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Qualitative and quantitative soil characterization
on an agricultural field using a portable shifted
excitation Raman difference spectroscopy
instrument

Kay Sowoidnich, *a Stefan Pätzold,b Markus Ostermann,c Bernd Sumpfa and
Martin Maiwald a

Site-specific farmland management requires comprehensive information about the soil status to derive

informed treatment decisions, e.g. for liming or fertilizer recommendations. Standard laboratory methods

relying on sample collection have only limited ability to adequately capture the spatial variability of typical

agricultural fields. Here, on-site analytical techniques with the potential to measure the soil properties on

a substance-specific level and at the required spatial resolution could be very beneficial. Raman spec-

troscopy is a very promising technique for this purpose as it provides a molecular fingerprint of soil con-

stituents. However, intrinsic soil fluorescence and daylight interference can be major issues masking

characteristic Raman signals. Here, we apply an in-house developed portable shifted excitation Raman

difference spectroscopy (SERDS) instrument based on a dual-wavelength diode laser emitting around

785 nm to effectively separate the Raman signals of soil from such interferences. SERDS investigations on

a selected agricultural field in Germany demonstrate that the Raman spectroscopic signature of 9 soil

minerals and organic carbon could successfully be separated from intense backgrounds. Using partial

least squares regression against reference analyses, a successful prediction of the soil carbonate (R2 =

0.86, root mean squared error of cross validation RMSECV = 2.49%) and soil organic carbon content (R2

= 0.89, RMSECV = 0.32%) as important soil parameters is realized. The results obtained on-site with the

portable instrument were confirmed by SERDS laboratory experiments of collected soil samples thus

highlighting the capability and reliability of portable SERDS as promising and complementary tool for pre-

cision agriculture.

Introduction

Productive agricultural soil is a crucial precondition to meet
the increasing food demand of a steadily growing world popu-
lation. However, soil conditions can be adversely affected, e.g.
by inadequate soil management, excessive or insufficient ferti-
lizer application as well as the effects of the climate change. To
address these issues, the concept of precision agriculture1 to
establish site-specific farmland treatment aiming for efficient
and sustainable soil nutrient management is gaining impor-
tance on a global level. The approach can contribute to
improve crop productivity, increase overall soil productivity,

and optimize usage of fertilizers. To exploit the full potential
of site-specific agricultural soil management, detailed infor-
mation about the present soil properties is essential to derive
informed treatment decisions, e.g. for liming, fertilizer or irri-
gation recommendations.

Current procedures for soil analysis are based on the collec-
tion of composite samples from rather large areas at the ha-
scale2 followed by labor-intensive and time-consuming ana-
lysis using established laboratory methods. This approach
does unfortunately have only limited ability to adequately
capture the spatial soil heterogeneity of typical agricultural
fields3 where in many cases a spatial resolution on the order
of 10 m would be beneficial. This corresponds to a spatial
scale at which modern agricultural machinery can be adapted
to changing soil properties. Here, on-site analytical techniques
with the potential to measure the soil composition on a sub-
stance-specific level and at the desired spatial resolution could
be very beneficial, e.g. to contribute essential information for
evidence-based decision support tools.4
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Raman spectroscopy is a well-established analytical method
providing a molecular fingerprint of the sample under investi-
gation thus permitting for qualitative and quantitative measure-
ments. The technique is, however, currently still underexplored
in the area of soil compositional analysis. This is mainly due to
the fact that Raman scattering is a weak process and that the
characteristic signals can easily be masked by interfering contri-
butions, e.g. fluorescence originating from soil organic matter5

or clay minerals.6 In case of on-site experiments, an additional
challenge beside intrinsic soil fluorescence is interference by
daylight that can also easily mask the characteristic Raman
signals of soil constituents.

A physical approach to effectively address these issues is
Shifted Excitation Raman Difference Spectroscopy (SERDS).7,8

The basic concept behind SERDS is that the sample under inves-
tigation is consecutively excited at two slightly different laser
wavelengths. While the Raman signals will follow the small shift
in excitation wavelength, e.g. 10 cm−1 which corresponds to a
spectral shift of 0.6 nm at 785 nm, background contributions
remain essentially unchanged. A following subtraction of both
recorded Raman spectra from each other can thus efficiently
separate the characteristic Raman spectroscopic fingerprint of
the probed specimen from various backgrounds, including inter-
ferences from fluorescence and ambient lights.9,10

Our group has previously demonstrated and evaluated the
capability of SERDS for laboratory soil analysis. Beside quali-
tative analysis,11 also quantitative measurements, e.g. for the
prediction of the important parameters soil organic matter
content12 and soil carbonate content13 are possible. Moreover,
a portable SERDS system was realized and its feasibility for
in situ soil analysis was shown during an initial proof-of-
concept study on a test plot. For demonstration, selected soil
minerals could be identified on this artificially created plot
with a footprint of 12 m × 12 m containing a well-defined soil
composition (silt loam).9

