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controlled Na+ ion diffusion in
NaPSO glassy electrolytes from machine-learning
force field simulations†

Kun Luo, Rui Zhou, Steve W. Martin * and Qi An *

All-solid-state sodium batteries (ASSSBs), featuring nonflammable solid-state electrolytes (SSEs) and

abundant sodium metal anodes, are attractive candidates for safe, cost-effective grid-scale energy

storage. Recent research shows that oxygen doping increases the ionic conductivity, mechanical

strength, and formability of Na3PS4−xOx (NaPSO) glassy solid-state electrolytes (GSEs), offering

a promising approach for developing durable, energy-dense, and affordable ASSSBs. In the Na3PS4−xOx

GSEs, a maximum in the Na+ ion conductivity is observed at the x = 0.15 composition. The Na+ ion

conductivity decreases monotonically with further additions of oxygen. However, the limited

understanding of the underlying mechanisms of Na+ ion motion, diffusion, and conduction in these GSEs

hinders its broader application. Here, we employ machine learning force field (ML-FF) molecular

dynamics (MD) simulations to investigate sodium ion (Na+) diffusion in NaPSO GSEs. Contrary to prior

perspectives, our simulation results indicate that oxygen doping consistently reduces the free volume,

which would be expected to inhibit rather than increase the Na+ diffusion. Interestingly, we find

however, that oxygen doping also enhances the flexibility of the amorphous framework, which

paradoxically facilitates Na+ diffusion. This dual effect results in an initial rise followed by a fall in

diffusion coefficients which is consistent with the measured values of the Na+ ion conductivity. Our

findings provide atomic-level insights into the impact of oxygen doping on Na+ diffusion in NaPSO

glassy electrolytes, suggesting improved amorphous framework flexibility as a new strategy to enhance

conductivity in solid-state electrolytes.
Introduction

As the global population grows, the escalating demands for
sustainable and renewable energy sources in both industrial
and domestic sectors has intensied the focus on developing
innovative high-performance battery technologies.1 This evolu-
tion began with lead–acid batteries, advanced through nickel–
metal hydride variants, and has now culminated in the preva-
lent lithium-ion batteries (LIBs).2,3 These developments have
manifested notable enhancements in energy density, safety,
and longevity.4 Nevertheless, LIBs face challenges related to
resource scarcity, cost, environmental impact, and safety
concerns.5 In response, the scientic community has begun to
pivot towards an innovative paradigm: all solid state sodium
batteries (ASSSBs).6 ASSSBs, leveraging the relative abundance
and sustainable nature of sodium, offer a viable alternative with
a reduced environmental impact compared to LIBs, thereby
eering, Iowa State University, Ames, Iowa

; qan@iastate.edu

tion (ESI) available. See DOI:

33518–33525
emerging as a promising candidate for large-scale energy
storage applications.7

The structural integrity of ASSSBs hinges on three critical
components: the cathode, anode, and the solid-state electrolyte
(SSE).6 The electrodes serve as energy reservoirs, facilitating
energy storage and release during charge and discharge cycles.
The SEs play a paramount role in mitigating the risks such as
electrical current leakage and thermal runaway, inherent in
liquid electrolytes, thus enhancing both safety and battery
lifespan.8 This component is not only a conduit for sodium ion
transport but also a crucial element in preventing short circuits,
ensuring efficient battery operation under high voltage condi-
tions. An ideal SSE should exhibit excellent ionic conductivity,
robust chemical stability, and high mechanical strength,
a combination that researchers consistently strive for and
aspire to attain in the development of sodium-ion SSEs.9

Inorganic SSEs for ASSSBs are broadly categorized into
ceramic, glass-ceramic, and glass types. Ceramic SSEs, such as
b00-Al2O3 and NASICON-type oxides, exhibit high chemical
stability but require high sintering temperatures and are
susceptible to dendrite growth due to poor surface
properties.10–12 Glass-ceramic SSEs, like sulde-based Na3PS4,
mitigate dendrite growth with their soer surfaces but tend to
This journal is © The Royal Society of Chemistry 2024

http://crossmark.crossref.org/dialog/?doi=10.1039/d4ta05071a&domain=pdf&date_stamp=2024-12-06
http://orcid.org/0000-0002-5826-1612
http://orcid.org/0000-0002-5789-4629
http://orcid.org/0000-0002-6472-509X
http://orcid.org/0000-0003-4838-6232
https://doi.org/10.1039/d4ta05071a
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta05071a
https://pubs.rsc.org/en/journals/journal/TA
https://pubs.rsc.org/en/journals/journal/TA?issueid=TA012048


Fig. 1 DP-GEN workflow for the construction of reliable ML-FF.
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degrade into unstable phases upon contact with sodium metal
anode.13–16 In contrast, glassy SSEs (GSEs), particularly oxy-
sulde types like Na3PS4−xOx (NaPSO), demonstrate improved
chemical stability with sodium metal but this comes at the cost
of reduced sodium ion conductivity.17,18 Given the distinct
advantages of each type, a novel series of mixed oxysulde GSEs,
Na3PS4−xOx (where 0 < x # 0.60), have been developed.19 These
GSEs not only demonstrate a superior critical current density
compared to other sulde-based sodium-ion conductive SSEs
but also support high-performance room-temperature sodium-
sulfur batteries, offering a promising solution for enhancing
ASSSB technology.

