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Bismuth-based metal-organic frameworks (Bi-MOFs) have received attention in electrochemical CO,-to-
formate conversion. However, the low conductivity and saturated coordination of Bi-MOFs usually lead to
poor performance, which severely limits their widespread application. Herein, a conductive catecholate-
based framework with Bi-enriched sites (HHTP, 2,3,6,7,10,11-hexahydroxytriphenylene) is constructed
and the zigzagging corrugated topology of Bi—-HHTP is first unraveled via single-crystal X-ray diffraction.
Bi—-HHTP possesses excellent electrical conductivity (1.65 S m™) and unsaturated coordination Bi sites
are confirmed by electron paramagnetic resonance spectroscopy. Bi—-HHTP exhibited an outstanding
performance for selective formate production of 95% with a maximum turnover frequency of 576 h~* in
a flow cell, which surpassed most of the previously reported Bi-MOFs. Significantly, the structure of
Bi—HHTP could be well maintained after catalysis. /n situ attenuated total reflectance Fourier transform
infrared spectroscopy (ATR-FTIR) confirms that the key intermediate is *COOH species. Density
functional theory (DFT) calculations reveal that the rate-determining step is *COOH species generation,

iig:gt: 121;:dA’r3/\”alyzg§§3 which is consistent with the in situ ATR-FTIR results. DFT calculations confirmed that the unsaturated
coordination Bi sites acted as active sites for electrochemical CO,-to-formate conversion. This work
DO 10.1039/d35c01876h provides new insights into the rational design of conductive, stable, and active Bi-MOFs to improve their

rsc.li/chemical-science performance towards electrochemical CO, reduction.
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With ever-increasing global energy demand and the influence of
climate change, the electrochemical CO, reduction reaction
(CO,RR) has attracted enormous attention for converting CO,
into value-added fuels and feedstocks, which is not only
a promising way to reduce the negative impact of climate
change but also enriches energy supply and achieves net-zero
CO, emission.”> Formate, as one of the main CO,RR
products, has promising potential because of its compatibility
with existing infrastructure and the promise for hydrogen

“Department of Chemistry, School of Science, Tianjin Key Laboratory of Molecular
Optoelectronic Sciences, Tianjin University, Tianjin 300072, China. E-mail:
zczhang19@tju.edu.cn; huwp@tju.edu.cn

Julong College, Shenzhen Technology University, Shenzhen, 518118, China. E-mail:
wj914315@163.com

‘Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
Joint School of National University of Singapore and Tianjin University, International
Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

*Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of
Sichuan Province, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China

T Electronic supplementary information (ESI) available. CCDC 2242230. For ESI
and crystallographic data in CIF or other electronic format see DOL
https://doi.org/10.1039/d3s5c01876h

6860 | Chem. Sci, 2023, 14, 6860-6866

carbon-neutral route to fuel generation.**

Electrocatalysts play a vital role in efficient CO,-to-formate
conversion. Bismuth (Bi) with its low-cost and
environment-friendly nature exhibits adequate adsorption
intensity toward intermediate species for formate, attracting
more and more attention.”™ Considering its low natural
abundance and potential future large-scale applications, it is
crucial to enhance the atomic utilization of Bi. Bi-based
metal-organic frameworks (Bi-MOFs) with well-defined
coordination and single-site dispersion are regarded as
promising approaches to address this issue.'** But their low
electrical conductivity and saturated coordination mode remain
significant obstacles to their performance and severely limit
their broad application. Spectacularly, conductive MOFs
(cMOFs) are deemed proactive materials for achieving excellent
performance without the pyrolysis process owing to their
distinctive electrical conductivity.'*** Despite the advances in
the CO,RR with ¢cMOFs such as Cu-based ¢cMOFs,?** there is
still a scarcity of literature on conductive Bi-MOFs for
electrochemical CO,-to-formate conversion with enhanced
activity and satisfactory selectivity.

In this work, a three-dimensional (3D) Bi-based catecholate
c¢MOF (Bi-HHTP) (HHTP, 2,3,6,7,10,11-hexahydroxytriphenylene)

4,7,8
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with enriched defects was fabricated for the CO,RR and single-
crystal X-ray diffraction verified its structure. Bi-HHTP with its
robust nature could achieve optimal faradaic efficiency (FE)
towards formate (95%) with a maximum turnover frequency
(TOF) of ~576 h™". In situ attenuated total reflectance Fourier
transform infrared spectroscopy (ATR-FTIR) and density
functional theory (DFT) calculations confirmed that the key
intermediate is *COOH species. DFT calculations indicated that
the unsaturated coordination Bi** sites could effectively facilitate
the dissociation of *COOH to produce formate.