In contrast to our previous work, this paper now goes a sig-
nificant step ahead and presents, for the first time, systematic
on-site SERDS investigations for qualitative and quantitative
soil analysis directly on an agricultural field in Northeast
Germany. Contrary to the above-mentioned test plot, this field
is used for agricultural production and undergoes processing
by agricultural machinery on a regular basis. These measure-
ments are performed to generate a set of reference Raman
spectra of soil constituents using 25 selected measurement
points along a distance of 480 m across the field, chosen to
capture its spatial heterogeneity. Moreover, SERDS combined
with partial least squares regression is evaluated as a tool for
quantitative predictions in case of the soil calcium carbonate
content, a relevant parameter for the assessment of liming
requirements, and the soil organic carbon content that is an
important indicator for the overall soil condition and in par-
ticular the nutrient status. To validate the results obtained
with the portable SERDS instrument during the field measure-
ment, a comparison with SERDS laboratory experiments of
samples collected from the measurement positions that were
probed on-site is carried out.

Materials and methods
Portable SERDS instrument

The rugged and portable SERDS system specifically designed
for soil analysis is described in detail in our previous publi-
cation9 and only a brief overview of key components is given
here. As excitation light source, a dual-wavelength Y-branch
distributed Bragg reflector ridge waveguide (DBR-RW) diode
laser14 with two distinct emission lines at 783.7 nm and
784.3 nm is chosen. With respect to its application for SERDS,
this one-chip device is designed to provide a spectral distance
between the two excitation wavelengths of 10 cm−1 (0.6 nm).
The dual-wavelength diode laser is implemented into an in-
house developed compact turnkey diode laser system that pro-
vides an operating environment with integrated current
sources and a heat sink with included Peltier element for
temperature management and is controlled via USB 2.0 inter-
face.15 The excitation laser radiation is then launched into an
optical fiber (core diameter: 105 µm, NA 0.22) contained in a
stainless-steel sleeve and connected to a customized probe
(Raman probe II™, InPhotonics).

The probe head is equipped with a sapphire optical window
to protect the internal optical components from the sample
and environmental conditions, and to maintain a constant dis-
tance between the focusing lens (working distance: 5 mm) and
the sample. The laser light is focused onto the sample generat-
ing an excitation spot diameter of about 115 μm and the back-
scattered light is collected by the same lens in 180° geometry.
Inside the probe, a Raman long-pass filter assembly only trans-
mits the Raman Stokes light (longer wavelengths compared to
the excitation radiation) that is then launched into an optical
fiber (core diameter: 300 µm, NA 0.22). This fiber is encapsu-
lated inside a stainless-steel sleeve and connected to a
compact OEM spectrometer with an improved light through-
put by means of a high-throughput virtual slit (Hyperflux P2,
Tornado Spectral Systems). The spectrometer provides a spec-
tral resolution of 6 cm−1 within the accessible spectral region
between 215 and 3280 cm−1. A research-grade spectroscopy
CCD camera (iVac 316, Andor) cooled down to an operating
temperature of −20 °C is connected to the spectrometer and
serves as multichannel detector.

System control and data handling is realized by means of
in-house developed software running on a robust laptop
equipped with a Intel(R) Core(TM) i5 3320M processor operat-
ing at 2.60 GHz and 4 GB of RAM (Toughbook CF-53,
Panasonic).

Study site and experimental parameters

On-site SERDS experiments were conducted on an agricultural
field located in the Younger Moraine Landscape in northeast
Germany (latitude: 52.394316N; longitude: 14.461156E) in
2021. Further information regarding selected soil parameters
of the field are provided in our previous publication.12 It is
well-known from preceding investigations that there exists a
pronounced spatial variability across the field, particularly
with respect to the distribution of carbonates and organic
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matter. To capture this heterogeneity, the measurement points
for the on-site SERDS investigations (n = 25) were selected
along a straight line along the tractor tracks across the field
covering a total distance of 480 m. Within the region of the
largest variation, adjacent points are separated by 15 m while
the remainder of the line was probed with a distance of 30 m
between neighboring points. As some plant residuals were still
present on the surface of the field, small holes (ca. 10 cm
depth and diameter) were created with a stainless-steel scoop
to expose the bare soil without interference from plant litter.
During the SERDS measurements the Raman probe was
slightly pressed to the exposed soil surface and hand-held by
the operator.

Short integration times of 50 ms had to be used to avoid
saturation of the CCD detector and 50 spectra were accumu-
lated for each of the two excitation wavelengths. The heatsink
temperature was set to 25 °C and the injection currents at the
diode laser were selected to achieve an optical output power of
36 mW at the sample position. These parameters are identical
those selected in our previously published pilot investigations
and are discussed there in more detail.9 To account for poss-
ible spatial variations at the millimeter and centimeter scale,
10 randomly selected spot were probed at each of the
25 measurement points.

