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e evolution of double perovskite
band structure upon dimensional reduction†

Bridget A. Connor, a Alexander C. Su, a Adam H. Slavney, a Linn Leppert *b

and Hemamala I. Karunadasa *ac

Recent investigations into the effects of dimensional reduction on halide double perovskites have revealed

an intriguing change in band structure when the three-dimensional (3D) perovskite is reduced to a two-

dimensional (2D) perovskite with inorganic sheets of monolayer thickness (n = 1). The indirect bandgap

of 3D Cs2AgBiBr6 becomes direct in the n = 1 perovskite whereas the direct bandgap of 3D Cs2AgTlBr6
becomes indirect at the n = 1 limit. Here, we apply a linear combination of atomic orbitals approach to

uncover the orbital basis for this bandgap symmetry transition with dimensional reduction. We adapt our

previously established method for predicting band structures of 3D double perovskites for application to

their 2D congeners, emphasizing new considerations required for the 2D lattice. In particular, we

consider the inequivalence of the terminal and bridging halides and the consequences of applying

translational symmetry only along two dimensions. The valence and conduction bands of the layered

perovskites can be derived from symmetry adapted linear combinations of halide p orbitals propagated

across the 2D lattice. The dispersion of each band is then determined by the bonding and antibonding

interactions of the metal and halide orbitals, thus affording predictions of the essential features of the

band structure. We demonstrate this analysis for 2D Ag–Bi and Ag–Tl perovskites with sheets of mono-

and bilayer thickness, establishing a detailed understanding of their band structures, which enables us to

identify the key factors that drive the bandgap symmetry transitions observed at the n = 1 limit.

Importantly, these insights also allow us to make the general prediction that direct / indirect or indirect

/ direct bandgap transitions in the monolayer limit are most likely in double perovskite compositions

that involve participation of metal d orbitals at the band edges or that have no metal-orbital

contributions to the valence band, laying the groundwork for the targeted realization of this phenomenon.
1. Introduction

Dimensional reduction of a three-dimensional (3D) structure to
produce lower-dimensional derivatives can generate substantial
changes in optoelectronic properties. For example, mechanical
exfoliation of transition metal dichalcogenides, such as MoS2,
converts the indirect bandgap of the 3D lattice to a direct
bandgap in the two-dimensional (2D) monolayer ake,1,2

generating unique properties that have triggered numerous
fundamental studies and resulted in various applications.3–5

Dimensional reduction of halide perovskites has also been
widely explored. Here, the 3D framework of corner sharing
rsity, Stanford, CA 94305, USA. E-mail:
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gy Sciences, SLAC National Accelerator
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871
[BX6]
n− octahedra (B = metal cation, X = halide, Fig. 1A) can

easily be converted to lower-dimensional derivatives by replac-
ing the monovalent A-site cations that occupy the small cavities
between octahedra with larger organic cations. These large A-
site cations partition the perovskite lattice into slabs of
varying thickness where the n value of the 2D perovskite counts
the number of layers of metal-halide octahedra making up the
slabs (Fig. 1B and C).6,7 Dimensional reduction of the AIPbIIX3

perovskites has long been studied and affords substantial
changes in optoelectronic properties, leading to applications for
these 2D materials in light emission8,9 and photovoltaic tech-
nologies.10 More recently, interest has turned to dimensional
reduction of halide double perovskites,11–21 structures that
incorporate an ordered arrangement of two distinct cations at
the B site, giving the general formula A2

IBB′X6.
One of the most intriguing ndings to emerge from work on

double perovskites has been the observation of substantial
changes in electronic structure upon dimensional reduction. In
contrast to 2D single perovskites, which show band structures
analogous to their 3D analogues (albeit with the expected
reduction in band dispersion),11 dimensional reduction
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Single-crystal X-ray diffraction structures of the 3D double
perovskites Cs2AgBiBr6 (ref. 22) (A) and Cs2AgTlBr6 (ref. 23) (D), their n
= 2 analogues, (BA)2CsAgBiBr7 (ref. 13) (B) and (PEA)2CsAgTlBr7 (ref. 15)
(E), and their n = 1 analogues, (BA)4AgBiBr8 (ref. 13) (C) and (3-
BPA)4AgTlBr8 (ref. 15) (F). (BA = butylammonium, PEA = phenethy-
lammonium, 3-BPA = 3-bromopropylammonium). Insets indicate the
direct/indirect nature of the bandgap of each perovskite. Orange,
black, white, teal, brown, blue, and gray spheres represent Bi, Tl, Ag, Cs,
Br, N, and C atoms, respectively. H and disordered atoms omitted for
clarity.
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produces a dramatic shi in bandgap symmetry when the 3D
double perovskites Cs2AgBiBr6 (ref. 22) and Cs2AgTlBr6 (ref. 23)
are reduced to monolayer thickness in the n = 1 perovskites.13,15

We refer to the two k points that dene the valence band
maximum (VBM) and conduction band minimum (CBM) for
a given electronic structure as the bandgap symmetry; a change
in the k points of at least one of these band extrema affords
a bandgap symmetry transition.

The indirect bandgap of Cs2AgBiBr6 (Fig. 1A) has been shown
through experiment and theory, and DFT calculations reveal
that an analogous indirect gap is maintained in all structures
with n $ 2. However, the n = 1 Ag–Bi perovskite (Fig. 1C) is
calculated to have a direct bandgap. Although electronically
distinct from Cs2AgBiBr6, we see a similar bandgap symmetry
© 2023 The Author(s). Published by the Royal Society of Chemistry
transition with dimensional reduction of Cs2AgTlBr6 (Fig. 1D).
Here, a direct gap is seen for all structures with n $ 2, yet an
indirect gap is calculated for the n = 1 Ag–Tl structure (Fig. 1F).
Notably, the Ag–In perovskites behave similarly to the isoelec-
tronic Ag–Tl perovskites, with a direct gap calculated for the 3D
lattice and an indirect gap calculated for the n = 1 lattice.15

Layered perovskites typically show distortions not seen in
the cubic 3D materials. Calculations on undistorted model Ag–
Bi and Ag–Tl systems, obtained by excising slices from the cubic
3D lattice, demonstrate that the changes in band structure are
driven by dimensional reduction, rather than by the structural
distortions of the layered perovskite lattice.13,15 However, an
understanding of the underlying orbital basis for the bandgap
symmetry transitions with dimensional reduction is still lack-
ing. Such insight is critical for assessing the generality of this
phenomenon across the rapidly expanding array of double
perovskite compositions and for predicting which compositions
are likely to feature this effect.