Results and discussion
Preparation and characterization

In this work, 3D Bi-HHTP was constructed via the solvothermal
method (Fig. 1). Single-crystal X-ray diffraction (XRD) disclosed
that Bi-HHTP exhibited a monoclinic type Bravais lattice (e, v =
90° and B = 143.57(2)°) with space group P2,/n. Intriguingly, the
zigzagging corrugated chains of nonplanar ligands were
coupled by the Bi-O bond (Fig. 1a-d), where each HHTP
attached to seven Bi’" ions at different angles (Fig. 1€) and the
Bi** ion coordinated with the nonplanar catechol groups to
form the unsaturated coordination mode (distorted tetragonal
pyramid) (Fig. 1f). XRD patterns in Fig. 2a further confirmed the
difference in Bi-HHTP, compared to traditional Ni-HHTP. No
preferential orientation was found in Bi-HHTP. Thereafter, the
conductivity of Bi-HHTP was measured by the two-contact
probe technique. According to the current-voltage
characteristic shown in Fig. 2b, Bi-HHTP exhibited an electrical
conductivity of 1.65 S m~ ", which is higher than those of the
reported MOFs as listed in Fig. 2c and Table S2.f Electron
paramagnetic resonance spectroscopy (EPR) could effectively
disclose the existence of unpaired electrons.” The EPR spec-
trum of Bi-HHTP (Fig. 2d) revealed a high-intensity peak at g =
2.005, verifying the presence of unpaired electrons located on
defect sites. Transmission electron microscopy (TEM) and
scanning electron microscopy (SEM) images showed that the
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morphology of Bi-HHTP was nanobelt-like (Fig. 2e, S1a and b¥).
The lattice fringes of Bi-HHTP in specific domains with lattice
parameters of 0.18 nm matched well with [—4 —3 8] of Bi-HHTP
(inset of Fig. 2e). The composition of Bi-HHTP was analyzed
using the high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) image and the corre-
sponding energy-dispersive X-ray spectroscopy (EDS) elemental
mappings (Fig. 2f), indicating the homogeneous distribution of
Bi, C, and O elements.

Besides, UV-vis and FTIR were also employed to detect the
feature of Bi-HHTP. The peaks of UV-vis spectra shown in
Fig. 2g at ~380 nm and ~700 nm correspond to w—mt* and the
ligand-to-metal charge transfer between the Bi*" ion and
HHTP.2**” Moreover, the peak at 685 cm ™" for FTIR shown in
Fig. 2h was attributed to the vibration of the Bi-O entities,
providing convincing evidence for forming Bi-HHTP.'®>%>°
Furthermore, we carried out in situ Raman tests to prove the
robust stability of Bi-HHTP in 0.5 M KHCO; aqueous solution
(Fig. 2i). The stretching mode of Bi-O entities was found at
313 cm™ . The peaks at around 1335 and 1582 cm ™ * could be
attributed to the characteristic defect (D) and graphitic (G)
bands.?*?*%** Remarkably, the unchanged Bi-O entities in
KHCO; aqueous solution illustrated the robust structure of
Bi-HHTP, compared to the reported Bi-based MOFs.">*’

Electrochemical performance

The CO,RR performance was investigated in a flow cell (Fig. 3a)
and the strong alkaline solution could enhance the conductivity
of the electrolyte (0.194 S cm™', 1 M KOH) and lower the
overpotential.*»** The liquid-phase products were detected by
nuclear magnetic resonance (Fig. S41). The polarization curves
over Bi-HHTP in CO,-purged cells shown in Fig. 3b illustrated
a more positive onset potential and dramatically larger current
densities than those in N,-purged cells, signifying that
Bi-HHTP could lower the reaction barriers for the CO,RR.
Inspiringly, the FE¢omate Of BI-HHTP shown in Fig. 3c could

Fig.1 (a) The general process for the synthesis of Bi-HHTP. (b—d) The views in a different dimension. (e) Chelation of HHTP toward Bi** ions. (f)

The coordination environment of Bi**

© 2023 The Author(s). Published by the Royal Society of Chemistry

ions (distorted tetragonal pyramid).
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(a) XRD patterns of Bi-HHTP and HHTP. (b) Current—voltage characteristic of Bi—-HHTP using the two-contact probe method. (c) The

compassion of conductivity of different MOFs. (d) EPR spectrum of Bi-HHTP. (e) TEM image, (f) HAADF-STEM image and the corresponding EDS
elemental mappings of Bi-HHTP. (g) UV-vis spectra of Bi-HHTP and HHTP. (h) FTIR and (i) in situ Raman spectra of Bi—-HHTP.

exceed 95% with a cathodic energy efficiency (CEE) of 68.8% at
—0.7 V vs. RHE. The current density of Bi-HHTP was 93 mA
cm 2 at —1.1 V vs. RHE.

Afterward, there was no discernible change in current
density for over 30 h (Fig. 3d). The formate produced by
Bi-HHTP at various potentials (Fig. 3e) illustrated that the
generation rate could exceed 0.4 umol s~* and the TOF of
Bi-HHTP could reach a maximum of 576 h™'. Meanwhile,
Bi-HHTP demonstrated a high FE of formate with a high
current density, which outperforms most of the reported
Bi-based or In-based materials (Fig. 3f and Table S37). To boost
the electrocatalytic activity of Bi-HHTP, this work also replaced
the oxygen evolution reaction (OER) with the methanol
oxidation reaction (MOR) (Fig. S9-S181) to promote reaction
kinetics. Inspiringly, the pair of CO,RR//MOR systems only
needed —1.9 V to achieve a current density of 10 mA cm?,
much lower (about 400 mV) than that for the CO,RR//OER
(Fig. S19f). Moreover, the produced formate was
quantitatively detected after electrolysis. Notably, the FE¢rmate
for the CO,RR was over 90% from —2.1 to —2.5 V.