Processing and analysis of SERDS spectra

A detailed outline of the data processing for SERDS by means
of an in-house developed algorithm implemented in MATLAB
(R2017a, MathWorks, Natick, MA, USA) is presented in our pre-
vious publications12,13 and only an overview of the major steps
is given here. Initially, the mean Raman spectra recorded at
each of the two excitation wavelengths are subtracted from
each other to calculate a SERDS difference spectrum.
Following cubic spline fitting to obtain a derivative-shaped
difference spectrum centered around zero-baseline, a numeri-
cal integration is performed to generate a reconstructed
SERDS spectrum in a conventional form. To achieve a straight
horizontal baseline, finally a baseline correction of the recon-
structed SERDS spectrum is computed.

Prior to multivariate regression, the data set containing
average spectra for each of the 25 measurement points on the
agricultural field is truncated to the 250–1650 cm−1 spectral
region (corresponding to Raman-Stokes scattering in a wave-
length range of 800–900 nm at the chosen excitation wave-
length around 785 nm) that contains prominent Raman
signals of relevant major soil constituents and is subsequently
normalized to the intensity of the strongest Raman signal orig-
inating from the sapphire measurement window at 418 cm−1.
Partial least squares regression (PLSR) of the SERDS data is
performed using the MATLAB function “plsregress” that is
based on the SIMPLS algorithm16 and included within the
Statistics and Machine Learning Toolbox. Mean-centering of
the data as pre-processing step is performed as part of the
applied PLS algorithm. Correlations are established with
calcium carbonate contents as derived from soil calcium con-
tents determined by XRF analysis as well as soil organic

carbon contents measured by elemental analysis. Leave-one-
out cross validation was selected as suitable cross validation
approach considering the rather small sample size of 25
spectra. The number of PLS factors included into the
regression models is identified by determining the number of
factors giving the minimum root mean squared error of cross
validation (RMSECV).17

Sample collection and laboratory analyses

Along with the on-site SERDS measurements, soil samples
from the probed 25 locations were collected for additional lab-
oratory investigations. According to established sample prepa-
ration standards in soil science, these specimens were air-
dried at room temperature, pestled in a mortar and sieved to
grain sizes smaller than 2 mm. As outlined in our previous
publications, soil calcium contents were determined using
X-ray fluorescence (XRF) analysis,13 while the soil organic
carbon (SOC) content is measured by means of elemental ana-
lysis.12 To confirm the results obtained on-site with the porta-
ble SERDS system, soil samples were additionally investigated
with a customized SERDS laboratory setup using an estab-
lished measurement protocol previously identified as being
suitable for qualitative and quantitative soil analysis by
probing a regular 10 × 10 grid pattern within an area of
1 cm2.12,13

Results and discussion
Raman and SERDS spectra of soil acquired on an agricultural
field

As displayed in Fig. 1, due to intrinsic fluorescence originating
from soil organic matter or clay minerals only a Raman signal
of the sapphire window at 418 cm−1 can be identified in the
Raman spectra recorded at the two slightly shifted excitation
wavelengths (top curves). Here, each curve represents the
average of 50 spectra recorded at 50 ms integration time for a
single Raman spectrum. It can be seen that the background
shape in both recorded Raman spectra remains unchanged
while the sapphire Raman signal follows the spectral shift
between both excitation wavelengths.

The reconstructed SERDS spectrum that is displayed in the
bottom part of Fig. 1 shows that individual soil constituents
can be identified at the selected measurement point. Beside
quartz (SiO2) as frequently occurring component in a wide
range of soils (Si–O–Si symmetric stretching vibration at
465 cm−1)18 this also includes the calcium carbonate (CaCO3)
polymorph aragonite (symmetric C–O stretching vibration of
the CO3 group at 1084 cm−1)19 and organic carbon (D-band at
1350 cm−1 and G-band at 1590 cm−1).20 Moreover, two other
Raman signals originating from the sapphire window can be
identified at 577 cm−1 and 749 cm−1 (indicated by asterisks in
Fig. 1).

In the next section, an overview of representative spectra for
all soil components identified on-site is presented.
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Assessment of molecular soil composition

In Fig. 1 it can be seen that multiple soil constituents can be
detected at a single measurement spot. This outcome is not
unexpected due to the applied measurement spot size on the
order of 100 µm diameter and has already been observed in
our previous SERDS laboratory investigations.13 Nevertheless,
it was possible to generate a set of reference Raman spectra of
soil constituents using the total number of 250 spectra
acquired from the investigated measurement points along the
field. For this purpose, an average of two selected sampling
positions (exception: almandine that was only detected at one
single spot) with the strongest spectral contribution of the
respective target substance but small or negligible spectral sig-
natures of other soil constituents was calculated. For clarity,
the spectral signature of quartz was subtracted from the
selected spectra of the other detected components to remove
the strong contribution of its prominent Raman signal at
465 cm−1. The weaker contributions originating from the sap-
phire window of the Raman probe were not removed from the
spectra and the corresponding signal positions21,22 at
418 cm−1, 577 cm−1, and 749 cm−1 are indicated by asterisks.