Oxygen doped NaPSO GSEs have been identied to augment
performance through several mechanisms: enhancing the glass
network formation, bolstering mechanical properties,
strengthening interfacial stability, and improving ionic
conductivity.19 Notably, initial oxygen doping (x= 0.15) resulted
in a sixfold increase in sodium-ion conductivity. However,
further increase in oxygen content led to a rise in activation
energy and a corresponding decrease in conductivity. This
phenomenon suggests a complex relationship between the
structural modications induced by oxygen doping and the
sodium-ion conductivity, necessitating further exploration at
the atomic level. A comprehensive investigation into this
atomic-scale mechanism is imperative to fully understand this
signicant increase in Na+ ion conductivity and for the rene-
ment of current fabrication techniques. This could involve
exploring alternative doping elements to substitute oxygen and/
or experimenting with varied sintering processes. Such explo-
rations are crucial for enhancing the performance and effi-
ciency of sodium-ion SSEs.

Given the high computational demands of simulating
diffusion events and rates at large spatial and temporal scales,
especially at relatively low temperatures,20 we employ machine-
learning force eld (ML-FF) molecular dynamics (MD) simula-
tions to model the Na+ ion diffusion in amorphous NaPSO.
Recent advancements in generative articial intelligence and
machine-learning interatomic potentials have demonstrated
excellent capabilities in tackling complex tasks involved in
resolving structure–activity relationships, reecting the growing
demand and reliability of these methods in the materials
research community.21,22 Machine learning and articial intel-
ligence have become powerful tools in materials science,
offering new opportunities for efficiently exploring complex
material behaviors while maintaining DFT-level accuracy.20,23,24

Our ndings here demonstrate that oxygen doping induces
a monotonic contraction in the structure of the material, which
effectively reduces the free volume, thereby impeding the
diffusion of Na ions. Specically, this contraction leads to
a more constrained environment for sodium ion movement.
However, moderate oxygen doping enhances the exibility of
the amorphous framework. This increased exibility facilitates
the diffusion of Na ions, countering the effects of structural
contraction. The interplay of these two opposing effects—the
contraction of structure reducing free volume and the enhanced
exibility aiding ion diffusion—culminates in the observed
initial increase followed by a subsequent decrease in ionic
This journal is © The Royal Society of Chemistry 2024
conductivity in NaPSO GSEs. This study revises existing mech-
anisms by providing novel atomic-level insights into oxygen
doping in sodium-ion GSEs. These ndings are crucial for
designing advanced SSEs, enhancing battery performance and
safety.
Computational method
Development of the machine-learning force eld

To investigate the diffusion mechanisms in amorphous NaPSO
electrolyte, we have developed ML-FF techniques for Na–P–S–O
systems. As shown in Fig. 1, the main training dataset for the
ML-FF is generated through a concurrent learning scheme,
specically the DP Generator (DP-GEN).25 This scheme itera-
tively enhances the quality of the model. Each iteration
encompasses three sequential phases: exploration, labeling,
and training.

At the initial training step, all original crystal structures were
sourced from the Materials Project database, extracted as
conventional lattice structures.26 These include pure Na2S (fcc,
hcp, Pnma), NaS2, Na2S5, NaS (cubic, hexagonal), P2O5 (Fdd2,
Pnma, R3c, P1), P2S5, Na3P(SO)2, Na3PSO3, Na3PS3O, and
Na2P2S2O7. To address the non-physical overlap of pure
elements observed during long MD simulations, we subse-
quently added S (P212121, P2/c), O2, SO2, Na (bcc, fcc, hcp), from
the Materials Project database, which signicantly improved
the stability of the force eld. To procure a more diverse range
of amorphous structures, groups of Na2S, P2S5, and P2O5 were
randomly arranged into a periodic supercell box according to
their concentrations using the Packmol package.27 Subse-
quently, structural relaxation was conducted to remove any
unreasonable molecular contacts.

