-TW samples collected in 2022 (Fig. 1–3; Tables
S3, S4a and S5). At least one detection of potential
human-health concern was observed in every sample, with
2–7 in 93% (14/15) of samples.

TW samples were screened for 4 cyanotoxins, 22 DBP, 186
pesticide, 34 PFAS, 111 pharmaceutical, 55 SVOC, and 73 VOC
analytes (Fig. 2; Table S2). Of these 485 unique organic analytes,
33 (7%) were detected at least once (Fig. 2), including 4 organics
observed at concentrations of human-health concern with
analyte-specific concern-level exceedance frequencies ranging
7% (tetrachloromethane, trichloroethene) up to 20%
(tribromomethane) of all samples (Table S4a). Among the 33
organic analytes detected during the June 2022 broad-
analytical-scope assessment, 16 (49%) were detected only once
(Fig. 2; Table S4a). Nineteen (51%) were detected only once,
when including the January 2023 pesticide-only follow-up
sampling (Table S4b). At least one organic contaminant was
detected in every TW-sample location (median: 5; IQR: 2.5–6.5;
range: 1–15), with more than one detected in 80% (12/15) of
locations (83% or 15 of 18 locations, including 2023 pesticide-
only sampling). Analyte-specific detection frequencies for
organics ranged up to 53% (deethylatrazine [CIAT],
desmethyldiltiazem). No pesticides were detected in any TW
samples collected from POU-treatment taps at sites 1, 4, and 6,
indicating effective removal.

Fungicide (sedaxane) and insecticide (chlorantraniliprole,
clothianidin, thiamethoxam) or degradate (thiamethoxam
degradate CGA-355190) analytes consistent with facility
seedcoat feedstock were observed only in the private-TW
sample location (site 4) downgradient along ENREEC creek.
These feedstock-consistent site 4 detections were confirmed
at approximately 2–4 times higher concentrations in January
2023, along with additional neonicotinoid-insecticide
detections of imidacloprid and its degradate (Table S4b).
During the January 2023 sampling, single detections of
feedstock-consistent neonicotinoids also were observed at
sites 17 (clothianidin) and 19 (imidacloprid), located adjacent
to site 4 and orthogonal to the general southeastern
orientation of the ENREEC creek drainage and presumptive
groundwater flow.

Twenty-eight (82%) of 34 inorganic analytes were detected
at least once (Table S3a). Ten inorganics were detected at
concentrations of human-health concern with analyte-specific
concern-level exceedance frequencies ranging 7% (single
detections for boron [B], fluoride [F], manganese [Mn],
strontium [Sr]) up to 100% (U) of samples.

Microbial results included commonplace detections of
general heterotrophic bacteria (i.e., heterotrophic plate
counts [HPC]) but no detections of total coliforms or
Escherichia coli (Table S5). However, growth on putative-
pathogen selective media indicated possible human-health
concern in several sample locations.

3.2 Individual contaminant screening: MCL comparison

Concentrations equivalent to the respective NPDWR MCL
(frame of reference only; not enforceable in federally
unregulated private-TW) were exceeded for four inorganics,
comprising nitrate-nitrogen (NO3–N), arsenic (As), copper
(Cu), and uranium (U) (Table S3). The MCL-equivalent
concentration for NO3–N was exceeded in three samples
(sites: 1, 6, 10), with single MCL-equivalent exceedances for
As, Cu, and U. MCL-equivalent exceedances in private-TW
samples in this study are consistent with prior findings,5

reemphasize the inherent risks of unrecognized contaminant
exposures in federally-unregulated and rarely-monitored
private-TW,5 and illustrate the potential benefits of
systematic private-TW monitoring65 with a broad analytical
scope that credibly reflects extant environmental-
contaminant complexity,26,101,105,146,147 to mitigate
unrecognized adverse exposures. While MCL-equivalent
exceedances indicate exposures of concern for general
consumers, the emphasis hereafter is on human-health-only
DW advisories like MCLG, which identify a maximum
contaminant level below which no adverse health effect is
known or anticipated, allowing an adequate margin of safety
for sensitive (infants, children, elderly, immune- or disease-
compromised) subpopulations.118