6862 | Chem. Sci, 2023, 14, 6860-6866

In situ ATR-FTIR spectroscopy and DFT calculations

To ascertain the intermediates and gain an understanding of
the structure-performance relationship, in situ ATR-FTIR
spectra were recorded and DFT calculations were applied. As
shown in Fig. 4a, two FTIR signals at ~1379 and 1410 cm ™" are
assigned to the formation of *COOH species,* and the peak at
1643 cm ' arises from the vibration frequency of the
carboxylate (*CO, ).**¢

The structural pattern of Bi-HHTP may be regarded as
being composed of BiO,~H,O joined by organic linkers
(HHTP). The Bi** ions have an unusual unsaturated
coordination in their structure. As opposed to the saturated
coordination of Bi*" ions with six chemical bonds, the Bi site
relates to four oxygen atoms and one water molecule (Fig. 4b).
Fig. S207 illustrates the density of states of active Bi coordi-
native unsaturation. Four potential routes of unsaturated
coordination Bi*" sites for the CO,RR are provided (paths 1-4
in Fig. 4c). Path 1 produces CO, paths 2 and 3 result in
generating HCOOH, and path 4 is the hydrogen
evolution reaction (HER) pathway. The active site is denoted

© 2023 The Author(s). Published by the Royal Society of Chemistry
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(a) The illustration scheme of a liquid-phase flow cell device. (GDL, CE, RE, and AEM represent the working electrode, counter electrode,

reference electrode, and anion exchange membrane, respectively) (b) LSV curves of Bi-HHTP in CO, and N, atmospheres without correction. (c)
Potential-dependent formate FEs and current density of Bi—-HHTP. (d) Stability test of Bi-HHTP at —0.7 V vs. RHE. (e) Formate rate and TOF of Bi—

HHTP. (f) Comparison of our work with previously reported literature.

as H,O* (* denotes the adsorption state) because the active
Bi*" sites were distorted tetragonal pyramids and one of the
ligands is H,O. In Fig. 4d, the energy profiles are displayed,
showing that step II indicates the rate-determining step (RDS)
and paths 1 and 2 are the best routes for producing HCOOH
due to the lower RDS energy barrier (0.897 eV), compared to
path 3 (1.15 eV) and path 4 (1.2 eV). Additionally, the blue
value (path 1) is higher than the purple data (path 2). The
HCOOH formation from step IV is preferable to CO
generation, which is consistent with the in situ ATR-FTIR
signals at ~1379 and 1410 cm ™ '. The stronger selectivity for
HCOOH shown between paths 1 and 2 is because *COOH on
the Bi** site is strong enough to weaken the carbon-oxygen

© 2023 The Author(s). Published by the Royal Society of Chemistry

double bond. Path 4 for the HER has the highest energy
barrier of 1.2 eV, which indicates that the generation of H, is
unfavorable.?” Therefore, the CO,RR is preferable to the HER
because CO, is easier to adsorb than H. The charge difference
of every active species (*COO, *COOH, CO + H,0, HCOOH,
*0OCO, *OCHO, *HCOOH, and *H) on the catalyst surface is
displayed in Fig. 4e. The yellow part indicates the charge
accumulation and cyan part illustrates the charge depletion.
Much charge transfer could be found between the
unsaturated coordination Bi** sites and active species. The
experimental in situ ATR-FTIR results and the DFT data both
show that Bi-HHTP exhibits a strong selectivity for HCOOH
production.

Chem. Sci., 2023, 14, 6860-6866 | 6863
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Conclusions

In summary, this work fabricates conductive Bi-HHTP via the
solvothermal method, and its crystal structure is first unravelled
via single-crystal X-ray diffraction. Bi-HHTP with excellent

6864 | Chem. Sci., 2023, 14, 6860-6866

electrical conductivity (1.65 S m™") exhibits numerous defects,
which is verified by EPR. Bi-HHTP displays high selectivity to

formate (95%) in a flow cell with a CEE of 68.8% and
a maximum TOF of 576 h™". The in situ Raman spectroscopy,
XRD, and XPS results further confirm its robust structure. Both

© 2023 The Author(s). Published by the Royal Society of Chemistry
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in situ ATR-FTIR and DFT calculations confirm that the key
intermediate is *COOH species. DFT calculations also confirm
that the unsaturated coordination Bi sites within Bi-HHTP
serve as active sites, which could promote charge transfer and
lower the energy barrier (0.897 eV) for producing HCOOH.
Besides, the electrocatalytic activity of Bi-HHTP is boosted by
replacing the OER with the MOR, illustrating that the CO,RR//
MOR system requires less overpotential (about 400 mV) than
the CO,RR//OER to achieve a current density of 10 mA cm 2.
This work paves a new way into constructing highly active and
stable ¢cMOFs for high-performance CO,RR, in terms of
experimental and theoretical aspects.
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