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ction for a low-cost NO2 sensor
network†

Jason A. Miech, a Levi Stanton, b Meiling Gao,b Paolo Micalizzi,b

Joshua Uebelherr,‡c Pierre Herckes a and Matthew P. Fraser*d

Twelve low-cost NO2 sensors (LCSs) underwent multiple bi-weekly collocations with a NO2 reference

monitor to develop a robust calibration model unique to several periods throughout a summer

deployment (April 2021, to October 2021). It was found that a single calibration based on an initial two-

week collocation would not hold up in the variable environmental conditions that Phoenix, Arizona

experiences in the summer. Temperature, relative humidity, and ozone prove to be critical parameters

that would need to be corrected for in the calibration model. Therefore, we developed a period-specific

calibration that is re-trained every six weeks to better account for the conditions during that period. This

calibration improved sensor performance compared to the sensor manufacturer calibration, yielding an

average root-mean-square error (RMSE) of 3.8 ppb and an R2 of 0.82 compared to 19.5 ppb and 0.42

when evaluated against reference NO2 measurements. This improved calibration allowed for more

accurate NO2 measurements utilizing LCSs in a sensor network that would not be possible from the out-

of-the-box calibration.
Environmental signicance

Recent technological advances and heightened public awareness regarding air quality have increased the use of low-cost air quality sensors (LCS), however the
precision and accuracy of these devices do not measure up to conventional instrumentation. In this work we developed a calibration method for a network of
NO2 LCSs using relative humidity, temperature, and ozone parameters. We found that training the calibration model using data similar to deployment
conditions was crucial in improving LCS performance. This required a bi-weekly sensor rotation between deployment and collocation sites, which may not be
feasible for larger networks. However, this study does demonstrate the downsides of using LCSs out of the box and the importance of using a calibration relevant
to deployment conditions.
1 Introduction

According to the World Health Organization (WHO), in 2019,
99% of the world's population was living in areas where air
quality guideline levels were not being met, while in 2016, 4.2
million premature deaths were attributed to poor outdoor air
quality.1 Although the majority of these deaths were due to
PM2.5 (ne particulate matter), nitrogen dioxide gas (NO2) is
also a concern, as it's the main source of nitrate aerosols (an
important fraction of PM2.5) and a precursor to ozone.2 NO2 is
a by-product of fossil fuel combustion from cars, trucks, power
plants, and industrial sources.3 The WHO's 2021 24 h NO2
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guideline value is 25 mg m−3 (13.3 ppbV), while the U.S Envi-
ronmental Protection Agency's (EPA) current National Ambient
Air Quality Standard (NAAQS) for 1 h NO2 is 100 ppbV.1,4 In
order to ensure these guidelines and standards are met,
government and community agencies set up monitoring
stations at select sites in their region to measure these air
pollutants. However, the high nancial and logistical costs
associated with these monitoring stations limit their spatial
resolution and community coverage.

Recent advances in micro-nanotechnology and electronics
are driving a new generation of smaller, lower-cost NO2 sensors
using metal oxide semi-conductors, and electrochemical cells.
While metal oxide semi-conductors have a weak response to
NO2 at room temperature and require a recovery time aer
measurement, electrochemical cells provide a continuous linear
output at ambient concentrations.5,6 Many LCS manufacturers
such as Clarity Movement Co. (Clarity Movement Co., Berkeley,
CA, USA), AQMesh (AQMesh, Stratford upon Avon, UK), and
Aeroqual (Aeroqual, Auckland, New Zealand) use electro-
chemical NO2 sensors in their products. However, these elec-
trochemical cells do have their challenges, as they are oen
© 2023 The Author(s). Published by the Royal Society of Chemistry
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cross-sensitive to gases other than their target, respond to
changes in ambient temperature and relative humidity, and
degrade over time.6

These low-cost sensors (LCS) can measure some of the same
air pollutants that more costly monitors can, but do not provide
the same level of accuracy and precision as established
measurement systems. To combat this deciency, LCSs are
oen collocated with reference monitors to establish calibra-
tion models. Despite limitations, low-cost sensors can be an
attractive alternative to higher-cost EPA-approved federal
reference method (FRM) monitoring because of their cost, size,
portability, and ease of use. However, questions remain about
how to integrate improved spatial resolution from data
collected by LCSs into traditional regulatory monitoring
networks, such as the one run by Maricopa County Air Quality
Department (MCAQD), so the data can be used to improve the
understanding of the causes, extent of impact, and regionality
of local air quality issues.