3.3 Individual contaminant health-risk screening: organics

TW-sample DWHA exceedances were observed for four VOC,
of which two are typically associated with chlorine-based DW
disinfection (i.e., DBP; Table S4a). All four
(bromodichloromethane, tribromomethane (bromoform),
tetrachloromethane [carbon tetrachloride], trichloroethene)
have no known safe level of exposure for vulnerable
subpopulations and corresponding MCLG of “zero”.45 Other
notable, organic detections of potential human-health
concern owing to designed-bioactivity were multiple
pesticides and associated degradates (median: 1 per sample;
IQR: 0–3.5; range: 0–12) and pharmaceutical contaminants
(Table S4a).

Detected concentrations of regulated pesticides (atrazine,
bentazon, metolachlor, prometon) and degradates (deisopropyl
atrazine [CEAT], CIAT) were well-below corresponding DWHA,
and human-health DW benchmarks are lacking for many of
the detected pesticides, including seed-coat-associated
fungicides (sedaxane) and insecticides (chlorantraniliprole,
chlothianidin, imidacloprid, thiamethoxam). However,
pesticide links to multiple adverse outcomes,34–44 multiple
pesticide detections per sample, and growing concerns for
neonicotinoid-insecticide health effects (e.g., cancers,148
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diabetes,149 developmental neurotoxicity44) raise concerns for
potential adverse effects of long-term TW-pesticide
exposures.31,74,150

The diltiazem metabolite, N-desmethyldiltiazem, was
detected in 53% (8/15) of locations at near-detection-limit
concentrations (median: 0.006 μg L−1; range: 0.004–0.007 μg
L−1). Diltiazem is a calcium-channel-blocker cardiovascular
pharmaceutical, prescribed to treat high blood pressure and
angina.151 The lipid-regulating cardiovascular drug
fenofibrate was detected in 13% (2/15) of private-TW
locations (detected concentration range: 0.008–0.012 μg L−1).
Increasing detections of fenofibrate and other cardiovascular
drugs and metabolites (e.g., desmethyldiltiazem) in
environmental waters151 and DW,152 are ascribed to growing
global use, concomitant wastewater discharge, environmental
stability, and poor removals in DW treatment.153–155

The results demonstrate that TW-organic exposures of
human-health concern for vulnerable subpopulations occur in
the Mead community, notably downgradient of the facility on
ENREEC creek. These organic results are consistent with those
in northeast Iowa18 and emphasize the importance of private-
TW monitoring in agriculturally-intensive areas with an
analytical scope that realistically reflects the respective
environmental organic-contaminant complexity.26,101,105,146,147

3.4 Individual contaminant health-risk screening: inorganics

DWHA exceedances were observed for multiple inorganics
(Fig. 3, S1; Table S3), consistent with previous private-TW
results in agriculturally-intensive northeastern Iowa156 and
with hypothesis I. Among these, As, lead (Pb), and U have no
known safe level of exposure for vulnerable subpopulations
(MCLG of “zero”).45 Additional TW-inorganic exceedances (in
order of discussion) of human-health benchmarks include
non-zero MCLG (NO3–N) and other human-health-only
advisories (boron [B], hexavalent chromium [Cr(VI)], fluoride
[F], manganese [Mn], strontium [Sr]).

Geologically-derived (geogenic), redox-reactive, As was
detected (de facto MCLG exceedance) in 5 (33% of sites)
private-TW samples (Fig. 3, top right; Table S3). Tasteless and
odorless, DW As has been linked with various cancers,157,158

organ toxicity,157 cardiovascular disease,159,160 diabetes,159,160

adverse pregnancy outcomes,161 and mortality.161,162 Concern
for adverse effects at concentrations below the 10 μg L−1 EPA
MCL157,159,163,164 prompted New Jersey and New Hampshire
to establish a 5 μg L−1 MCL,165,166 a level exceeded in three
samples (20% of sites) in the current study. Maximum TW-As
concentrations observed in the current study were consistent
with elevated C horizon As profiles167 and groundwater As
concentrations168 documented in eastern Nebraska.