The initial data set used to kick-off the training and produce
initial ML-FF was generated via perturbing DFT-relaxed struc-
tures of the crystal phases Na3P(SO)2, Na3PSO3, Na3PS3O, and
Na2P2S2O7. The rst iteration of exploration follows a random
approach. For each crystal structure, a 2 × 2 × 2 supercell is
rst uniformly relaxed and compressed using scaling factors
a of 0.95, 1.0, and 1.05. Subsequently, both the atomic positions
and cell vectors are randomly perturbed. The magnitude of
these perturbations is set to 0.01 Å for the atomic coordinates
J. Mater. Chem. A, 2024, 12, 33518–33525 | 33519
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and 3% of the cell vector length for the simulation cell. A 10-step
ab initio molecular dynamics (AIMD) simulation is conducted
on 30 randomly perturbed structures for each crystal phase
using canonical ensemble (NVT) at T = 300 K using VASP so-
ware. Atom coordinates, forces, total energies, and virial tensors
of all these congurations were recorded for the training of the
initial ML-FF. Starting with an initial trained ML-FF, the
exploration phase employs NVT MD simulations using the
large-scale atomic/molecular massively parallel simulator
(LAMMPS) soware.28,29 These simulations are designed to
sample pertinent congurations of various deformation
processes. These processes include isotropic expansion and
compression, as well as uniaxial and shear deformations in six
distinct axial directions. The temperature range for these
process spans from 10 to 2000 K, incorporating up to 50%
strain, and is conducted over a period of 20 ps. In addition, the
relevant congurations of the heating and cooling process were
also collected between 10 and 2000 K using NVT Ensemble.
Furthermore, we extended our simulations to cover conditions
under extreme pressures, ranging from 0 to 50 000 bar, and
a temperature range of 10 to 500 K, using the isobaric-
isothermic (NPT) ensemble. This comprehensive process in
the training ensures the ML-FF is robust and versatile, capable
of accurately predicting material behavior under a wide spec-
trum of temperature and pressure conditions.

In this study, a comprehensive set of 95 DP-GEN iterations
were conducted, resulting in the generation of 15 902 congu-
rations. These congurations were derived from the trajectories
of ML-FF MD simulations.28,29 Selection for labeling was based
on the model uncertainty of each conguration, falling within
two predened trust levels, specically flo = 0.15 and fhi =

0.35 eV Å−1. This model uncertainty is quantied as the
maximum standard deviation of force predictions by an
ensemble of ML-FF. These models were trained using identical
datasets and hyper-parameters but varied in the random seed
initializing the neural network parameters. The convergence of
the ML-FF was established when the proportion of visited
congurations selected for labeling dropped below 1%. To meet
this criterion, the entire process still required human oversight,
with some exploration processes repeated until the threshold
was reached.

The labeling, i.e. the ab initio calculation of energy, force,
and virial, is performed with the Vienna Ab initio Simulation
Package (VASP).30 The Perdew–Burke–Ernzerhof (PBE) func-
tional is used to model the exchange–correlation interaction.31

Additionally, the van der Waals interactions are described by
the zero damping DFT-D3 method of Grimme.32 The kinetic
energy cut-off of the plane waves is set to 400 eV, and the
spacing of reciprocal space sampling is 0.5 Å−1. The self-
consistent eld (SCF) iteration stops when the difference in
total energy is less than 10−5 eV. Only the single-point SCF
calculations were conducted for each conguration selected
from DP-GEN. In addition to these parameters, a force criterion
of 10−2 eV Å−1 was also employed in all simulations to rene the
DFT-relaxed initial structures.

During the training phase, four distinct ML-FFs were devel-
oped using the DeePMD-kit soware package.29 These models
33520 | J. Mater. Chem. A, 2024, 12, 33518–33525
shared the same hyper-parameters, differing only in the
random seeds initializing their parameters. The embedding net
size was set to (25, 50, 100), and the tting net was congured to
(240, 240, 240). A cut-off radius of 6 Å was established, with
a smoothing parameter (rcut_smth) of 2 Å. In each training
step, a minibatch – a subset of the training dataset – was used to
evaluate the gradient of the loss function. This minibatch was
sufficiently large to ensure that all frames included no fewer
than 32 atoms. The hyper-parameters start_pref_e, start_pref_f,
start_pref_v, limit_pref_e, limit_pref_f, and limit_pref_v, gov-
erning the weights of energy, force, and virial losses in the total
loss function, were set to 0.02, 1000, 0.02, 1.0, 1.0, and 1.0,
respectively. The learning rate was initiated at 1.0 × 10−3,
decreasing exponentially to 3.51 × 10−8 over 5 × 105 training
steps during the DP-GEN iteration to enhance efficiency without
compromising accuracy.33 Ultimately, a rened deep potential
model was developed based on the nal training dataset. In this
phase, the training step was increased to 4 × 106, maintaining
other parameters consistent with the earlier training step. This
nal deep potential model was then adopted to depict the
atomic interactions within the Na–P–S–O systems in subse-
quent MD simulations.
MD simulations

All MD simulations were performed using the LAMMPS so-
ware, with the ML-FF deployed to describe the interatomic
interactions.28,29 The velocity Verlet algorithm is employed to
integrate the equations of motion with a timestep of 1.0 fs in all
MD simulations. To avoid surface effects, periodic boundary
conditions are implemented in all three directions. To ensure
accurate simulation of temperature and pressure, Nosé–Hoover
thermostat and barostat methods were employed to control the
temperature and temperature in MD simulations, with the
damping constants set to 0.1 ps and 1.0 ps, respectively. For the
purposes of visualization and analysis of the simulation
outcomes, the Open Visualization Tool (OVITO) was utilized.34

To closely mimic experimental processes and generate
analogous precursors (Na3PS4−xOx, with x values of 0.00, 0.15,
0.30, and 0.60), groups of Na2S, P2S5, and P2O5 were randomly
distributed in a periodic supercell box in proportion to their
concentrations using the Packmol package.27 All subsequent
simulations were conducted ve times for each composition,
using ve different initial structures of 1600 atoms derived from
randomly generated congurations to ensure statistical
reliability.