Here, we adapt the linear combination of atomic orbitals
(LCAO) approach that we previously developed for 3D double
perovskites24 to the 2D n = 1 and 2 derivatives. We describe
several important modications to this analysis that are
required for the 2D case and then demonstrate our approach by
mapping out the band structures of the undistorted n = 1 and 2
Ag–Bi and Ag–Tl structures, nding good agreement between
our predictions and DFT calculations. This work establishes an
understanding of the orbital basis of the band structures of the
2D Ag–Bi and Ag–Tl perovskites. We use this understanding to
identify two factors that drive the bandgap symmetry transition
at the n = 1 limit: (i) the 2D translational symmetry of the
layered structures and (ii) the stronger interaction of metal
orbitals with terminal halides than with bridging halides.
Importantly, our analysis reveals that dimensional reduction
will not change the bandgap symmetry for all double perovskite
compositions—only for those where metal d orbitals contribute
to the band edges or those with nometal orbital character in the
valence band.
2. Results

We begin with a brief summary of our previous work24 where we
applied an LCAO approach to derive the essential features of 3D
double perovskite band structure as these concepts provide
a helpful roadmap for this work. For a detailed introduction to
the LCAO method applied to solids, the reader is referred to the
seminal text by Hoffmann.25
2.1 Key concepts from the LCAO analysis of 3D double
perovskites

In our analysis of the 3D lattices, we rst generated symmetry
adapted linear combinations (SALCs) of the six s-bonding
halide p orbitals surrounding the B site of the double perovskite
lattice based on the Oh point symmetry of their arrangement
(Fig. 2A). Positioning a given SALC about the B site, we then
carried out symmetric or antisymmetric translations of this
SALC to adjacent B sites according to the translational
Chem. Sci., 2023, 14, 11858–11871 | 11859
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Fig. 2 Outline of the LCAO approach used in this work. A halide SALC (A) is propagated across the lattice generating a series of halide Bloch
waves of varying energies (B). Blue spheres represent the unchanging halide orbital environment (halide SALC) at the B site whereas green,
yellow, and red spheres represent the different halide orbital environments produced at the B′ site. The energetic ranking of these Bloch waves,
including their interactions with B′-site metal orbitals, determines the dispersion of the band derived (C). The metal orbital + starting SALC
combination present throughout the band is designated as the root MO of the band (C, inset). One of the Eg halide SALCs for the 3D lattice24 is
shown in (A). Brown and gray circles represent halide and metal atoms, respectively. Yellow and white lobes represent the phases of the s-
bonding halide p orbitals and are scaled to give an approximate sense of relative electron density.

Fig. 3 The six s-bonding halide SALCs for the n = 1 and 2 perovskites
with their symmetry labels shown in red and blue, respectively. Brown
spheres represent halide atoms. The yellow and white p orbital lobes
represent positive and negative phases, respectively and are scaled to
give an approximate sense of relative electron density. The two
degenerate Eu/E orbitals are drawn as linear combinations of the
SALCs with px and py symmetry (see ESI† for details).
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symmetry rules of the high-symmetry k points of the double
perovskite lattice, generating a set of 3D halide Bloch waves.
Each Bloch wave preserves the symmetry of the starting SALC at
the B site, but the different translational symmetry rules of each
k point produce differing symmetries and thus different halide
orbital environments at the adjacent B′ site (Fig. 2B). Because
the SALC at the B site is unchanging, the bonding/antibonding
interactions at the B′ site determine the relative energies of this
set of Bloch waves. Thus, the interactions at the B′ site map out
the dispersion of the band derived from the starting SALC
placed at the B site (Fig. 2C).

In the following, we adapt this analysis to n= 1 and 2 double
perovskites, placing particular emphasis on aspects that must
be altered or are entirely new for the 2D lattices. Since we
previously determined that structural distortions of the perov-
skite lattice are not the driving force behind the change in band
structure observed in the Ag–Bi and Ag–Tl perovskites,13,15 we
perform our analysis on undistorted n = 1 and 2 double
perovskites assuming bond lengths and angles equal to those
found in the cubic parent 3D double perovskite (Fig. 1A and D).
Nevertheless, the band structures derived for these model
systems can be used as starting points for forecasting how
distortions observed in experimental structures (Fig. 1B, C, E
and F) alter band dispersion, as we have demonstrated
previously.13

Since at least one of the frontier orbitals of the metal
cations of both the Ag–Bi and Ag–Tl perovskites are capable of
forming strong s interactions with the surrounding halide p
orbitals, the most important features of the conduction and
valence bands can be derived by considering only the s-
bonding states. Nevertheless, the methodology presented for
the s-bonding states can be extended to p-bonding states to
accommodate cases where p-bonding dyz/dxz/dxy metal
orbitals contribute to the band edges. This analysis is provided
in ESI Section S6.†
11860 | Chem. Sci., 2023, 14, 11858–11871
2.2 LCAO analysis for undistorted n = 1 perovskites

2.2.1 SALC derivation. As for the 3D case, we begin by
generating SALCs of the six s-bonding halide p orbitals
surrounding the B site of an undistorted n = 1 double perov-
skite (A4BB

′X8). However, unlike in the cubic 3D perovskites
where the six equivalent halide p orbitals generate Oh point
symmetry,24 here, the inequivalence of the two axial (terminal)
and four equatorial (bridging) p orbitals gives this conguration
D4h point symmetry. Using group theory, we generate six SALCs
with symmetry labels A1g

(s), A1g
(d), Eu

(1), Eu
(2), B1g, and A2u, where

the “s” and “d” superscripts indicate the A1g SALCs with the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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appropriate symmetry to interact with s and dz2 B-site metal
orbitals, respectively. These SALCs are pictured in Fig. 3 (see ESI
Section S3.1† for full derivation).

2.2.2 Generating halide Bloch waves. The undistorted n= 1
perovskite has a primitive tetragonal lattice, where two
orthogonal lattice vectors (a1 and a2) of equal length (a) dene
translations in the plane of the perovskite sheet, and a third
longer vector (c) describes translations to adjacent layers
(Fig. 4A). In most layered perovskites, neighboring sheets are
separated by large distances and optical26,27 and theoretical
investigations28,29 have clearly established that these materials
have a 2D electronic structure. Therefore, we only consider
translations along the two in-plane vectors in our analysis.

Placing a halide SALC at the B site, we can translate it along
a1 and a2 to adjacent B sites, thus propagating our starting SALC
across the perovskite lattice to generate a halide Bloch wave. We
perform these translations either symmetrically (in-phase) or
antisymmetrically (out-of-phase) according to the coordinates
of the high-symmetry k points of the tetragonal lattice.
Bonding/antibonding interactions are maximized at these high-
Fig. 4 (A) The tetragonal unit cell of an undistorted n= 1 halide double
perovskite. Orange, white, brown, and teal spheres represent the B-
and B′-site cations, halides, and A-site cations, respectively. (B) The
translational symmetry of the high-symmetry k points of a primitive
tetragonal lattice. The two different phases of the unit cells are rep-
resented in blue and orange. Green and red arrows represent in-phase
and out-of-phase translations, respectively, of the starting SALC along
the corresponding lattice vector.

Fig. 5 Example of the procedure for propagating a halide SALC across
begin with an A1g

(d) SALC at the B site (highlighted in pink) and translate
unit-cell vectors (a1 and a2) according to the coordinates of theM point g
Eg point symmetry). The relative size of p orbitals is kept uniform for sim
respectively. Brown spheres represent halide atoms.