Silicate minerals contained within various soils are of par-
ticular interest due to their relative abundance and impor-
tance.23 Representative average SERDS spectra obtained from
quartz and feldspar are presented in the top part of Fig. 2A.
Quartz (SiO2) displays the strongest Raman signal due to the
Si–O–Si symmetric stretching vibration at 465 cm−1, a weak
signal originating from the SiO4 asymmetric stretching

vibration at 1159 cm−1, and two other weak Raman
signals attributed to lattice modes at 266 cm−1 and
356 cm−1.18,24 In case of feldspar, Na-rich and K-rich modifi-
cations can be identified and distinguished based on the
recorded spectra. The Na-feldspar (NaAlSi3O8) in the form of
albite with a triclinic crystal structure is characterized by a pro-
minent Raman signal at 509 cm−1 and a minor signal at
292 cm−1, while the strongest Raman signal in case of the
K-feldspar (KAlSi3O8) present in the form of microcline with a
triclinic crystal structure is located at 513 cm−1 and a minor
signal can be identified at 285 cm−1. For both types of feldspar,
the strongest bands around 510 cm−1 originate from breathing
modes of the four-membered tetrahedral rings whereas the
minor signals around 290 cm−1 can be attributed to rotation-
translation modes of the rings.25,26 The last identified silicate
mineral is almandine (Fe3Al2Si3O12) which is a member of the
garnet group. The strongest Raman signal in this case is orig-
inating from a Si–O symmetric stretching vibration at
913 cm−1. Moreover, weaker bands at 861 cm−1 and 1037 cm−1

due to O–Si–O asymmetric stretching can be identified. A
Raman signal at 554 cm−1 is originating from a O–Si–O sym-
metric bending vibration while the two bands at 500 cm−1 and
631 cm−1 are caused by O–Si–O asymmetric bending vibrations.
Finally, two Raman signals assigned to rotations of the SiO4

tetrahedron are observed at 346 cm−1 and 373 cm−1.27,28

Hydroxyapatite (Ca5(PO4)3OH) as intrinsic phosphate
species within the soil can be identified as well based on
its characteristic Raman signal originating from the symmetric
P–O stretching vibration of the PO4 group at 960 cm−1.29,30

Fig. 1 Average of 50 Raman spectra (top curves) excited at 783.7 nm and 784.3 nm using integration times of 50 ms, and corresponding recon-
structed SERDS spectrum (bottom curve) obtained on-site from one single measurement position at the field under study. Asterisks indicate Raman
signals originating from the sapphire window of the Raman probe.
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Beside the identified silicates and phosphate, a few other
substances were detected during the on-site investigations
with the portable SERDS system and their spectra are displayed
in Fig. 2B. Titanium dioxide can appear in several polymorphic
forms that share the same chemical composition (TiO2) but
possess different crystal structures.31 Thus, a clear discrimi-
nation between the polymorphs anatase and rutile can be rea-
lized by means of the molecular fingerprint obtained by
Raman spectroscopy and SERDS as exemplarily depicted in the

top part of Fig. 2B. Anatase as first detected TiO2 polymorph is
characterized by three prominent Raman signals. The sym-
metric Ti–O stretching vibration is located at 637 cm−1 while
O–Ti–O bending vibrational bands can be observed at
395 cm−1 and 514 cm−1.32,33 Rutile is the second TiO2 poly-
morph that has been identified on-site and its SERDS spec-
trum is characterized by two prominent Raman signals. The
Ti–O symmetric stretching vibration can be found at 609 cm−1

while the antisymmetric O–Ti–O bending vibration is located
at 449 cm−1.33–35

Another group of substances showing polymorphic behav-
ior that has been detected and identified during the field
measurement are two calcium carbonate (CaCO3) species with
distinct Raman spectroscopic signatures as displayed in the
center of Fig. 2B. Calcite (trigonal crystal system) and aragonite
(orthorhombic crystal system) both exhibit their strongest
Raman signal attributed to the symmetric C–O stretching
vibration of the CO3 group at 1084 cm−1. A distinction can,
however, be achieved considering additional weaker Raman
signals. The asymmetric bending vibration of the CO3 group
can be observed at 711 cm−1 (calcite) and 705 cm−1 (aragonite).
In case of calcite, a lattice vibration involving libration of the
CO3 groups is visible at 283 cm−1.19,36