To achieve fully amorphized glassy structures, these initial
congurations underwent a series of temperature treatments.
Initially, they were rst heated from 300 K to 1400 K over 100 ps
under an NVT ensemble. They were then maintained at 1400 K
for 1 ns to ensure sufficient equilibrium. This was followed by
a cooling phase from 1400 K to 300 K over 500 ps, and subse-
quent relaxation at 300 K for 50 ps. Finally, to eliminate any
residual stress from quenching, the system was further equili-
brated at 300 K and 1 bar under an NPT ensemble for an
additional 200 ps. To simulate the less dense structural char-
acteristics of oxygen-free Na3PS4 with visible pores that is
This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Benchmark test of ML-FF against DFT: comparison of (a)
energies and (b–d) atomic forces for 1300 random glassy structures
from Na3PS4−xOx (0 # x < 4). Insets show histograms of error
distribution.
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observed experimentally,19 a spherical region with a diameter of
∼1.4 nm was manually removed from the center of the fully
relaxed, dense glass structure of Na3PS4 (Fig. S1a of ESI†). The
chemical stoichiometry of the resulting porous Na3PS4, referred
to as “P-Na3PS4”, was maintained by selectively removing atoms
near the pore. The P-Na3PS4 was further equilibrated at 300 K
and 1 bar under an NPT ensemble for 200 ps.

The density and the radial pair distribution (RDF) functions
of the glass were computed by averaging the MD trajectory over
100 ps, following the convergence of the system's potential
energy at 300 K and 1 bar. Subsequently, the bulk modulus was
computed by determining the slope of the stress–strain curve
under hydrostatic tension and compression, specically within
the range of ±1% strain, consistent with isostatic deformation.

The d.c. ionic conductivity of Na ions was calculated by the
Nernst–Einstein relation, given as follows:

sd:c: ¼ n0
e2

kBT
D

where sd.c. is the d.c. ionic conductivity, n0 is the number of
charge-carrier atoms per volume, e is the charge of an electron,
kB is the Boltzmann constant, T is the temperature, and D is the
diffusion coefficient. The diffusion coefficient is calculated
from the mean square displacement (MSD) of Na derived from
MD simulations:

D ¼ 1

6t

1

N

XN

i

½rið0Þ � riðtÞ�2

where t is time, N is the number of all Na atoms, and ri is the
position of ith Na atom at time 0 and time t.

Na-MSD computations were performed across a temperature
range from 333 to 423 K, at intervals of 30 K, and also at 473 K,
utilizing the NPT ensemble. The duration of simulations varied
depending on the temperature: 20 ns for temperatures above
390 K and extended to 50 ns for temperatures below 390 K, to
ensure adequate convergence of MSD calculations at lower
temperatures. It is important to note that for improved statis-
tical accuracy, the initial 50% and the nal 5% of data points
from the MSD(t) curves were excluded, as these segments typi-
cally exhibit poor statistics.
Results and discussion
Accuracy test of ML-FF

To assess the tting performance of the ML-FF calculations, we
compared its energy and force predictions against Density
Functional Theory (DFT) calculations for 1300 randomly
selected glassy structures from our training set. The focus of
this evaluation was on the Na3PS4−xOx (0 # x < 4) systems,
which are central to this study. As illustrated in Fig. 2, the ML-
FF predictions exhibit a close correspondence with the DFT
values. Quantitatively, the mean absolute error (MAE) for
energies and forces in these systems are 7.47 meV per atom and
0.14 eV per Å per atom, respectively, with root-mean-square
errors (RMSE) of 9.74 meV per atom and 0.21 eV per Å per
atom. These accuracy levels are lower compared to those
This journal is © The Royal Society of Chemistry 2024
attained by previously developed ML-FFs for crystalline struc-
tures.20 However, the precision is comparable to that of ML-FFs
previously utilized in studies on methane hydrate decomposi-
tion and other glassy electrolytes.35,36 This slight decrease in
accuracy can be attributed to the complex nature of the larger
datasets characteristic of amorphous structures, as opposed to
more uniform crystalline systems.20,23,24
Structural and mechanical properties of amorphous
Na3PS4−xOx

Following the evaluation of the ML-FF, we applied it to MD
simulations to obtain amorphous Na3PS4−xOx (x = 0, 0.15, 0.30,
0.60) structures by quenching from 1400 K to ambient
temperature and pressure. The calculated densities of glassy
Na3PS4 at 2.0 g cm−3 are identical to the powder density of
2.0 g cm−3 obtained from experimental measurements at room
temperature.37 This close match in densities provides initial
validation of the structural accuracy in the ML-FF MD.