© 2023 The Author(s). Published by the Royal Society of Chemistry
symmetry points, leading to the formation of band extrema.
Here, we consider the k points G = (0, 0, 0), M = (p/a, p/a, 0),
and X = (0, p/a, 0). A coordinate of 0 calls for a symmetric
translation of our starting SALC along the corresponding lattice
vector whereas a coordinate of p/a calls for an antisymmetric
translation (Fig. 4B). Fig. 5 shows a top-down view of the n = 1
perovskite lattice, illustrating the procedure for generating
a Bloch wave from a starting SALC of A1g

(d) symmetry at the M
point. Repeating this procedure for each starting SALC in Fig. 3
at the three high-symmetry k points generates 18 halide Bloch
waves (Fig. S25–S42†) which are summarized in Fig. 6 by
showing the halide orbitals around adjacent B and B′ sites. Note
that, unlike in the 3D case, no axial halides are generated at the
B′ site by translational symmetry since there are no B sites above
or below the B′ sites. This has important consequences for the
band structure of the n = 1 perovskites as discussed below.

2.2.3 The [BX6]
n− root molecular orbital (MO). Each set of

Bloch waves in Fig. 6 can combine with symmetry-matching
orbitals of the B and B′ cations of appropriate energy to
generate the bands found in the band structure. From Fig. 6, it
is clear that the set of Bloch waves derived from a given starting
SALC preserves the symmetry of that SALC at the B site. Thus,
the same B-site metal orbital can participate in all three Bloch
waves (at G, M, and X) and hence, will contribute to the entire
band derived from that starting SALC. In contrast, the different
translational symmetry rules of each k point generate different
halide orbital environments at the B′ site, such that a frontier
metal orbital of the B′ cation may have the appropriate
symmetry to participate in one but not all of these Bloch waves.
We refer to themetal orbital + starting SALC combination that is
present throughout a band, which is a [BX6]

n− molecular orbital
(MO), as the “root MO” of this band (Fig. 2C, inset).

It is important to emphasize the distinction we draw between
the B- and B′-site cations. Either of the two metal cations of
a given double perovskite composition (e.g., Ag+ or Bi3+ in Cs2-
AgBiBr6) could be considered the B-site or the B′-site cation,
depending on which band we are considering. The cation that
forms the [BX6]

n− root MO of the band under consideration (the
the n = 1 perovskite lattice to generate a halide Bloch wave. Here, we
anti-symmetrically (flipping the orbital phases) along the two in-plane
enerating the halide environment at the B′ site (highlighted in red, with
plicity. Yellow and white lobes represent positive and negative phases,

Chem. Sci., 2023, 14, 11858–11871 | 11861
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Fig. 6 A summary of all unique n = 1 and 2 halide Bloch waves (outlined in red and blue, respectively) at the G, M, and X points. Derivations are
given in the ESI.† The n = 1 B1g and Eu

(1,2) Bloch waves have halide orbital environments at the B and B′ sites that are identical to the n = 2 B1 and
E(1,2) Bloch waves, respectively, and are shown together (red and blue box). Additionally, in cases where the in-phase and out-of-phase
combinations of the starting SALC give the same set of n= 2 Bloch waves, we show this set only once. The p orbital lobes are scaled to represent
approximate relative electron densities. Yellow and white lobes represent positive and negative phases, respectively. Brown spheres represent
halide atoms.
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metal cation enclosed by the starting halide SALC; e.g., Ag+) is
considered the B-site occupant. The other (i.e., Bi3+) is consid-
ered the B′-site occupant (the metal cation surrounded by the
halide orbitals generated through translational symmetry;
Fig. 5). However, if we consider a different band where Bi3+

participates in the [BX6]
n− root MO, the assignment would be

reversed: Bi3+ and Ag+ would be the B- and B′-site cations,
respectively. Additionally, in all gures depicting halide Bloch
waves, the B and B′ sites are shown on the le and right sides,
respectively.

2.2.4 Evaluating orbital interactions. Dimensional reduc-
tion will not signicantly alter the energies of the B-site metal
orbitals, meaning that the same frontier metal orbitals that
contribute to the band edges of a given 3D double perovskite
will be located at an appropriate energy to participate at the
band edges in the 2D double perovskite as well. Furthermore,
11862 | Chem. Sci., 2023, 14, 11858–11871
analogous to the 3D case, we nd n = 1 halide SALCs with the
correct symmetry to form s-bonding/antibonding interactions
with B-site metal s, p, dz2 and dx2−y2 orbitals (Fig. 3). Therefore,
we can determine the root MOs of the valence and conduction
bands of a given 2D perovskite by inspecting the band structure
of the 3D parent: for a given band, the 2D root MOwill consist of
the same B-site metal orbital that participates in the root MO of
the analogous band in the 3D band structure combined with the
n = 1 halide SALC of matching symmetry.

For each band, we identify the three Bloch waves in Fig. 6
(at G,M, and X) derived from the halide SALC of the band's root
MO. Since these three Bloch waves have identical interactions at
the B site, their energetic ranking, and hence the dispersion of
the band, is determined by the bonding/non-bonding/
antibonding interactions at the B′ site. The strongest interac-
tions are B′–X interactions between a frontier orbital of the B′
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (A) Relative strength of the B′–X, 90° X–X, and 180° X–X interactions present at the B′ site. (B) Illustration of the equatorial effect. Green
lines indicate bonding 90° X–X interactions and the line thickness indicates that interactions formed in the B1g-derived Bloch wave are stronger
than in the A1g

(d)-derived Bloch wave. (C) Illustration of the axial effect. The terminal axial halides of the n= 1 structure can interact more strongly
with the metal center than the bridging equatorial halides, increasing the energy of the dz2–A1g

(d) antibonding combination relative to the dx2−y2–
B1g antibonding combination (bottom panel). The analogous combinations for the 3D structure are isoenergetic (top panel). The number of red
lines denotes the approximate strength of the antibonding interactions. Gray, orange, and brown spheres represent B cations, B′ cations, and
halides, respectively. Orbital lobes are shaded to denote relative phases.
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cation (with an appropriate energy to participate in the band)
and the surrounding halide p orbitals of matching symmetry
(Fig. 7A). In the absence of such B′–X interactions, weaker X–X
interactions between halide orbitals surrounding the B′ site
determine the energy of the Bloch wave (Fig. 7A). Our prior work
showed that interactions between adjacent halides positioned
at 90° with respect to one another (90° X–X interactions) are
more important than those between the more distant halides
positioned at 180° with respect to one another (180° X–X
interactions),24 so here, we consider only the former.

2.2.5 The equatorial effect. In the 2D case, it becomes
important to consider the relative size of the p orbital lobes
involved in bonding/antibonding interactions at the B′ site. For
example, the large equatorial halide p orbital lobes generated
from the B1g starting SALC will formmuch stronger interactions
(either with each other or with a B′ metal orbital) than the small
equatorial lobes generated from the A1g

(d) starting SALC
(Fig. 7B). Because the 2D translational symmetry of the layered
structures does not propagate the axial halide p orbitals of the
starting SALC to the B′ sites (Fig. 5), Bloch waves derived from
starting SALCs with axial halide contributions (i.e., A1g

(d)) will
form much weaker interactions at the B′ site than those derived
from starting SALCs with no axial halide contributions (i.e., B1g)
(Fig. 7B). We refer to this effect as the “equatorial effect”. Note
that this effect is not at play in the 3D case where translational
symmetry generates all six halide p orbitals around the B′ site,
not just the equatorial ones.