Redox-reactive, geogenic U was detected (de facto MCLG
exceedance) in every TWsample in this study (Fig. 3,middle left;
Table S3), including at a concentration more than double the
MCL-equivalent 30 μg L−1 at one location (site 11: 74 μg L−1). U
concentrations >3 μg L−1 (common method detection limit for
public-supply compliance monitoring) or >10 μg L−1 were

observed in 40% (6/15) and 13% (2/15) of private-TW samples,
respectively. Widespread detections of U concentrations,
including sporadic detections at elevated concentrations are
consistent with elevated C horizon U contents documented in
southeastern Nebraska.167 DW U is linked to a range of adverse
human-health impacts, including nephrotoxicity169–173 and
osteotoxicity,171,172,174 thyroid cancer,175 inhibition of DNA-
repair in vitro,176 estrogen-receptor effects in mice,177

reproductive endpoints in humans,171,172,178 and elevated
prediabetes179 and type-2 diabetes risks.180,181

Lead was observed (de facto MCLG exceedance)
sporadically (33%) in private-TW samples (Fig. 3, top left;
Table S3). Three sites (11, 13, 14) had concentrations greater
than the American Academy of Pediatrics182 suggested upper
DW-exposure limit of 1 μg L−1, also a common method
detection limit for public-supply compliance monitoring.183

Elevated (>1 μg L−1) DW-Pb concentrations are generally
attributed to legacy (pre-1986) use in distribution-system and
premise-plumbing infrastructure.184 In this study, plumbing-
derived TW-Pb exposures may be substantially
underestimated, because same-day prior use was common
and flushing decreases plumbing-derived contaminant

Fig. 2 Detected concentrations (μg L−1) and number of sites (right
axes) for 33 organic analytes (left axis, in order of decreasing total
detections) detected in private-well tapwater samples collected during
2022 in the vicinity of the state-closed biofuel facility near Mead,
Nebraska. Circles are data for individual samples. Boxes, centerlines,
and whiskers indicate interquartile range, median, and 5th and 95th
percentiles, respectively. DBP, PEST, PFAS, PHARM, and VOC indicate
disinfection byproducts, pesticides, per/polyfluoroalkyl substances,
pharmaceuticals, and volatile organic chemicals, respectively.
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concentrations.184,185 DW-Pb exposures primarily are
concerns for potential impacts on infant/child neurocognitive
development.182,184

MCLG-/MCL-equivalent exceedances were observed for Cu
in two (13%) locations in this study (Fig. 3, middle right).
The EPA MCLG/MCL for Cu in public-supply DW (1.3 mg L−1)
and the WHO GV (2.0 mg L−1), were promulgated to protect
against gastrointestinal distress from short-term exposure
and potential liver and kidney damage from long-term
exposure.186–189 Excluding rare autosomal regulatory
disorders (e.g., Wilson's disease) that may result in serious
health consequences even at normal exposure levels, there is
little evidence of liver toxicosis at twice the WHO GV,
including for bottle-fed infants.190 Although elevated DW-Cu
concentrations are generally attributed to distribution and
premise-plumbing infrastructure and often associated with
low DW pH,184 elevated C horizon Cu concentrations have
been documented in southeastern Nebraska.167

Well-documented throughout Nebraska,168,191 elevated (i.e.,
>1 mg L−1) private-TW NO3–N concentrations were common
(87% of samples) in the study area (median: 7.1 mg L−1), with
the MCL-/MCLG-equivalent (10 mg L−1) concentration
exceeded in three (20%) sample locations (Fig. 3, bottom right;
Table S3). The NO3–N MCL/MCLG was promulgated to prevent
methemoglobinemia in bottle-fed infants (<6 months).45

However, associations with other adverse health outcomes,46,47

including cancer,48–53 thyroid disease,54,55 and neural tube
defects,56 drive recent concerns for long-term consumption of
TW-NO3–N at less than MCL concentrations. Regionally
intensive crop agriculture, widespread TW detections of
agricultural pesticides (Table S4a and b), and lack of multiple,
co-occurring human-waste indicators (e.g., human-use
pharmaceuticals [Table S4a], fecal bacteria indicators [Table
S5]) are consistent with agricultural surface treatment (e.g.,
inorganic/organic fertilizers) as presumptive source of elevated
NO3–N concentrations in groundwater168,191 and private-TW
samples (Table S3) and indicate that human-waste
infrastructures (septic systems) were not primary contributors.