Organic carbon can be detected on-site as well. Disordered
carbonaceous matter is characterized by two broad Raman
signals. The G-band observable at 1590 cm−1 is attributed to a
C–C stretching vibration whereas the D-band located at
1350 cm−1 arises from a breathing vibration of benzene
rings.20

Overall, nine mineral soil components as well as organic
carbon could be identified from the SERDS spectra recorded
on-site. These finding are in accordance with our previous lab-
oratory-based SERDS studies12,13 on soil samples collected
from the same agricultural field as probed in this study. As
expected, the previous SERDS laboratory investigations
probing 15.000 different measurement positions in total were
able to identify some additional materials that were present at
very low abundance, e.g. the silicate minerals spessartine,
zircon and diopside, as well as the carbonate mineral dolo-
mite. It should also be noted that for the previous investi-
gations soil samples collected down to depths of 1 m were ana-
lyzed while the present on-site study was only accessing the
upper 10 cm. Consequently, soil constituents primarily found
in deeper soil layers were more unlikely to be detected in the
uppermost soil layer in this study. Nevertheless, it is remark-
able that based on SERDS spectra obtained on-site from only
250 measurement positions probed across the agricultural
field a clear identification of 10 most abundant soil constitu-
ents is feasible.

The demonstrated on-site detection of the major soil com-
ponents present on the investigated agricultural field is an
important step to derive informed conclusions about the soil
composition and its overall state. This molecule-specific
characterization also provides important insights for the quan-
titative soil analysis presented below, e.g. about the presence
of specific components as well as their relative abundance.

Fig. 2 Averaged SERDS spectra of soil constituents measured with the
portable SERDS instrument including silicates and phosphate (A) as well
as titanium dioxides, carbonates, and organic carbon (B). Each spectrum
represents the average of 2 measurement positions at the field, except
for almandine that was only detected at one single position. For clarity,
the spectrum of quartz was subtracted from the other acquired spectra.
Asterisks indicate Raman signals of the sapphire measurement window
contained in the Raman probe. Spectra are normalized to their respect-
ive maximum and are vertically offset for clarity.

Paper Analyst

2938 | Analyst, 2025, 150, 2934–2944 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
K

ho
ta

vu
xi

ka
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

02
5-

07
-3

0 
18

:3
1:

04
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5an00178a


Taking Ca-bearing species as an example, calcium carbonates
(calcite and aragonite) were detected much more frequently
(30 out of 250 spectra) than calcium phosphates (hydroxy-
apatite) (2 out of 250 spectra) while calcium sulfates were not
detected at all on the investigated field. Moreover, character-
istic indicator Raman signals present for individual substances
can be used as input for a database providing the basis for an
automatable evaluation of recorded soil spectra in terms of
detected molecular species. Qualitative analysis has shown the
capability of SERDS to discriminate between the inorganic (i.e.
carbonates) and organic soil carbon fractions and these two
parameters were exemplarily selected for quantitative analysis.

Determination of soil carbonate content

Within the soil, calcium (e.g. present in the form of calcium
carbonates) has several functions and plays an important role
as a pH regulator and to promote plant growth.37 Soil calcium
content has also implications for liming requirements, e.g. in
precision agriculture.38 Moreover, calcite has been shown to be
a nucleation and growth site influencing the transformation
and mobility of dissolved calcium orthophosphate species in
soils.39 Consequently, the average SERDS spectra obtained
from each measurement point on the field will be correlated
with calcium carbonate contents calculated from the elemen-
tal calcium contents determined by XRF analyses to evaluate if
the spectral variations present in the data set can be used to
assess this important soil parameter quantitatively.

Total calcium contents of soil samples can be assessed
using XRF as an established technique for the analysis of
elements. Outcomes are integral contents of Ca but without
the ability to obtain molecule-specific information about indi-
vidual species, e.g. calcium phosphates, calcium sulfates, or
calcium carbonates. The key benefit of Raman spectroscopy as
complementary analytical technique is the capability to dis-
tinguish between these Ca species based on their distinct
molecular fingerprints. As mentioned above, our qualitative
on-site SERDS investigations have shown that at the investi-
gated measurement positions calcium carbonate is the only
calcium-containing molecular species that is present in signifi-
cant amounts while calcium phosphate in the form of hydroxy-
apatite is only present at low abundance. Consequently, in our
case it is reasonable to estimate soil calcium carbonate con-
tents based on the elemental calcium contents determined by
XRF.