As illustrated in Fig. 3a, the characteristic feature of the fully
amorphized structures is a framework composed of PS4

3−

clusters interspersed with Na+ ions and some free S= ions. The
oxygen doping, predominantly substituting some S atoms of PS4
clusters to form PS4−xOx (0 < x # 4), appears to compact the
structure due to oxygen's higher electronegativity and smaller
ionic radii. This is evident from the shorter distance shi in the
non-bonding peaks in the RDF shown in Fig. 3b. As the oxygen
content increases, the structure becomes denser, leading to
a decrease in the volume (as shown in Fig. S2†), consistent with
experimental observations.19 Furthermore, the RDF of Na3PS4
closely aligns with previously reported results,38 albeit with
slight differences in relative intensity attributable to enhanced
amorphization in our larger MD simulation size. Notably, the
distinct peak near 6 Å, indicative of the distance between
PS4−xOx units, is quite intense. This suggests a greater presence
J. Mater. Chem. A, 2024, 12, 33518–33525 | 33521
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Fig. 3 Structural information and bulk modulus of Na3PS4−xOx (x= 0, 0.15, 0.30, and 0.60) at ambient temperature and pressure. (a) Amorphous
structures of Na3PS4−xOx with 1600 atoms. Oxygen doping primarily replaces some S atoms, forming PS4−xOx clusters that constitute the
amorphous framework, interspersed with Na ions and some free S atoms. (b) Radial distribution functions (RDF) of Na–Na, P–P, and S–S pairs in
glassy Na3PS4−xOx, showing peak shifts to the left due to volumetric contraction from oxygen doping. (c) Bulk modulus calculated from MD and
experimental data,19 with error bars indicating standard deviations (n = 5).

Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
N

hl
an

gu
la

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
02

6-
02

-0
1 

19
:3

4:
52

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
of independent PS4−xOx units, conrming a higher degree of
amorphization in this study.

We also calculated the bulk modulus of these structures,
performing ve calculations for each composition to ensure
reliability. As depicted in Fig. 3c, the simulated bulk modulus
values align well with experimental results,19 increasing with
oxygen content, corresponding with the increasingly compact
structural features shown by the RDF. However, the simulated
values are overall slightly higher due to the more idealized
structures used in our simulations (free of impurities, voids,
and other defects). Notably, the difference between the simu-
lated and experimental results decreases as the oxygen
concentration increases, suggesting that the experimental
samples are increasingly approaching structures with theoret-
ical density, consistent with the reported outstanding form-
ability of NPSO.19 The larger discrepancy for x = 0 can be
attributed to visible porosity and defects in the experimental
samples.19,39 Simulations of porous Na3PS4 (x = 0) indeed
showed a signicant reduction in bulk modulus, conrming
this observation. These structural features and mechanical
properties, accurately replicated by our trained ML-FF, validate
its high precision, and make it suitable for investigating the
underlying mechanisms of variations in Na ion diffusion
coefficients.
Fig. 4 MSD and ionic conductivity of Na3PS4−xOx (x = 0, 0.15, 0.30,
and 0.60) at various temperatures. (a–c) MSD plots of Na-ion diffusion
in glassy Na3PS4−xOx at 393 K (a), 423 K (b), and 473 K (c), using the
stable diffusion phase between 10–19 ns for calculating reliable ionic
conductivity. (d) Ionic conductivity of Na3PS4−xOx at different
temperatures compared with experimental results,19 showing a similar
trend of initial increase followed by a decrease.
Impact of oxygen doping on Na ionic conductivities

Considering the time scale limitations of MD simulations and
the temperature range (298 K to 363 K) over which experimental
ionic conductivities were measured,19 we simulated diffusion
behaviors at temperatures of 333 K, 363 K, 393 K, 423 K, and 473
K. However, due to insufficient convergence of the mean square
displacement (MSD) results for Na ions at 333 K and 363 K over
33522 | J. Mater. Chem. A, 2024, 12, 33518–33525
extended 50 ns simulations (as detailed in Fig. S3†), reliable
data could not be obtained at these temperatures. Therefore,
Fig. 4 presents the comparison of simulated results at 393 K,
423 K, and 473 K with experimental results at 363 K. Notably,
higher temperatures not only increase the MSD slope but also
improve the smoothness of the MSD curve, suggesting that Na
ions diffuse faster and more uniformly at elevated tempera-
tures. Furthermore, the MSD results indicate the importance of
simulation duration, showing stabilization only aer approxi-
mately 10 ns. This suggests that MD simulationsmay offer more
This journal is © The Royal Society of Chemistry 2024
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reliable insights into diffusion than AIMDmethods, due to their
ability to encompass larger temporal and spatial scales.20 The
calculated ionic conductivities of Na ions from the MSD data,
compared with experimental ndings, are shown in Fig. 4d as
a function of the oxygen doping. The simulated conductivities
exhibit an initial increase followed by a decrease, similar to the
experimental results, demonstrating the efficacy of the ML-FF
technique. Notably, the peak ionic conductivity at 393 K
occurs at x = 0.30, whereas at 423 K and 473 K, it aligns with
experimental observations at x = 0.15. This suggests that the
optimum ionic conductivity might be achieved at around x =