No MCL/MCLG currently exists for B, and no private-TW
sample in this study exceeded the EPA 6000 μg L−1 life-time
DWHA134 (Fig. S1, middle right; Table S3), based on male
reproductive effects (i.e., testicular lesions).192,193 However, in
2017, the Minnesota Department of Health lowered its
respective risk assessment advice value (previously 2000 μg L−1

B; pregnant women sensitive population) to 500 μg L−1 B due to
uncertainties concerning bottle-fed infant exposures and
toxicity,136,194 a value exceeded in a single private-TW sample
(7% of locations).

Consistent with elevated C horizon contents reported
previously in southeastern Nebraska,167 TW-Cr was detected
in TW samples, primarily as Cr(VI) (Fig. 3, bottom left; Table
S3). While TW-Cr(total) concentrations were well below the
NPDWR MCL (100 μg L−1), which addresses Cr(VI) as a
component,45,99 and TW-Cr(VI) concentrations were below the
recent California MCL (10 μg L−1),195 Cr(VI) is classified as
“likely to be carcinogenic” via oral exposure.196 About 60% of
private-TW locations in this study exceeded the USGS cancer
HBSL (0.04 μg L−1)137 and the EPA Regional Screening Level
(RSL)197 for one-in-one million (10−6) cancer risk applied
previously,5,198 with one sample (site 6: 3.9 μg L−1) circa the
one-in-ten thousand (10−4) cancer risk HBSL (4 μg L−1).137

These observations raise concerns for elevated risk of stomach
cancer from long-term TW-exposures in the study area.158,199

All TW-F concentrations (Fig. S1, top left; Table S3) were
less than the EPA MCL (4 mg L−1) for protection against bone
fragility and skeletal fluorosis.45,133 However, the F
concentration (1.55 mg L−1) in one TW sample (site 2)
exceeded the WHO GV (1.5 mg L−1) established to prevent
dental fluorosis135 and, critically, adopted in the recent
National Toxicology Program review to mitigate the risks of
neurodevelopmental and cognitive effects in children.200 This
result raised concern for TW-F exposures to children within
the study area. Consistent with groundwater across the
US201,202 and corresponding dental-health concerns in
private-well-dependent children,203 TW-F concentrations in
all but two samples were below the US Public Health
Service204 optimum of 0.7 mg L−1 to prevent dental caries.

In response to increasing concerns for cognitive,
neurodevelopmental, and behavioral effects of long-term TW-
Mn exposures in children and especially in bottle-fed
infants,205,206 WHO established a Mn provisional GV of 80 μg
L−1, to prevent neurological effects in bottle-fed infants.207

Fig. 3 Detected concentrations (y-axis) by site (x-axis) for lead (Pb μg
L−1, upper left), arsenic (As μg L−1, upper right), uranium (U μg L−1,
middle left,), copper (Cu μg L−1, middle right), hexavalent chromium
(Cr(VI) μg L−1, lower left) and nitrate–nitrogen (NO3–N mg L−1, lower
right) detected in private-well tapwater samples collected during 2022
in the vicinity of the state-closed biofuel facility near Mead, Nebraska.
Red lines (Pb, As, U, Cu, NO3–N), indicating the public-supply
maximum contaminant level (MCL), are frame-of-reference only for
federally unregulated private-well tapwater. Health-only MCL goals
(MCLG, orange lines) are ‘zero’ for Pb, As, and U. Purple line indicates
EPA risk screening level for Cr(VI).
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This value was exceeded in one private-TW sample (site 15:
212 μg L−1) in the current study (Fig. S1, middle left). Co-
occurring elevated iron (258 μg L−1) and negligible NO3–N
concentrations indicate occurrence of reducing redox
conditions in the private-well groundwater at the time of
sample collection. No MCL/MCLG has been promulgated for
Mn, but EPA issued a 300 μg L−1 life-time DWHA (assumes
100% exposure from drinking water).134