2.2.6 The axial effect. The inequivalence of the axial and
equatorial halide ligands in the n = 1 structure introduces
another subtlety to our n = 1 LCAO analysis. In the octahedral
ligand eld of the 3D structure, all six halides can form equally
strong interactions with the metal center and the dz2 and dx2−y2
© 2023 The Author(s). Published by the Royal Society of Chemistry
orbitals of the B site form equally strong antibonding interac-
tions with the surrounding halides (Fig. 7C, top). However, in
the n= 1 structure, the axial halides are not shared between two
metal centers and, therefore, can interact more strongly with
a B-site metal orbital compared to the equatorial halides that
bridge metals. Since the axial halides interact strongly with the
dz2 orbital but not at all with the dx2−y2 orbital, the antibonding
interaction between the dz2 orbital and the A1g

(d) SALC will be
stronger than that of the dx2−y2 orbital with the B1g SALC
(Fig. 7C, bottom). We refer to this as the “axial effect” and
demonstrate its effect on band structure below.
2.3 Case study 1: the Ag–Bi n = 1 perovskite

Below, we demonstrate this analysis for the undistorted n = 1
Ag–Bi perovskite. A similar analysis of the structurally analo-
gous but electronically distinct Ag–Tl perovskite can be found in
the ESI Section S5.1.†

2.3.1 Predictions for the valence band. The two highest-
energy valence bands (VBs) of 3D Cs2AgBiBr6 are derived from
root MOs that are the antibonding combinations of the Ag dz2
and dx2−y2 orbitals with halide SALCs of the appropriate
symmetry. Thus, we expect the [AgBr6]

5− unit to form the root
MO for the two highest-energy VBs of the 2D lattice as well.
Here, the n = 1 A1g

(d) and B1g halide SALCs match the symmetry
of the Ag dz2 and dx2−y2 orbitals, respectively, so to map out these
bands, we will consider the A1g

(d)- and B1g-derived Bloch waves
shown in Fig. 6, which have the appropriate symmetry at the B
site to interact with these Ag d orbitals at all high-symmetry k
points.

The three high-symmetry Bloch waves for the Ag dz2 band
(where the dz2 orbital participates in the root MO) are shown in
Chem. Sci., 2023, 14, 11858–11871 | 11863
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Fig. 8A–C, arranged in order of increasing energy from le to
right. The highest-energy Bloch wave occurs at G, where the 90°
interactions between halide p orbitals (90° X–X interactions) are
all in-phase at the Bi site, enabling strong s-antibonding
interactions with the lled 6s orbital of Bi3+ (Fig. 8C). (Based on
the contribution of Bi 6s orbitals to the VBM of Cs2AgBiBr6,
these states are located at an appropriate energy to participate
in the band.)24 The Bi 6s orbitals do not have the required
symmetry to contribute atM or X, so we rank these Bloch waves
based on the weaker 90° X–X interactions around the Bi site.
The antibonding conguration at M (Fig. 8B) and the non-
bonding conguration at X (Fig. 8A) give an overall energetic
ordering of the k points of G > M > X.

Fig. 8D–F shows the three Bloch waves for the Ag dx2−y2 band.
Here, the highest energy is found atMwhere the Bloch wave has
the correct symmetry at the B′ site to have antibonding inter-
actions with the Bi 6s orbital (Fig. 8F). The antibonding and
non-bonding 90° X–X interactions found at G and X, respec-
tively (Fig. 8D and E), yield an overall energetic ordering of the k
points of M > G > X.

Having predicted the dispersion pattern for the Ag dz2 and
dx2−y2 bands, we nowmust evaluate the relative energies of these
two bands. The Bi s orbitals contribute antibonding character to
the maxima of both bands. However, due to the equatorial effect
(Section 2.2.5), the B1g-derived Bloch wave of the dx2−y2 band will
interact more strongly with the Bi s orbital than the A1g

(d)-
derived Bloch wave of the dz2 band (Fig. 8C and F). Thus, the
equatorial effect increases the energy of the dx2−y2 band at M
relative to the dz2 band at G.

At the same time, the axial effect (Section 2.2.6) pushes the
entire dz2 band up in energy relative to the dx2−y2 band. In the
absence of the axial effect, the dz2 and dx2−y2 bands would be
isoenergetic at the X point where both have non-bonding 90°
X–X interactions around the B′ site. Indeed, this is the case in
3D Cs2AgBiBr6 (at the L point, see Fig. S15†).24 However, due to
the axial effect, we predict that in the n = 1 structure, the Ag dz2
band is higher in energy than the Ag dx2−y2 band at X (Fig. 8G).
Fig. 8 LCAO analysis for the n = 1 Ag–Bi structure. LCAO representatio
points ranked in order of increasing energy from left to right. LCAO repre
ranked in order of increasing energy from left to right. Bonding and an
respectively, and the thickness of each line corresponds to the streng
approximate relative electron densities and the shading of orbital lobes d
Ag, Bi, and Br atoms, respectively. (G) Predicted band diagram of the n= 1
n= 1 Ag–Bi structure without SOC. The band structure is shown in duplic
bands are represented by colored dots.

11864 | Chem. Sci., 2023, 14, 11858–11871
Clearly the axial and equatorial effects will compete to
determine the location of the VBM in the n= 1 Ag–Bi perovskite;
the equatorial effect boosts the maximum of the dx2−y2 band,
whereas the axial effect raises the energy of the entire dz2 band.
It is not possible to say which effect will dominate using our
qualitative model, so for now we will assume that they are equal,
generating isoenergetic VBMs at M and G. We diagram our
predicted band dispersion for the highest energy VBs of the n =

1 Ag–Bi structure in Fig. 8G.
2.3.2 Predictions for the conduction band. The root MOs

of the lowest-energy conduction bands (CBs) of Cs2AgBiBr6 are
derived from Bi 6p orbitals, so for our n = 1 structure, we
consider the Bloch waves derived from the Eu

(1,2) and A2u
SALCs, which can interact with the empty Bi px/y and pz
orbitals, respectively. Both Eu SALCs generate net non-bonding
90° X–X interactions around the B′ site at G andM (Fig. 6), but,
at X, the Eu

(1) SALC generates an antibonding arrangement,
while the Eu

(2) SALC generates a bonding arrangement,
enabling participation of the empty Ag 5s orbital. (Based on
the band structure of Cs2AgBiBr6 the Ag 5s orbital is at an
appropriate energy to participate in the band.)24 Since this
band is based on the antibonding Bi p-Eu

(2) root MO (i.e.,
antibonding Bi p - halide p interactions are present
throughout), the lowest energy point will occur where the B′

site has the most bonding interactions. Therefore, the CBM is
formed at X by the Eu

(2)-derived band where Ag s orbitals form
bonding interactions with the in-phase arrangement of
surrounding halide p orbitals (Fig. 8G). Similarly, the highest
point of the Eu

(1)-derived band also occurs at X, where anti-
bonding 90° X–X interactions at the B′ site are maximized. The
full LCAO representations of these bands at the three k points
are given in Fig. S18.†