The calcium carbonate contents predicted from the SERDS
data using a PLS model with four factors are depicted in
dependence of the calcium carbonate contents derived from
the XRF analysis in Fig. 3A. Overall, a good prediction of the
soil calcium carbonate contents with a coefficient of determi-
nation of R2 = 0.86 can be realized based on the SERDS spectra
acquired on-site with the portable SERDS instrument. The root
mean squared error of cross-validation (RMSECV) of 2.49%
highlights that quantitative predictions of the soil calcium car-
bonate content can be realized based on a rather small
number of 10 probed spots for each measurement position on
the field. The largest uncertainty can be observed in the range

of the lowest investigated concentrations below 2% CaCO3.
The slope of the regression line is 0.94 indicating a trend
towards a minimal under-estimation of the actual calcium car-
bonate contents. A potential explanation for this behavior is
that XRF measures the overall concentration of all Ca species
present in the sample. In this way, it is possible that Ca
species other than carbonates, e.g. phosphates or sulfates, con-
tribute to the values measured by XRF as well. Such other
species (among others also elemental Ca in dissolved or
adsorbed but exchangeable form) are not necessarily detected
in the recorded Raman spectra due to low abundance and/or
as they do not give rise to intense Raman signals. However, in

Fig. 3 Soil CaCO3 content predicted from SERDS spectra acquired on-
site with the portable SERDS system using PLS regression model with
four factors (spectral range 250–1650 cm−1) plotted in dependence of
soil CaCO3 content calculated from Ca content measured by XRF ana-
lysis (dashed line: linear fit, solid line: 1 : 1 dependence) (A) and corres-
ponding regression coefficient (B).
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sum this contribution of Ca species being detected by XRF but
being not observable in the SERDS spectra acquired on site
could be a potential reason for the obtained slight under-esti-
mation of the calcium carbonate values when using XRF inte-
gral Ca contents as reference values. Moreover, it should also
be noted that SERDS spectra were recorded on untreated soil
directly on the field whereas XRF analysis was performed on
air-dried and sieved specimens under laboratory conditions,
i.e. not exactly the same soil was probed in both cases.

To assess the underlying spectral contributions that are respon-
sible for the obtained prediction of the calcium carbonate content,
a plot of the regression coefficient is given in Fig. 3B. Here, the
two strongest signal contributions are due to the calcium carbon-
ate polymorph calcite. The Raman signal at 1085 cm−1 originates
from the symmetric C–O stretching vibration while the signal at
285 cm−1 can be attributed to a lattice vibration.

Assessment of soil organic carbon content

Soil organic carbon (SOC) is the dominating element in soil
organic matter (SOM),40 an important soil component influen-
cing a wide range of soil physical, chemical, and biological
properties. It is therefore considered an important indicator of
soil quality, functionality, health, as well as agronomic pro-
ductivity and sustainability. Selected parameters related to
SOC include soil structure and aggregation, bulk density, water
and plant nutrient retention and use efficiency, microbial
biomass and diversity, rhizospheric processes, invertebrate
bioindicators (earthworms), and yield.41–43 Moreover, SOM has
the potential to become a sink for atmospheric carbon dioxide
thus playing an important role in mitigating greenhouse gas
emissions to reduce the adverse effects of climate change.44

Fig. 4A presents the SOC contents predicted from the SERDS
data against the SOC contents directly determined by reference
analysis using a PLS model with four factors. The SERDS spectra
acquired on-site with the portable SERDS instrument permit for
a good prediction of the SOC contents with a coefficient of deter-
mination of R2 = 0.89 and a RMSECV of 0.32%. The slope of the
regression line is 0.99 and thus very close to the ideal value of
one. In contrast to the slight under-estimation observed in the
case of the carbonate prediction shown above using Ca contents
determined by XRF, here no under-estimation of SOC contents
is observed. This is likely due to the fact that no unknown
carbon sources are detected by the applied reference analysis
method. Consequently, an almost perfect 1 : 1 relation between
SOC contents predicted from the SERDS spectra (calibrated on
elemental analyses) and those values obtained by the direct
reference analysis is achievable.

These outcomes underline that quantitative predictions of the
SOC content can be achieved despite the rather small number of
10 probed spots for each measurement point on the field. Similar
as in the case of the soil carbonate content, intrinsic soil hetero-
geneity will always present an obstacle to any quantitative analysis
but it is remarkable that even under field conditions SERDS
measurements with the achieved accuracy can be conducted.

A plot of the regression coefficient is given in Fig. 4B to
assess the spectral features responsible for the obtained corre-

lation. A pronounced contribution from the G-band of organic
carbon can be identified around 1585 cm−1. Additional strong
positive contributions are visible at 281 and 1085 cm−1 and
these can be attributed to the calcium carbonate polymorph
calcite as outlined in the previous section. Negative contri-
butions in the regression coefficient can be attributed to
quartz (464 cm−1) and the titanium dioxide polymorph
anatase (394 cm−1, 517 cm−1, and 635 cm−1) indicating that
these soil constituents do not play a significant role for the
SOC content prediction.