A TW-Sr concentration (3950 μg L−1) of potential human-
health concern also was observed in only one sample (site 2)
in this study (Fig. S1, bottom right; Table S3). Sr is widely
detected in US groundwater.208 TW-Sr human-health
concerns, primarily in children, are driven by potential
replacement of bone calcium and resultant abnormal bone
development with long-term elevated exposure.209,210 In 2014,
EPA published a preliminary determination to regulate DW-
Sr,211 but to date no MCL/MCLG has been promulgated. The
site 2 TW-Sr concentration was more than double the 1500
μg L−1 Health Advisory Level (HAL) established by the state of
Wisconsin for bone effects in children.212

The results demonstrate that TW-inorganic exposures of
human-health concern for vulnerable subpopulations also
occur in the Mead community, notably downgradient of the
facility on ENREEC creek. The results, combined with those
for organics above, emphasize the importance of private-TW
monitoring with an analytical scope that realistically reflects
the documented complexity of environmental
contamination.26,101,105,146,147

3.5 Individual contaminant health-risk screening: microbial

Microbial detections (HPC) were common (92% or 12 of 13
sites; not available for sites 14 and 15) in private-TW samples
(median: 6100 most probable number per 100 mL [MPN 100
mL−1]; IQR: 4000–6400 MPN 100 mL−1; range: 0–7000 MPN
100 mL−1) (Table S5). No HPC were detected in the site 2
sample, which had detectable VOC indicative of chlorine
disinfection (i.e., DBP). HPC bacteria are ubiquitous in the
environment, common in DW, and not inherent health
concerns but practical indicators of system
maintenance,45,134 which includes routine disinfection in
private wells.59 Total coliform bacteria and E. coli were not
detected in any sample in this study. However, growth on
selective media for microorganisms of potential human-
health concern was observed in several samples.

Detections of Salmonella (7 or 47% of samples) and
Campylobacter (2 or 13%) spp., common causes of food-/
water-borne enteric diseases,213–215 and the opportunistic
premise-plumbing (biofilm-related) pathogens215–217

Pseudomonas aeruginosa (8 or 53%), Legionella spp. (8 or
53%), and Mycobacterium spp. (1 or 7%) raise concerns for
adverse TW microbial exposures in the study area.215

Growth on oxacillin-resistant staphylococci selective media
for 3 samples, indicates the potential presence of antibiotic-
resistant microorganisms, a growing public-health218 and
DW-quality concern.219

Among these, detections of biofilm-related215 Pseudomonas
aeruginosa and Legionella spp. in more than half of samples
and often co-occurring are notable concerns (Table S5).
Legionella was identified as the leading and increasing cause
of biofilm-related disease outbreaks in the US during 2015–
2020.215 The maximum detection of Legionella spp. observed
in this study was 989 MPN 100 mL−1 in the site 15 sample
(Table S5). The MCLG for Legionella is “zero”.45 Salmonella
spp., Campylobacter spp., and staphylococci are well-
documented in livestock/poultry wastes220 and acknowledged
human-exposure concerns in nearby private wells,221,222 due
to infiltration from waste storage lagoons223 and agricultural-
land applications.224 These results reiterate the inherent
challenge of unmonitored private-TW63,64,102,202 and support
systematic monitoring,65 including for microbial
contamination.

3.6 Precautionary human-health-benchmark
P

TQ screening

Pervasive, co-occurring inorganic/organic exposures of
human-health concern suggest potential cumulative TW risk
within the private-well-dependent community, at a
minimum to the health of the most vulnerable (infants,
children, elderly, immune- or disease-compromised)
subpopulations.45,118,133 We screened for cumulative TW risk
using a

P
TQ approach that informs apical-human-health

effects of inorganic/organic co-exposures but is notably
constrained to available human-health DW benchmarks.
Regarding the latter, 62% (16 inorganic; 22 organic) of the
61 total detected analytes (28 inorganic; 33 organic) in this
study, had available human-health benchmarks focused on
risks to presumptive most-vulnerable populations (Table
S7a). Among these, all but one organic analyte had at least
one exposure resulting in an individual TQ ≥ 0.00001 and
were included in the

P
TQ assessment. All broad-scope-

analysis TW samples (i.e., not including 2023 pesticide-only
samples) exceeded

P
TQ = 1 (Fig. 4; Table S7b), indicating

high probabilities of cumulative risks to sensitive
subpopulations, when accounting for inorganic-/organic-
contaminant exposures.