0.20. Furthermore, the relatively at variation at 473 K agrees
with the experimental trend of converging conductivities across
different compositions at higher temperatures.19

Simulations of porous Na3PS4 suggest that the substantial
increase in conductivity from x = 0 to x = 0.15, as observed
experimentally, is largely attributed to enhanced densication,
in addition to the contributions from oxygen doping. This
densication effectively reduces defects such as pores and
interfaces, which typically impede diffusion, thus promoting Na
ion diffusion. As shown in Fig. S1b,† there are no diffusion
trajectories passing through the central void, demonstrating its
signicant obstructive effect. This elucidates the steep increase
in conductivity observed at the onset of minimal oxygen doping
in previous experiments.19,39 In summary, excluding the effects
of these defects, the observed rise and subsequent fall in Na ion
conductivity with increasing oxygen content closely mirrors
experimental outcomes. The ML-FF provides us with an
opportunity to investigate the atomic mechanisms underlying
this phenomenon.
Fig. 5 Position distribution and MSDs of P atoms in PS4−xOx clusters
distribution in Na3PS4−xOx at 423 K, with local line coloring indicating
Na3PS3.85O0.15 exhibit greater mobility, suggesting a more flexible amorp
over the same timeframe.

This journal is © The Royal Society of Chemistry 2024
Atomic mechanisms underlying conductivity variations with
doping oxygen

Our simulations reveal that the diffusion pathways for Na ions
primarily involve shuttling between PS4−xOx clusters (as shown
in Fig. S4†). Therefore, the size of the “doorways” formed
between these clusters is a critical factor inuencing the effi-
ciency of Na ion diffusion. As indicated by computed RDF
(Fig. 3b) and volume (or density) results (Fig. S2†), increasing
oxygen content leads to a reduction in the structure's overall
volume, consequently diminishing the size of these “doorways”.
Intuitively, this reduction should uniformly hinder diffusion
and thereby lower the Na+ ion conductivity. However, the
pattern of the conductivity observed in our study and previous
experimental research,19 marked by an initial increase in the
ionic conductivity followed by a decrease in the ionic conduc-
tivity, strongly suggests the presence of additional factors that
enhance sodium ion diffusion in these glasses. These factors
seemingly counteract the limiting effect of the decreasing size
of the “doorways”, pointing to a more complex underlying
mechanism in Na+ ion transport.

This suggestion prompted a closer examination of the
behavior of PS4−xOx clusters during diffusion, especially since
oxygen doping chiey modies the composition of PS4 clusters,
altering the amorphous framework. The position distribution of
phosphorus (P) atoms within the PS4−xOx clusters can serve as
a proxy for the behavior of the entire framework, given that P
atoms are central to these clusters. For instance, Fig. 5a illus-
trates the position distribution of P atoms in PS4−xOx clusters
over a 10 ns to 19 ns timeframe at 423 K, with all Na and S atoms
removed for clarity. The visual analysis of this graph distinctly
shows an initial increase followed by a decrease in the mobility
during 10 ns to 19 ns at different temperatures. (a) P atom position
the instantaneous displacement magnitude (Å). Notably, P atoms in
hous framework in the cluster. (b) MSDs of P atoms in PS4−xOx clusters

J. Mater. Chem. A, 2024, 12, 33518–33525 | 33523
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range of P atoms, a trend that correlates with the increasing
oxygen content. Notably, this pattern aligns perfectly with the
changes in Na ion conductivity calculated previously, as depic-
ted in Fig. 4d.

The mobility of the P atoms is indicative of the amorphous
framework's ability to accommodate structural changes. Unlike
previous studies that employed a xed “doorway” model to
analyze ion diffusion mechanisms,19,39–41 our simulation results
here, rather, suggest that the amorphous framework actually
possesses a certain degree of mobility during ion diffusion,
leading to the development of a exible “doorway” controlled
ion diffusion model. Our use of ML-FF MD simulations allows
for in situ dynamic studies of diffusion behaviors in SSEs and
the discovery of more accurate atomic mechanisms. Oxygen
doping, while compacting the structure (a conclusion corrobo-
rated by our MD results and previous experimental research),
results in smaller “doorway” sizes. Nonetheless, the introduc-
tion of a few oxygen atoms disrupts the uniformity among
clusters, enhancing their mobility. This is evident from Fig. 5,
which shows the random distribution of oxygen atoms, indi-
cating that these atoms do not directly affect the mobility of
individual clusters. This dynamic adaptability of the “doorway”
during diffusion becomes apparent (Fig. 5a).