It is not surprising to retrieve Raman signals of carbonates
in the prediction of the SOC content as a coincidence between
soil organic matter (SOM; content directly proportional to SOC

Fig. 4 Soil organic carbon (SOC) content predicted from SERDS
spectra acquired on-site with the portable SERDS system using PLS
regression model with four factors (spectral range 250–1650 cm−1)
plotted in dependence of soil organic carbon content determined by
elemental analysis (dashed line: linear fit, solid line: 1 : 1 dependence) (A)
and corresponding regression coefficient (B).
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content40) and calcite has been reported in the literature for
certain soil types.29 Moreover, our previous SERDS laboratory
investigations on soil samples collected from the same agricul-
tural field have shown a spatial correlation between the occur-
rence of calcite and the presence of SOM.12 Below, it is illus-
trated that also in the present investigations the measurement
positions with the highest carbonate contents coincide with
regions where elevated SOC concentrations are observed.

Comparison with SERDS laboratory measurements

For comparison, soil samples were collected from the
25 measurement points probed on the field. SERDS investi-
gations by means of a laboratory setup were conducted on
these samples probing 100 individual spots each12,13 to vali-
date the results obtained on-site. For qualitative soil analysis,
the 2.500 SERDS spectra recorded in total were then assessed
for the presence of individual soil constituents.

The results obtained with the SERDS laboratory investi-
gations demonstrate that the same major soil components
could be detected as for the field measurements thus high-
lighting the capability of the portable SERDS system for rapid
qualitative on-site soil analysis. In case of the minor constitu-
ents with an abundance well below 1% there is some differ-
ence between the on-site and the laboratory SERDS measure-
ments. While almandine was only detected on-site (1 out of
250 spectra), the investigations conducted with the SERDS lab-
oratory setup probing a 10-times larger number of spots
revealed the additional presence of spessartine (Mn3Al2Si3O12)
(1 out of 2.500 spectra) and zircon (ZrSiO4) (3 out of 2.500
spectra).

In case of quantitative soil analysis, average SERDS spectra
obtained from the 25 collected soil samples were subjected to
PLSR to assess their capability to predict soil carbonate and
soil organic carbon content. Key parameters to assess the
model performance are compiled in Table 1.

For the prediction of the carbonate content, the model
based on the SERDS laboratory investigations used the same
number of 4 factors as the model obtained using the on-site
acquired SERDS data. The data acquired with the laboratory
setup permit to obtain a model with 10% more explained var-
iance, an increased coefficient of determination R2 and a slope
of the linear fit that is slightly closer to the ideal value of one.
Moreover, the RMSECV in case of the model generated using

the SERDS laboratory data is improved by 0.75% leading to
more accurate predictions of the soil carbonate content.

In case of the soil organic carbon content the PLSR model
based on the SERDS data obtained on-site uses 4 factors while
the model based on the spectra acquired using the SERDS lab-
oratory setup incorporates only 3 factors. While in both cases
an identical slope of the linear fit that is very close to the ideal
value of one is achieved, the data acquired with the laboratory
setup lead to a model with ca. 3% more explained variance
and an increased coefficient of determination R2.
Furthermore, the RMSECV in case of the model obtained
using the SERDS laboratory data is improved by 0.1% leading
to more accurate predictions of the soil organic carbon
content.

It is not unexpected that the PLSR models calculated from
the data acquired with the SERDS laboratory setup show
improved performance compared to the models obtained from
the data set acquired on-site with the portable SERDS instru-
ment. The most important reason for the observed difference
is very likely due to the intrinsic soil heterogeneity at the sub-
mm scale. While both measurement systems apply similar
measurement spot sizes (115 µm for the portable system vs.
100 µm for the laboratory setup), the number of probed spots
is one order of magnitude larger in case of the laboratory
investigations (100 spots per sample) compared to the on-site
study (10 spots per measurement point). Consequently, the
total area probed per sample is 10-times larger for the labora-
tory investigations and can thus more accurately capture vari-
ations due to the intrinsic soil heterogeneity. This, in turn,
leads to more accurate quantitative predictions of important
soil parameters, as e.g. demonstrated in case of the soil car-
bonate and soil organic carbon content.

Regarding the application of Raman spectroscopy for soil
carbonate quantification, only little research has been done
previously. One example is our recent study applying SERDS
for the prediction of the soil carbonate content.13 Using a set
of 117 samples collected from the same agricultural field in
Germany that is also probed in the current study, a successful
prediction of the carbonate content with R2 = 0.94 and
RMSECV = 2.1% was achieved. Based on a much smaller
number of samples, our present on-site study shows slightly
worse but comparable prediction performance for the soil car-
bonate content.