Every location had at least one individual TQ ≥ 1
(median: 3; IQR: 2–4.5; range: 1–6), comprising, in
decreasing detection frequency, U (15/15 sites), Cr(VI) (9/
15), As (5/15), Pb (5/15), NO3–N (4/15), tribromomethane
(bromoform, 2/15), bromodichloromethane (2/15), Cu (2/
15), Mn (1/15), B (1/15), and Sr (1/15) (Fig. 4; Table S7b).
Frequent exceedances of

P
TQ = 1 and co-occurring

exceedances of TQ = 1 in TW samples from unregulated
and generally unmonitored private-wells in this and
previous studies18,83–85,141 emphasize the intrinsic human-
health vulnerability of unrecognized exposures in private-
well-dependent communities63–65,90,102,202 and reinforce
previous recommendations for systematic private-well
monitoring,65,225–228 with a broad analytical scope reflective
of the range of environmental-contaminant
mixtures.5,101,105
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3.7 Human-health-benchmark
P

EAR screening

Bioactivity-weighted EAR and
P

EAR were calculated to
identify organic-contaminant drivers of molecular-level
human-relevant bioactivities and potentially identify
additional concerns not addressed by existing human-health
benchmarks. The screening approach employed here
specifically assumes that measured private-TW exposures are
reasonable first-level estimates of in vivo molecular-level
exposures. ACC data were available for about 48% (16) of the
33 detected organics (Table S8b), of which 13 (39% of
detected) had at least one individual EAR ≥ 0.00001 and were
included in the

P
EAR assessment. Within the 485 organic-

contaminant analytical space, only two organics (6% of
detected) exceeded the EAR = 0.001 screening-level for
potential molecular-level effects97 at least once and only 4
(26% of locations) TW samples had

P
EAR greater than the

0.001 screening level (Fig. S3). Based on EAR-screening-level
exceedance, the post-emergent herbicide bentazon was the
only additional potential TW-exposure concern identified,
beyond those identified by benchmark-based

P
TQ screening

above.

3.8 TW-pesticide transport lines of evidence

Agricultural-pesticide use and occurrence in groundwater
resources are well-documented throughout the US Corn
Belt,11,25,29,229 including Nebraska168,191,229,230 and
specifically the Platte River valley.231 Consistent with
commonplace historical and ongoing use in corn and
soybean agriculture,232 including within the study area,231

the herbicide/herbicide-related atrazine and degradates (8
sites), metolachlor (4 sites), and, to a lesser extent, bentazon
(3 sites) were commonly detected in TW throughout the study
area, including upgradient of the facility (Fig. 1; Table S4a
and b) and in areas with no known facility wet-cake or
wastewater applications.75,78

However, the results also document greater detections and
concentrations, including facility-feedstock-consistent
pesticides, in TW southeast of the facility downstream on
ENREEC creek and downgradient along the general southeast
groundwater flowpath reported for the shallow alluvial
aquifer in the Todd Valley of Saunders County.78,107,108 Due
to high reported pesticide use (crop application and treated
seeds); including the detected chlorantraniliprole,
chlothianidin, imidacloprid, sedaxane, and thiamethoxam; in
the Todd Valley and throughout Nebraska,20,232

corresponding detections in private-TW samples cannot be
attributed unequivocally to a facility source. However, these
detections are consistent with previously hypothesized
mechanisms for facility-feedstock-pesticide transport offsite
to private-well groundwater supplies, including possible
surface-water transport via ENREEC creek, groundwater
transport from the facility along the reported southeast
shallow groundwater flowpath, or land application of
contaminated “wet cake”.75,78,79