As oxygen doping continues and the volume further
decreases, this exibility is also constrained. Fig. 5b demon-
strates the MSDs of P atoms in PS4−xOx clusters during the same
10 ns to 19 ns period at different temperatures. Structures that
exhibit larger P atom MSDs correspond to higher ionic
conductivities, aligning with our previous ndings (for
instance, results at 393 K and 423 K as seen in Fig. 4c). When
MSDs of P atom are comparable, the ionic conductivity
consistently decreases with increasing oxygen content, inu-
enced by the reduced volume, as observed at 473 K (Fig. 4c). The
drastic increases in the MSD of P atoms observed under certain
conditions (e.g., 13–14 ns at 393 K for x = 0.3, and 10–12 ns at
423 K for x = 0.15) suggest a signicant thermal activation
effect, where sufficient energy is needed to overcome the energy
barrier for cluster movement. This explains the experimental
trend of converging conductivities across different composi-
tions at higher temperatures. The underlying mechanism
involves higher temperatures fully unleashing the mobility of
the amorphous framework in various compositions, to the
extent that the limitations imposed by differing “doorway” sizes
in the structures can be almost disregarded, leading to
converged ionic conductivities.

Conclusions

In summary, this study has investigated the diffusion mecha-
nisms of Na ions in NaPSO glassy electrolytes through MD
simulations employing a newly developed ML-FF technique.
This work challenges the previous experimental understanding,
which suggests that oxygen doping non-monotonically affects
Na ion conductivity by rst increasing and then decreasing the
free volume based on the xed “doorway” model. Our simula-
tions reveal that the amorphous framework possesses inherent
mobility during ion diffusion, leading to the development of
33524 | J. Mater. Chem. A, 2024, 12, 33518–33525
a exible “doorway” model for ion diffusion. Oxygen doping
disrupts the balance in the amorphous framework, enhancing
its exibility, which in turn facilitates Na ion diffusion. Coupled
with the inhibitory effects from the monotonic decrease in free
volume with increasing oxygen content, the diffusion coefficient
exhibits an initial increase followed by a subsequent decrease.
Overall, our work provides atomic-level insights into the impact
of oxygen doping on Na ion diffusion in NaPSO glassy electro-
lytes, suggesting that enhancing the exibility of the amor-
phous framework represents a novel approach for improving
the conductivity of SSEs.

Data availability

The data supporting this article have been included as part of
the ESI.†

Author contributions

Conceptualisation & project administration: Q. A., W. M.
investigation and methodology: K. L., R. Z. supervision: Q. A.
writing – original dra: K. L. writing – review & editing: all
authors. Resources and funding acquisition: Q. A., W. M. These
author contributions are dened according to the contributor
roles taxonomy (CRediT).

Conflicts of interest

There are no conicts to declare.

Acknowledgements

This work was supported by the start-up grant from Iowa State
University, and the simulations were performed at ISU High
Performance Computing clusters. Work contributed by S. W. M.
was supported in part by the NSF through grant DMR-1936913,
by the DOE through contracts DE-EE0008852 and Battelle
Memorial Institute/PNNL subcontract number 679315, and by
the Iowa Department of Economic Development grant number
307352.

References

1 B. Dunn, H. Kamath and J.-M. Tarascon, Science, 2011, 334,
928–935.

2 P. P. Lopes and V. R. Stamenkovic, Science, 2020, 369, 923–
924.

3 G. E. Blomgren, J. Electrochem. Soc., 2017, 164, A5019–A5025.
4 M. Winter, B. Barnett and K. Xu, Chem. Rev., 2018, 118,
11433–11456.

5 N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Chem.
Rev., 2014, 114, 11636–11682.

6 J. W. Choi and D. Aurbach, Nat. Rev. Mater., 2016, 1, 16013.
7 A. Manthiram, Nat. Commun., 2020, 11, 1550.
8 E. A. Wu, S. Banerjee, H. Tang, P. M. Richardson, J.-M. Doux,
J. Qi, Z. Zhu, A. Grenier, Y. Li, E. Zhao, G. Deysher, E. Sebti,
H. Nguyen, R. Stephens, G. Verbist, K. W. Chapman,
This journal is © The Royal Society of Chemistry 2024

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta05071a


Paper Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
N

hl
an

gu
la

 2
02

4.
 D

ow
nl

oa
de

d 
on

 2
02

6-
02

-0
1 

19
:3

4:
52

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
R. J. Clément, A. Banerjee, Y. S. Meng and S. P. Ong, Nat.
Commun., 2021, 12, 1256.

9 X. Chi, Y. Liang, F. Hao, Y. Zhang, J. Whiteley, H. Dong,
P. Hu, S. Lee and Y. Yao, Angew. Chem., Int. Ed., 2018, 57,
2630–2634.

10 L. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander,
T. Frömling, H. L. Thaman, S. Berendts, R. Uecker,
W. C. Carter and Y. Chiang, Adv. Energy Mater., 2017, 7,
1701003.

11 W. Zhou, Y. Li, S. Xin and J. B. Goodenough, ACS Cent. Sci.,
2017, 3, 52–57.

12 S. Kim, S. Lee, K. Jung, Y. Park, N. Cho, J. Choi and H. Kim,
Bull. Korean Chem. Soc., 2015, 36, 2869–2874.

13 H. Tang, Z. Deng, Z. Lin, Z. Wang, I.-H. Chu, C. Chen, Z. Zhu,
C. Zheng and S. P. Ong, Chem. Mater., 2018, 30, 163–173.