The A2u SALC involves only the two axial halide p orbitals at
the B site, which have no translational symmetry equivalents at
the B′ site. As a result, there are no halide orbitals around the B′

sites in the A2u-derived Bloch waves so all three are isoenergetic,
giving a band with no dispersion (Fig. 8G).
ns of the Ag dz2 derived valence band (VB) at the X (A), M (B), and G (C)
sentations of the Ag dx2−y2 derived VB at the X (D), G (E), andM (F) points
tibonding interactions at the B′ site are shown as green and red lines,
th of the interaction. Halide p orbital lobes are scaled to represent
enote their relative phases. Gray, orange, and brown spheres represent
Ag–Bi structure using our LCAO analysis. (H) DFT band structure of the
ate where the Ag (left panel) and Bi (right panel) states that compose the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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2.3.3 Comparison of predictions from LCAO analysis to
DFT calculations. Comparing our predicted band diagram of
the n = 1 Ag–Bi perovskite (Fig. 8G) to the DFT band structure
(Fig. 8H), we nd good agreement. The Ag dz2 and dx2−y2 VBs
follow the predicted patterns of dispersion and we nd small
contributions from Bi 6s orbitals to the maxima of these bands,
as predicted from the LCAO analysis. Importantly, far less Bi s
character is observed in the dz2 band at G than in the dx2−y2 band
at M (see Table S1†), consistent with the expected inuence of
the equatorial effect (Fig. 8C and F). Furthermore, DFT shows
that the Ag dz2 band is higher in energy than the Ag dx2−y2 band
at X, consistent with our assessment of the axial effect. These
calculations also reveal that the dx2−y2 and dz2 bands reach iso-
energetic VBMs at M and G, respectively, indicating that the
competing axial and equatorial effects have similar magnitudes
in this system.

Our predictions for the CB are also in good qualitative
agreement with the DFT calculations, which shows two Bi p-
based bands that display a large splitting at X and a third that
has very little dispersion. It is important to point out that the
DFT band structure in Fig. 8H was calculated without
accounting for spin-orbit coupling (SOC) because our model is
a non-relativistic one, which does not consider SOC effects.
However, SOC has a substantial impact on the dispersion
pattern of the Bi 6p-based CB and we refer the interested reader
to the ESI Section S4† for a discussion of this point.

2.4 LCAO analysis for undistorted n = 2 perovskites

In the sections below, we describe how the analysis outlined
above can be extended to n = 2 structures.

2.4.1 SALC derivation. In the n = 2 structure, the inequi-
valence of the terminal and bridging axial halides (Fig. 1B) lowers
the point symmetry of the B site to C4v. Thus, we generate halide
SALCs of the six s-bonding halide p orbitals surrounding the B
site according to this point group (see ESI Section S3.2† for
derivation). These SALCs are shown in Fig. 3 and have the
symmetry labels A1

(s), A1
(d), A1

(p), B1, E
(1), and E(2), where the

superscripts “s”, “d”, and “p” designate the A1 SALCs with the
appropriate symmetry to interact with s, dz2, or pz B-site orbitals,
respectively. While these SALCs have different symmetry labels
than the n= 1 SALCs, most aspects of their physical descriptions
remain unchanged (see ESI Section S3.2†).
Fig. 9 (A) Unit cell of an n= 2 double perovskite. Orange, white, brown, a
cations, respectively. In-phase and out-of-phase combinations of the A1

(d

and white shading of the p orbital lobes denotes their relative phase. Fo
halide orbitals highlight the different halide orbital environments generate
(in-phase vs. out-of-phase).

© 2023 The Author(s). Published by the Royal Society of Chemistry
2.4.2 In-phase and out-of-phase combinations of SALCs.
Propagation of our halide SALCs across the perovskite lattice is
complicated in the n = 2 case by the fact that the B sites in the
top layer of the n= 2 sheet are not related to those in the bottom
layer by translational symmetry (Fig. 9A). Therefore, to generate
a halide Bloch wave for the entire lattice, we must use a larger
unit cell and input our starting SALC at two B sites, one in the
top layer and one in the bottom layer. These two starting SALCs
can be either in-phase or out-of-phase with respect to one
another (Fig. 9B and C). In cases where the SALC has contri-
butions from both axial and equatorial halide p orbitals (e.g.,
A1

(d)), the phase difference between the starting B-site SALCs
affects the halide orbital environment at the B′ site and will lead
to splitting of the bands generated from the in-phase and out-
of-phase combinations at some k points (Fig. 9B). However,
the phase difference will not affect bands derived from SALCs
with contributions from only axial or only equatorial halide p
orbitals (e.g., B1; Fig. 9C), and here we expect two degenerate
bands.

2.4.3 Generating halide Bloch waves. We propagate the in-
phase and out-of-phase SALC combinations across the n = 2
lattice using a procedure analogous to that demonstrated in
Fig. 5 for the n = 1 lattice (Fig. S16†), generating 24 unique
Bloch waves (Fig. S34–S57†) which are summarized in Fig. 6. As
in the n = 1 structure, the terminal axial halide is not generated
at the B′ site by translational symmetry. However, there is
a bridging axial halide at the B′ site, generated by the starting
SALC positioned about the B site in the adjacent layer (Fig. 9B;
circled). As a result, Bloch waves generated from starting SALCs
with axial halide contributions have different halide orbital
environments at the B′ site than those generated from the
analogous n = 1 starting SALCs, while Bloch waves generated
from starting SALCs without axial contributions have the same
interactions at the B′ site as their n = 1 analogues (Fig. 6).

2.4.4 The axial and equatorial effects. The axial and equa-
torial effects are still relevant for the n = 2 structures. However,
the magnitude of the equatorial effect will be diminished since
the bridging axial halide at the B′ site is generated by the
starting SALC (Fig. 9B), and the axial effect will also be less
important since one of the axial halides at the B site is now
shared with the adjacent B′ site (Fig. 9B). These slight alter-
ations to the axial and equatorial effects are demonstrated in
nd teal spheres represent the B- and B′-site cations, halides, and A-site
) (B) and B1 (C) halide SALCs. Brown spheres represent Br atoms. Yellow
r simplicity, the relative size of p orbitals is kept uniform. Circled axial
d at the B′ site depending on the phase difference of the starting SALCS

Chem. Sci., 2023, 14, 11858–11871 | 11865
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case studies of the n = 2 Ag–Bi perovskite given below and the n
= 2 Ag–Tl perovskite given in the ESI Section S5.2.†
2.5 Case study 2: the Ag–Bi n = 2 perovskite

2.5.1 Predictions for the valence band. As for the 3D and n
= 1 Ag–Bi perovskites, the two highest VBs in the n= 2 structure
are based on the Ag dz2 and dx2−y2 orbitals. We map out the
dispersion of these bands using the same procedure as for the n
= 1 structure above (see Fig. S17† for full analysis), arriving at
the predictions shown in Fig. 10D. Note that there are two dz2
and two dx2−y2 bands, corresponding to the in-phase and out-of-
phase combinations of the two starting SALCs. Consistent with
our analysis in Section 2.4.2, the two dx2−y2 bands are degenerate
at all three k points, but the two dz2 bands split at G. Here, for
the out-of-phase combination of starting SALCs, translational
symmetry generates s-orbital symmetry at the B′ site allowing
for strong antibonding interactions with Bi s orbitals (Fig. 10A).
In contrast, translational symmetry generates a weakly anti-
bonding conguration of 90° X–X interactions at the B′ site for
the in-phase combination of starting SALCs (Fig. 10B).