Among these hypothetical pathways from the facility,
multiple lines of evidence support proximity to ENREEC
creek as the primary driver of facility-consistent TW-pesticide
exposures observed in this study. Nearby land application of
facility “wet cake” was reported by several study participants,
including upgradient of the facility,75,78,79 without
corresponding TW detections of feedstock-consistent
pesticides, suggesting that these surface applications were
not a primary mechanism of the private-TW contamination
observed in this study. In contrast, detections of sedaxane
fungicide and elevated concentrations of multiple
insecticides, including chlorantraniliprole and
neonicotinoids/degradates, at the site 4 location were
consistent with containment losses of facility waste, with
subsequent hydrologic transport from the facility to the
corresponding private-well directly via groundwater79 or
indirectly via ENREEC creek,75 the latter followed by

Fig. 4 Individual (circles) and cumulative (red triangles) health-only toxicity quotients (TQ) for private-well tapwater samples collected in the
vicinity of the state-closed biofuel facility near Mead, Nebraska. Red (upper) and orange (lower dashed) lines indicate benchmark equivalent
exposure (TQ or

P
TQ = 1) and screening-level of concern (TQ or

P
TQ = 0.1), respectively. Boxes, centerlines, and whiskers indicate interquartile

range, median, and 5th and 95th percentiles, respectively. X-Axis labels are sample site numbers.
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infiltration to the private-well groundwater source. Declining
volume within the inactive northwest lagoon after facility
closure in 2021 combined with comparable pesticide
composition and concentrations in lagoon wastewater and
underlying shallow groundwater confirmed lagoon leakage to
the shallow groundwater system.79 In February 2022 a burst
pipe for a 15 000 m3 digester released process wastewater to
ENREEC creek,75 resulting in elevated water (water grab,
polar organic chemical integrative samplers [POCIS])
fungicide and insecticide concentrations in ENREEC
creek,75,76,233 and acute exposures to fish and wildlife in and
around the creek pond at site 4.71,76,233 Downstream-flow
attenuation within the pond would favor preferential
infiltration of surface water and corresponding contaminants
into the site 4 private-well groundwater source.

To further inform the relative importance of the two
hypothesized hydrologic transport mechanisms, three
additional sites, located adjacent to site 4 but further from
ENREEC creek orthogonal to surface-water and presumptive
groundwater flow (Fig. 1), were assessed for pesticides only in
2023 along with repeat sampling at site 4. Consistently high
detected concentrations of multiple facility-consistent
pesticides (chlorantraniliprole, chlothianidin, sedaxane,
thiamethoxam and degradates) at site 4, contrasted with
single neonicotinoid detections of notably lower
concentrations at adjacent sites 17 and 19, are most readily
reconciled with preferential surface-water transport to the
site 4 pond, a hydrologic setting which would delay further
downstream transport and favor infiltration of surface-water
and associated contaminants into the shallow alluvial aquifer
supply for the site 4 private-well. Importantly, the distinctive
pesticide signature of chlorantraniliprole, chlothianidin,
sedaxane, thiamethoxam and degradates observed in site 4
TW aligned well with results for surface-water samples
collected within ENREEC creek and the corresponding site 4
pond during a separate March to July 2022 multi-matrix
ecological assessment of pesticide concentrations and
impacts in area streams.76,233

3.9 Study limitations

Several interpretive limitations warrant consideration. As
noted previously,5 the extensive target-analyte scope
employed herein is only a fractional indicator of the
estimated 350 000 anthropogenic chemicals in commercial
production100 (not including environmental transformation
products/degradates) and, thus, potentially in ambient
DW-supplies; the current exposure and risk results may be
orders-of-magnitude underestimates. Individual (TQ) and
cumulative risk (

P
TQ) estimates are limited by available

weighting-factors (human-health benchmarks and ToxCast
ACC, respectively), which are notably lacking for many of
the pesticides detected in this study. The employed
cumulative risk (

P
TQ) and molecular-level-bioactivity

(
P

EAR) approaches estimated mixture effects assuming
approximate concentration addition,121–126 potentially

underestimating or overestimating cumulative effects in
the event of synergism/potentiation or antagonism,
respectively;234 documented127–130 departures from
approximate concentration addition are
uncommon125,131,132 due in part to uncertainties in
quotient denominator point-of-departure estimates,235,236

increasingly unlikely with increasing number of mixture
components,125 and typically within one order of
magnitude.125,131,132 The employed cumulative risk (