14 E. A. Wu, C. S. Kompella, Z. Zhu, J. Z. Lee, S. C. Lee, I.-H. Chu,
H. Nguyen, S. P. Ong, A. Banerjee and Y. S. Meng, ACS Appl.
Mater. Interfaces, 2018, 10, 10076–10086.

15 S. Wenzel, T. Leichtweiss, D. A. Weber, J. Sann, W. G. Zeier
and J. Janek, ACS Appl. Mater. Interfaces, 2016, 8, 28216–
28224.

16 Y. Tian, T. Shi, W. D. Richards, J. Li, J. C. Kim, S.-H. Bo and
G. Ceder, Energy Environ. Sci., 2017, 10, 1150–1166.

17 S. Kmiec, A. Joyce and S. W.Martin, J. Non-Cryst. Solids, 2018,
498, 177–189.

18 M. Lazar, S. Kmiec, A. Joyce and S. W. Martin, ACS Appl.
Energy Mater., 2020, 3, 11559–11569.

19 X. Chi, Y. Zhang, F. Hao, S. Kmiec, H. Dong, R. Xu, K. Zhao,
Q. Ai, T. Terlier, L. Wang, L. Zhao, L. Guo, J. Lou, H. L. Xin,
S. W. Martin and Y. Yao, Nat. Commun., 2022, 13, 2854.

20 J. Huang, L. Zhang, H. Wang, J. Zhao, J. Cheng and W. E, J.
Chem. Phys., 2021, 154, 094703.

21 Y. Liu, Z. Yang, Z. Yu, Z. Liu, D. Liu, H. Lin, M. Li, S. Ma,
M. Avdeev and S. Shi, J. Mater., 2023, 9, 798–816.

22 S. Takamoto, D. Okanohara, Q.-J. Li and J. Li, J. Mater., 2023,
9, 447–454.

23 T. Hu, J. Tian, F. Dai, X. Wang, R. Wen and S. Xu, J. Am.
Chem. Soc., 2023, 145, 1327–1333.

24 T. Wen, L. Zhang, H. Wang, W. E and D. J. Srolovitz, Mater.
Futures, 2022, 1, 022601.
This journal is © The Royal Society of Chemistry 2024
25 Y. Zhang, H. Wang, W. Chen, J. Zeng, L. Zhang, H. Wang and
W. E, Comput. Phys. Commun., 2020, 253, 107206.

26 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. A. Persson, APL Mater., 2013, 1, 011002.

27 L. Mart́ınez, R. Andrade, E. G. Birgin and J. M. Mart́ınez, J.
Comput. Chem., 2009, 30, 2157–2164.

28 A. P. Thompson, H. M. Aktulga, R. Berger,
D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in ’t
Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott and S. J. Plimpton,
Comput. Phys. Commun., 2022, 271, 108171.

29 H.Wang, L. Zhang, J. Han andW. E, Comput. Phys. Commun.,
2018, 228, 178–184.

30 G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter
Mater. Phys., 1996, 54, 11169–11186.

31 J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov,
G. E. Scuseria, L. A. Constantin, X. Zhou and K. Burke,
Phys. Rev. Lett., 2008, 100, 136406.

32 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys.,
2010, 132, 154104.

33 X. Wang, Y. Wang, L. Zhang, F. Dai and H. Wang, Nucl.
Fusion, 2022, 62, 1–11.

34 A. Stukowski, Modell. Simul. Mater. Sci. Eng., 2010, 18,
015012.

35 K. Luo, Y. Shen, J. Li and Q. An, J. Phys. Chem. C, 2023, 127,
7071–7077.

36 R. Zhou, K. Luo, S. W. Martin and Q. An, ACS Appl. Mater.
Interfaces, 2024, 16, 18874–18887.

37 M. Nose, A. Kato, A. Sakuda, A. Hayashi andM. Tatsumisago,
J. Mater. Chem. A, 2015, 3, 22061–22065.

38 A. Dive, Y. Zhang, Y. Yao, S. W. Martin and S. Banerjee, Solid
State Ionics, 2019, 338, 177–184.

39 Y. Kim, J. Saienga and S. W. Martin, J. Phys. Chem. B, 2006,
110, 16318–16325.

40 A. Dive, C. Benmore, M. Wilding, S. W. Martin, S. Beckman
and S. Banerjee, J. Phys. Chem. B, 2018, 122, 7597–7608.

41 S. Kmiec, M. Olson, M. Kenney and S. W. Martin, Chem.
Mater., 2022, 34, 9479–9491.
J. Mater. Chem. A, 2024, 12, 33518–33525 | 33525

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta05071a

	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a

	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a

	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a
	Flexible doorway controlled Natnqh_x002B ion diffusion in NaPSO glassy electrolytes from machine-learning force field simulationsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ta05071a