Due to the equatorial effect, Bi s orbitals introduce more
antibonding character to the dx2−y2 band atM (Fig. 10C) than to
the dz2 band at G (Fig. 10A), raising the energy of the VBM at M
relative to G. At the same time, the axial effect raises the energy
of the entire dz2 band relative to the dx2−y2 band. Themagnitudes
of these effects are expected to be reduced compared to the n =

1 case (Section 2.4.4) though it is difficult to predict the relative
magnitudes of these reductions. Thus, our predictions in
Fig. 10 LCAO representation of the dz2- and dx2−y2-derived valence
bands of the n = 2 Ag–Bi structure at G (A and B) and M (C), respec-
tively. Bonding and antibonding interactions at the B′ site are shown as
green and red lines, respectively, where line thickness indicates the
strength of the interaction. Gray, orange, and brown spheres represent
Ag, Bi, and Br atoms, respectively. Halide p orbital lobes are scaled to
represent approximate relative electron densities and their shading
denotes their relative phase. (D) Predicted band structure of the n = 2
Ag–Bi structure. Double black lines indicate degenerate bands. (E) DFT
band structure for the n = 2 Ag–Bi structure calculated without SOC.
The band structure is shown in duplicate where the Ag (left panel) and
Bi (right panel) states that compose the bands are represented by
colored dots.

11866 | Chem. Sci., 2023, 14, 11858–11871
Fig. 10D assume that they are reduced by the same amount and
therefore, remain equally important (as in the n = 1 analogue),
resulting in isoenergetic VBMs at M and G.

2.5.2 Predictions for the conduction band. The halide
Bloch waves for our Bi p-based CBs are essentially identical to
those for the n = 1 analogues (Fig. S18†) and we predict the
same pattern of band dispersion as in the n = 1 perovskite
(Fig. 10D), although here, each band is doubly degenerate cor-
responding to the in-phase and out-of-phase combinations of
the starting SALCs.

2.5.3 Comparison of predictions to DFT. We see good
qualitative agreement between our predicted band structure
and the DFT band structure calculated without SOC (Fig. 10E).
Importantly, DFT shows that the VBM atM is 180 meV higher in
energy than at G indicating that the equatorial effect is more
important than the axial effect in the n= 2 structure (in contrast
to the n= 1 analogue where isoenergetic VBMs occurred at both
M and G).
3. Discussion

The approach presented above affords an understanding of the
molecular-level interactions that determine the band structure
of the 2D Ag–Bi perovskites (and Ag–Tl perovskites; see ESI
Section S5†), positioning us to identify the factors driving the
change in bandgap symmetry observed at the n= 1 limit in both
systems.
3.1 3D vs. 2D translational symmetry

The switch from 3D to 2D translational symmetry plays an
important role in the bandgap symmetry transition of the n = 1
Ag–Bi and Ag–Tl perovskites. Translational symmetry of the
layered perovskites is dened in terms of two orthogonal unit-
cell vectors lying in the xy plane (Fig. 11A). These same two
vectors describe translations within the xy plane of the 3D
lattice, while an identical set rotated by 90° dene translations
in the yz plane (Fig. 11B, see Fig. S19† for vector derivation).

The simplied band diagrams shown in Fig. 12A and B
(which omit the inuence of the axial and equatorial effects)
demonstrate how the differences in 3D and 2D translational
symmetry result in distinct band structures for the 3D and 2D
lattices in the Ag–Tl and Ag–Bi systems. Specically, we observe
very different dispersion patterns for the Ag d-based VBs of the
3D and 2D lattices, but the dispersion patterns of the lowest-
lying Tl s- and Bi p-derived CBs are identical in the 3D and 2D
structures. In the sections below, we explain the origins of these
differences.

3.1.1 Differences between the Eg and A1g/T1u SALCs. We
begin by considering the A1g, Eg, and T1u SALCs of the 3D lattice
(Fig. 11; note that for simplicity, here we only consider one of
the three degenerate T1u SALCs; see the ESI Section S7† for
details). For the A1g and T1u SALCs, the halide orbital environ-
ment in the xy and yz (and xz) planes is equivalent (i.e., within
each plane, all halide p orbitals are in-phase for the A1g SALC,
and for the T1u SALC, each halide p orbital is in-phase with one
of its 90°-adjacent neighbors and out-of-phase with the other).
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Consequences of 3D vs. 2D translational symmetry. Translational symmetry vectors of the 2D (A) and 3D (B) double perovskite lattices.
Bloch waves generated at the 3D and 2D G points for the A1g (C), T1u (D), and Eg

(1) (E) starting SALCs. Bloch waves generated at the 3D X point and
2D M point for the A1g (F), Eg

(1) (G), and Eg
(2) (H) starting SALCs. Red and green vectors represent antisymmetric and symmetric translations,

respectively. The color of the shaded circle behind each B′ site indicates the symmetry of the halide environment generated there by translational
symmetry (green= A1g, yellow= T1u/Eu, red= Eg). For simplicity, here we use the halide SALCs of the 3D lattice and the size of orbital lobes is kept
uniform. Gray, orange, and brown spheres represent B-site cations, B′-site cations, and halide atoms, respectively, and the shading of p orbital
lobes represents relative phase.

Fig. 12 Diagrams illustrating the dispersion of the valence and
conduction bands of the Ag–Tl and Ag–Bi perovskites. Panels A and B
demonstrate the changes in dispersion of the Ag dz2 and dx2−y2 bands
caused by switching from 3D to 2D translational symmetry. Panels C–F
illustrate the changes in the Ag dz2 and dx2−y2 bands caused by the axial
(red arrows) and equatorial (blue arrows) effects. Note that these
diagrams represent simplified band structures; some bands and orbital
contributions are omitted for clarity.
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As a result, both 3D (dened in the xy and yz planes) and 2D
(dened in the xy plane) translational symmetry produce
equivalent sets of Bloch waves from these starting SALCs (i.e.,
© 2023 The Author(s). Published by the Royal Society of Chemistry
these Bloch waves have halide orbital environments at the B′

site with analogous symmetry for the 2D and 3D case; Fig. S20
and S21.†) These Bloch waves give rise to metal s- and p-derived
bands, respectively, explaining why the dispersion patterns of
the Tl s- and Bi p-derived CBs in Fig. 12A and B do not change
upon dimensional reduction. (See the ESI Section S7† for an
explanation of why this holds despite the splitting of the 3D T1u
SALCs at the X point in the 3D lattice and in the 2D lattice.).

In contrast to the A1g and T1u SALCs, the two Eg SALCs do not
have equivalent halide orbital environments in the xy and yz
planes. For example, in the Eg

(1) SALC, the halide p orbitals in
the xy plane are all in-phase whereas in the yz plane adjacent
halide p orbitals are out-of-phase with one another. As a result,
translation of the Eg SALCs across the xy plane of the 2D lattice
produces a set of Bloch waves distinct from those generated by
translation across the xy and yz planes of the 3D lattice (i.e.,
some of the 2D Bloch waves have halide orbital environments at
the B′ site with a different symmetry than for their respective 3D
analogues, Fig. S22 and S23†). Therefore, bands derived from
these Bloch waves will show different patterns of dispersion in
the 2D and 3D lattices, explaining why the Ag dz2- and dx2−y2-
based VBs shown in Fig. 12A and B change upon dimensional
reduction. Below, we give several examples to illustrate why the
Eg SALCs produce different patterns of band dispersion in the
3D and 2D lattices.