P
TQ)

screening assumed equivalent lifetime consumption (i.e.,
no differences in individual and daily consumption). To
provide a precautionary lower-bound estimate of in vivo
adverse-effect levels, EAR was estimated across all ToxCast
endpoints (i.e., not constrained by recognized modes of
action),237 a useful screening and prioritization approach
but not necessarily reflective of apical health effects.98,238

MCLG values of “zero” were set to 0.1 μg L−1 for metals,
DBP, and other VOC, but this approach may not
sufficiently protect for molecularly-triggered, self-
propagating toxicities, such as carcinogenicity and
endocrine-/immune-disruption. The June 2022 spatial-
synoptic (one-time sample) broad-scope exposure and the
January 2023 pesticide-only exposure assessments were not
intended to capture temporal variability, including
potential seasonal effects on water quality and
groundwater/surface-water contaminant transport. Finally,
the extensive analytical scope employed in this study
provided actionable insight into TW-contaminant
exposures to inform exposure-mitigation decision-making
at household and community levels and preliminary
information on potential contaminant sourcing, but the
pilot-scale sample scope (n = 15) was not intended to
capture the full range of spatial, groundwater-source, and
premise-plumbing drivers of TW-exposures in the study
area.

3.10 TW treatment and exposure mitigation

Contaminant-specific TQ ≥ 1 at every location and
commonplace co-occurrence (per site median: 3; IQR: 2–3.5;
range: 1–5) demonstrate the benefit of effective multi-
contaminant POE-/POU-treatment options to mitigate
unrecognized private-TW contaminant exposures in the study
area.239,240 Complete elimination of pesticide detections in the
three locations with extant POU-treatment (reverse osmosis
[RO]: site 1; under-sink carbon filter: sites 4 and 6) confirms
this conclusion, at least for pesticides, the most common
organics detected in the study. Several POE-/POU-treatment
technologies are effective in reducing all inorganic and organic
TW-contaminant exposures identified in this study,239 with
treatment efficacy dependent on selection of suitable filtration
technologies for exposures of concern, timely maintenance,
and routine performance monitoring. In light of common co-
occurring inorganic- and organic-contaminant exposures
throughout the study area, broadly effective treatment
technologies, such as RO, or multi-stage/multi-filtration
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systems (sediment filter, redox media, activated carbon, ion
exchange, UVdisinfection) may bemore appropriate.239

4 Conclusions

The biological essentiality of water6–8 makes it an especially
vulnerable human-exposure pathway (human-health risk
vector) for a vast range of environmental chemical/biological
hazards.5,102,198,227 Consequently, in private-well-dependent
communities, DW is a critical leverage point for individual
and community-level contaminant-risk mitigation through
cognizant chemical use/disposal, improved well/premise-
plumbing infrastructure installation and maintenance, well-
head/source-water protection, and POE/POU treatment. In
general, financial resource, water-quality expertise, and
contaminant-exposure data limitations at the household-
scale are fundamental obstacles to private-TW decision-
making and risk-mitigation actions.65,84,90 Analytically
extensive datasets like this study, which are intended to
support household and community-level decision-making
and, more broadly, enhance scientific understanding of the
role of DW in human-health outcomes, remain rare because
extensive TW-contaminant assessments are not routinely
conducted at the point-of-exposure in the US or worldwide.

The results of this and previous82–85 studies highlight the
human-health vulnerability inherent to unmonitored
TW63–65,102,202 and the potential value of systematic private-well
monitoring65 with an analytical scope that reasonably reflects
the breadth of environmental contamination.26,101,105,146,147

This study demonstrated elevated human-health risk from
simultaneous exposures to multiple TW contaminants
throughout the study area, emphasizing the need for improved
understanding of the adverse human-health implications of
long-term exposures to inorganic-/organic-contaminant
mixtures in private-TW. The results illustrate the importance of
well-maintained POE/POU treatment as prudent protection
against unrecognized simultaneous exposures to multiple
contaminants in private-TW.84,241 These findings confirm the
importance of continued characterization of private-TW
exposures and increased availability of resultant health-based
data, including at concentrations below technically-/
economically-constrained public-supply standards (e.g., MCL),
to support community engagement in source-water protection
and inform household POE/POU treatment decisions in the
study area and throughout the US.
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