Table 1 Details of PLSR models applied for the prediction of soil CaCO3 content and soil organic carbon (SOC) content based on SERDS data
obtained on-site using a portable instrument or SERDS data acquired by means of a laboratory setup

Model parameter

CaCO3 content SOC content

Portable SERDS
system (on-site)

SERDS setup
(laboratory)

Portable SERDS
system (on-site)

SERDS setup
(laboratory)

Number of factors 4 4 4 3
Variance explained/% 87.2 97.3 89.8 93.1
R2 0.86 0.97 0.89 0.93
Slope of linear fit 0.94 0.99 0.99 0.99
RMSECV/% 2.49 1.74 0.32 0.22
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In case of the soil organic carbon content, also a brief com-
parison with selected literature using Raman spectroscopy for
organic matter quantification should be given. As an example,
conventional Raman spectroscopy applying mathematical
background correction was used for the analysis of Chinese
farmland soils.45 Based on a data set of 146 spectra, the soil
organic matter (SOM) content was predicted with R2 = 0.71
and RMSECV = 0.81%. Using a much smaller number of 33
soil samples, our previous SERDS laboratory investigation
could demonstrate a successful prediction of the SOM content
with R2 = 0.82 and RMSECV = 0.41%. It should be noted that
contents of SOM and SOC are not equal but can be calculated
from each other. Assuming that SOM contains approximately
58% of organic carbon, SOM content can be converted to SOC
content by dividing it by a factor of 1.72.46 In this way, our on-
site SERDS study shows comparable prediction performance
as the two above-mentioned laboratory-based Raman
investigations.

Assessment of spatial variability of selected soil constituents

The obtained results show that soil characterization can be
performed directly on site without any sample preparation
using the portable SERDS instrument. This capability can be
used to capture spatial heterogeneity of the soil composition
across an agricultural field. This is exemplarily depicted in
Fig. 5A where the calcium carbonate contents predicted by
PLSR using SERDS on-site and laboratory measurements are
plotted in dependence of the measurement position along the
field. Both curves show a very similar behavior with elevated
calcium carbonate concentrations above 4% between ca.
250–350 m located from the first measurement point. On
average, the difference between the carbonate concentrations
predicted from on-site measurements versus laboratory investi-
gations amounts to only 0.88% while the maximum observed
deviation is 2.95%.

A similar behavior can be observed for the SOC content
whose spatial distribution as predicted by PLSR based on the
on-site as well as SERDS laboratory investigations is displayed
in Fig. 5B. Both curves present a similar shape and indicate
that the highest present SOC concentrations above 1.5% are
located in a range ca. 200–350 m away from the first measure-
ment point. The average difference between the SOC concen-
trations predicted from on-site measurements versus laboratory
investigations is only 0.14% while the maximum observed
deviation amounts to 0.44%.

These findings highlight the capability of the portable
SERDS system to detect present differences in carbonate and
SOC contents even between adjacent measurement positions
that are separated by only 15 m. Such mapping capabilities at
high spatial resolution on the order of 10 m are an important
prerequisite for site-specific liming and fertilization rec-
ommendations in the context of precision agriculture. It is
expected that portable SERDS can provide a valuable contri-
bution to spatially-resolved on-site soil characterization, e.g. to
deliver valuable information for decision support systems for
precision agriculture.

Conclusions

This work has shown the first application of an in-house devel-
oped portable SERDS instrument for on-site soil analysis
directly on an agricultural field. SERDS permitted for an
efficient separation of the Raman spectroscopic information
from interfering contributions such as fluorescence and day-
light. In this way, 9 mineral soil constituents (silicates, carbon-
ates, titanium dioxides, and phosphate) as well as organic
carbon could be detected and identified. In terms of quantitat-
ive analysis, successful predictions of the soil carbonate
content (R2 = 0.86, RMSECV = 2.49%) and of the SOC content
(R2 = 0.89, RMSECV = 0.32%) could be realized. The SERDS
spectra acquired on-site from 25 measurement points also per-
mitted to track spatial variations of these two parameters
along a distance of 480 m across the field thus demonstrating

Fig. 5 Spatial distribution of CaCO3 content (A) and soil organic carbon
(SOC) content (B) predicted from SERDS spectra using PLSR plotted in
dependence of the distance along the field (comparison between on-
site measurements with portable SERDS system and investigations using
a SERDS laboratory setup).
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SERDS as substance-specific technique for spatially-resolved
soil analysis. Overall, the presented results clearly demonstrate
that the portable SERDS instrument has a large potential as
rapid screening tool for qualitative and quantitative on-site
soil characterization directly on agricultural fields, e.g. to
provide input data for decision support systems in the context
of precision agriculture. Combining SERDS with selected other
sensing approaches tested for precision agriculture, such as
near- and mid-infrared diffuse reflectance spectroscopy and
gamma spectrometry,47 may yield great benefit in the context
of sensor fusion approaches, as the sensing principles provide
complementary information.
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