3.1.2 Example 1: differences at the G point. In both the 2D
and 3D lattice, the G point calls for symmetric translations
along all vectors. As described above, for the A1g starting SALC,
this produces equivalent Bloch waves in the 3D and 2D lattices
where the halide orbital environments at the B′ site have A1g
symmetry in both cases (Fig. 11C). Similarly, the T1u starting
SALC produces equivalent Bloch waves with T1u/Eu symmetry at
the B′ site for both the 3D and 2D lattices (Fig. 11D, note that the
Eu symmetry label is the 2D analogue to the 3D T1u symmetry
label, see ESI Section S7†). However, for the Eg

(1) starting SALC,
Chem. Sci., 2023, 14, 11858–11871 | 11867
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2D and 3D translational symmetry yield inequivalent Bloch
waves (Fig. 11E). In the 3D case, we nd Eg symmetry at the B′

site where the axial halide p orbitals (along the z axis) are out-of-
phase with the equatorial p orbitals (in the xy plane), thus
generating net antibonding 90° X–X interactions. However,
since 2D translational symmetry does not generate these axial
orbitals at the B′ site, we are le with A1g symmetry in the 2D
case (where the 90° X–X interactions are bonding). This is a clear
result of the difference in halide orbital environment between
the xy and yz planes of the Eg

(1) SALC described in Section 3.1.1.
Because of this difference for the Eg

(1) SALC, it matters that only
xy translational symmetry exists in the 2D case, unlike in the A1g
and T1u cases. We can easily see the effect on band dispersion by
considering the Ag–Tl perovskite band structures where the
patterns of dispersion of the Ag d-based VBs is determined by
the 90° X–X interactions around the Tl site (see ESI S5†). As
shown in Fig. 12A, in the 3D lattice, the Ag dz2-derived VB rea-
ches its maximum at G, but in the 2D lattice, this band's
minimum lies at G.

3.1.3 Example 2: differences at the 3D X and 2D M points.
The 3D X point calls for symmetric translations in the xy plane
(green arrows in Fig. 11) and antisymmetric translations in the
yz plane (red arrows in Fig. 11), producing a halide orbital
environment with Eg symmetry at the B′ site in the A1g-derived
Bloch wave (Fig. 11F). Since the A1g SALC has equivalent halide
orbital environments in the xy and yz planes, antisymmetric
translations in either plane have the same effect. Thus, in the
2D case where there is no translational symmetry in the yz
plane, antisymmetric translations in the xy plane (at the M
point) produce a Bloch wave equivalent to the 3D case with Eg
symmetry at the B′ site (Fig. 11F). However, for the Eg SALCs, the
halide orbital environments in the xy and yz planes are not
equivalent (Fig. 11G). As a result, antisymmetric translation of
the Eg

(1) SALC in the yz plane produces a Bloch wave for the 3D
lattice with A1g symmetry (bonding 90° X–X interactions) at the B′

site, but antisymmetric translation in the xy plane produces
a Bloch wave for the 2D lattice with Eg symmetry (antibonding
90° X–X interactions) at the B′ site. As a result, for the Ag–Tl
perovskites where the dispersion patterns of the Ag d bands are
determined by the 90° X–X interactions at the B′ site, the dz2
band of the 3D lattice has its minimum at the X point but in the
2D lattice this same band has its maximum at the analogous M
point (Fig. 12A). Similarly, antisymmetric translation of the Eg

(2)

SALC in the yz plane produces a Bloch wave with Eg symmetry
(antibonding 90° X–X interactions) at the B′ site, but when this
antisymmetric translation moves to the xy plane in the 2D
lattice, we nd A1g symmetry (bonding 90° X–X interactions) at
the B′ site (Fig. 11H), explaining why the dispersion patterns of
the 3D and 2D dx2−y2 bands diverge at the 3D X point and the 2D
M point in the Ag–Tl perovskites (Fig. 12A).
3.2 The axial effect vs. the equatorial effect

We have shown that 2D translational symmetry alters the
dispersion pattern of the Ag d-orbital-based VBs in both the Ag–
Tl and Ag–Bi perovskites, but that alone does not explain the
change in bandgap symmetry at the n = 1 limit. Below, we add
11868 | Chem. Sci., 2023, 14, 11858–11871
the inuence of the axial and equatorial effects to show how the
interplay of these three factors can explain the observed
bandgap transitions.

3.2.1 The Ag–Tl case. In contrast to the band structure of
the 3D Ag–Tl perovskite, the 2D translational symmetry in the
2D analogues moves the maximum of the Ag dz2 band away
from the G point (to M) and generates only one maximum in
the Ag dx2−y2 band at G (Fig. 12A). The competing axial and
equatorial effects then determine whether the dz2 band at M
or the dx2−y2 band at G will form the VBM. In the n = 2
structure, the equatorial effect dominates (see ESI Section
S5.2†) forming a dx2−y2-based VBM at G and resulting in
a direct bandgap analogous to the 3D system (Fig. 12C).
However, in the n = 1 system, the two terminal axial halides
strengthen the axial effect (see ESI Section S5.1†), thereby
shiing the dz2 band up in energy and moving the VBM toM to
give an indirect bandgap betweenM and G (Fig. 12D). Thus, in
the Ag–Tl system, the direct-to-indirect bandgap transition
observed at the n = 1 limit occurs because 2D translational
symmetry moves the maximum of the dz2 band away from the
G point and then the axial effect raises the energy of this band,
making it the VBM.

3.2.2 The Ag–Bi case. In the Ag–Bi perovskites, 2D trans-
lational symmetry generates a dx2−y2-based VBM at M while
moving the maximum of the dz2 band to the G point (Fig. 12B).
Once again, the equatorial effect dominates in the n = 2
perovskite, so the VBM is formed by the dx2−y2 band at M
(Section 2.5), resulting in an indirect bandgap analogous to that
of the 3D structure (Fig. 12E). However, as the axial effect
becomes more pronounced in the n = 1 analog, the dz2 band
rises in energy (Section 2.3), generating an isoenergetic VBM at
G (Fig. 12F). Thus, similar to the Ag–Tl system, the substantial
change in VB dispersion observed in the n = 1 Ag–Bi perovskite
occurs because 2D translational symmetry moves the maximum
of the dz2 band to the G point and then the axial effect raises the
energy of this band so that it forms a VBM.

Although our LCAO analysis predicts an abrupt change in
bandgap symmetry at the n= 1 limit of the Ag–Bi perovskite and
agrees with the DFT calculations presented here, these results
do not capture the direct bandgap at G that we previously re-
ported for the n = 1 perovskite.13 This is because our theory is
a non-relativistic one, which cannot account for SOC. Including
SOC in the DFT calculations substantially alters the dispersion
of the Bi p-based CBs, generating a CBM at G that is 150 meV
lower than that at X and producing a direct gap at G (Fig. S3†).
Thus, a direct gap is attained at the n= 1 limit due to the effects
of dimensional reduction and SOC.

3.2.3 The Ag–Sb case. It is important to point out that the
delicate balance between the axial and equatorial effects is
highly composition dependent. Indeed, in the n = 1 Ag–Sb
structure (which is isoelectronic to the Ag–Bi composition) the
equatorial effect dominates because Sb 5s orbitals are higher in
energy than Bi 6s orbitals (due to relativistic contraction of 6s
orbitals) and therefore, contribute more heavily to the VBM
(Table S1†). This increases the importance of the equatorial
effect and generates a dx2−y2-based VBM at M (with a halide
environment of A1g symmetry at the B′ site, which can interact
© 2023 The Author(s). Published by the Royal Society of Chemistry
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with the Sb 5s orbital). Thus, unlike the Ag–Bi perovskites, here
all structures have indirect bandgaps between analogous k
points, despite the change in VB dispersion patterns with
dimensional reduction (Fig. S4†). (Note that SOC, which is
a relativistic effect, does not have a large effect on the Sb 5p-
based CBs of the n = 1 Ag–Sb perovskite so the CBM is at X,
as predicted [see ESI Section S4†].)
3.3 The role of metal d orbitals and d-orbital symmetry

The interplay of 2D translational symmetry, the equatorial
effect, and the axial effect is critical for determining the
bandgap symmetry of the n = 1 and 2 Ag–Bi and Ag–Tl
perovskites. However, from the discussion in Sections 2.2.5,
2.2.6, and 3.1 it is clear that all three of these factors are
relevant for bands derived from B-site metal dz2 and dx2−y2

orbitals but not for those based on B-site metal s and p
orbitals. In the ESI Section S6,† we extend our analysis to p-
bonding states, nding that 2D translational symmetry, the
equatorial effect, and the axial effect are also important
considerations for bands based on the p-bonding metal dyz,
dxz, and dxy orbitals. This allows us to make the more general
statement that any band based on a B-site metal d orbital is
expected to undergo changes in dispersion pattern upon
dimensional reduction. We also demonstrate in ESI Section
S8† that d orbital contributions at the B′ site can lead to
different patterns of dispersion in the 2D and 3D lattices.

The changes to metal d-orbital-derived bands observed
upon dimensional reduction are all rooted in the inequiva-
lence of the halide orbital environments found in the xy and
yz planes of the 3D halide SALCs with d-orbital symmetry that
compose these bands (Section 3.1). Thus, we can make the
more general statement that a band derived from any 3D SALC
having different halide orbital environments in the xy and yz
planes will undergo a change in dispersion pattern upon
dimensional reduction, thereby encompassing bands to
which no metal orbitals contribute. A number of SALCs,
including all of those with d-orbital symmetry, meet this
requirement, but most relevant to consider are those capable
of forming the most antibonding 90° X–X interactions (the 3D
Eg

(1,2) and T1g SALCs and a subset of their 2D analogues: the
A1g

(d), B1g, and A2g SALCs; see ESI Sections S6.5 and S9†)
because these will constitute the highest VBs of double
perovskite compositions where both B-site cations have low-
lying HOMOs and do not contribute to the valence band
edges. However, note that such perovskites will have relatively
at bands, making changes in bandgap symmetry is less
signicant than in compositions where both B-site metals
contribute.

To summarize, we expect that only double perovskite
compositions in which metal d orbitals contribute at the band
edges or in which no metal orbitals contribute to the VB are
likely to display a change in bandgap symmetry upon dimen-
sional reduction. Indeed, (CH3NH3)2TlBiBr6, a double perov-
skite where only metal s and p orbitals contribute to the band
edges, shows no substantial changes in band structure upon
dimensional reduction (Fig. S24†).
© 2023 The Author(s). Published by the Royal Society of Chemistry
4. Conclusions

The direct-to-indirect bandgap transition of 3D Cs2AgTlBr6, as it
is thinned to a monolayer in the n = 1 2D perovskite, as well as
the indirect-to-direct bandgap transition as 3D Cs2AgBiBr6 is
dimensionally reduced to an n = 1 2D perovskite have been
shown through DFT calculations.13,15 However, an explanation
for why these bandgap symmetry transitions occur only in
certain double perovskite compositions has been lacking.
Achieving such an understanding may yield guidelines on
which double perovskite compositions are likely to show such
a transition with dimensional reduction.

To address this question, and to improve our understanding
of this emerging family of materials, we have developed an
LCAO analysis for 2D double perovskites that uncovers the
orbital basis for the changes in bandgap symmetry with
dimensional reduction. We describe several considerations
needed for the LCAO analysis of 2D double perovskites. In
particular, we highlight the importance of (a) 2D translational
symmetry, which results in the axial (terminal) halides at the B
site not being translated to the B′ site, and (b) the “axial effect”,
which describes the consequences of stronger interactions
between the B-site metal orbitals and the axial (terminal)
halides compared to those with the equatorial (bridging)
halides. These considerations, irrelevant for the LCAO analysis
of 3D perovskites,24 form the basis for the change in bandgap
symmetry upon dimensional reduction from the 3D Cs2AgBiBr6
and Cs2AgTlBr6 perovskites to the 2D analogues. Specically, 2D
translational symmetry moves the maximum of the Ag dz2-based
valence band (VB) away from its location in the 3D analogue,
and the axial effect raises the energy of this band, creating a new
valence band maximum (VBM).

Our analysis does not account for spin-orbit coupling (SOC),
which can change the band dispersion patterns of certain
double perovskite compositions, as discussed in the ESI Section
S4.† Nevertheless, our simple treatment can capture many of
the relevant factors that dictate the bandgaps of layered double
perovskites, and importantly, helps develop the intuition of
synthetic chemists targeting new double perovskite composi-
tions that show this bandgap symmetry transition. We therefore
highlight the key take-away from our analysis: only double
perovskite compositions that involve participation of metal
d orbitals at the band edges or that have no metal-orbital
contributions to the VB are expected to display changes in
bandgap symmetry upon dimensional reduction due to the
inequivalent halide orbital environments found in the xy and yz
planes of the halide SALCs involved in these cases. Such
a bandgap symmetry transition is a necessary, though not
sufficient, condition for a direct / indirect or an indirect /
direct bandgap transition.

Similarly, the change in bandgap symmetry observed at the
monolayer limit of MoS2 has been traced to differences in axial
and equatorial interactions. Here, electronic states comprised
of orbitals with large axial components (perpendicular to the
plane of the 2D sheets, like Mo dz2) have strong interlayer
interactions and therefore undergo a large energetic
Chem. Sci., 2023, 14, 11858–11871 | 11869
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perturbation upon exfoliation. In contrast, states based on
orbitals with electron density primarily in the xy plane of the 2D
sheet (like Mo dx2−y2 orbitals) have weak interlayer interactions
and will not be signicantly affected by exfoliation.30 Thus, the
inequivalence of metal d-orbital interactions in the axial and
equatorial directions drives the indirect-to-direct bandgap
transition upon dimensional reduction observed in MoS2,
similar to our ndings for double perovskites presented here.

This study lays the groundwork for using dimensional
reduction as a predictable means of changing the direct/
indirect nature of the bandgap in other double perovskite
compositions.
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