Currently, MCAQD maintains ve NO2 monitoring sites that
are responsible for covering 10 322 km2 and serve over 3.3
million people.7 By incorporating nine LCS sites into this
network, the average area covered per site decreases from 2000
km2 per site to 700 km2 per site and the average population
served from 660 K per site to 235 K per site. For comparison,
South Coast Air Quality Management District (SCAQMD), which
includes Los Angeles, California, operates 27 NO2 monitoring
sites which cover 17 428 km2 (645 km2 per site) and 17.5 million
people (650 K per site).8 In addition to providing more site-
specic data by increasing the network coverage, there are
more opportunities to study and better understand pollutant
formation routes and behaviors. However, the challenge is
ensuring that these LCS networks produce and continue to
maintain high quality data. Several studies have already been
working on network-specic solutions, such as reference site
collocation, transfer standard collocation, remote network
calibration, or a proxy model for this data quality issue, most of
which recommended semi-regular adjustments to the calibra-
tions to adjust for dri or seasonal bias.9–15 This network
management is an additional challenge on top of individual
device calibration.

LCS calibration oen involves calibration models that are
trained and tested using collocated reference data. These cali-
bration models can include linear regression,9 multivariate
linear regression,16 support vector regression,17 generalized
additive models,18 random forest models,10 machine learning
algorithms,19 or hybrid models.14 For electrochemical-based
NO2 LCSs, sensor dri, seasonal bias, ozone cross-
interference, and sensor degradation are all issues that
should be accounted for in the calibration. Using periodic
collocations to re-calibrate the LCSs can address most of these
issues as demonstrated in this study. Sun et al.20 attached an
additional NO2 removal system to their sensors in order to
perform periodic auto-zeroing of their LCSs to correct for dri.
Ratingen et al.16 showed that calibrations developed in winter
months experience poor performance in summer months with
different environmental conditions. Hossain et al.21 have
demonstrated the importance of a chemical lter upstream of
© 2023 The Author(s). Published by the Royal Society of Chemistry
the electrochemical cell in limiting ozone cross-sensitivity,
while Li et al.22 have shown that even with a chemical lter
present this scrubber will degrade over time leading to sensor
failure. In addition to an ozone scrubber, correcting for ozone
interference using site-specic ozone measurements in post-
processing calibration has also been performed in several
studies.9,11,13,15,16,23

This study seeks to combine network management solu-
tions, such as periodic LCS collocation, with individualized
sensor calibration that accounts for temperature, relative
humidity, and ozone, to combat sensor dri, seasonal bias, and
ozone cross-sensitivity. In this work we were able to deploy 12
LCSs to locations with an O3 EPA-approved federal equivalent
method (FEM) instrument to ensure the highest accuracy in our
correction for ozone interference. While other sensor network
studies have used more sensors in their networks, they did not
collocate them all together at a reference site,9,10 by initially co-
locating all 12 of our LCSs at a NO2 FRM site we were able to
quantify variability among sensors from the same
manufacturing run. This allowed us to detect and correct outlier
sensors with poor performance compared to the average sensor
performance. Additionally, by rotating a few sensors every two
weeks to a FRM NO2 site we were able to develop multiple
representative training datasets that were used to correct for
seasonal bias and changing environmental conditions, which
would not be possible with a static network. By maintaining 12
sensors for nine deployment locations, we were able to ensure
constant coverage at those sites throughout the deployment
period, while providing data with reasonable accuracy (RMSE <
6 ppb) through our robust calibration.
2 Methods
2.1 Instrumentation

Twelve Clarity Node-S model LCSs (Clarity Movement Co., Ber-
keley, CA, USA), were used in this study to measure hourly NO2

concentrations and were previously evaluated in Miech et al.
2021.23 These LCSs use an Alphasense NO2-A43F electro-
chemical cell (Alphasense Ltd, Great Notely, UK), which has
been shown to have a correctable cross-sensitivity with
ozone.22,23 These LCSs were collocated with several NO2 FRM
and O3 FEM instruments at 12 Maricopa County Air Quality
Department (MCAQD) monitoring sites. The NO2 FRM instru-
ment at the West Phoenix site was a Thermo Scientic 42iQ NO-
NO2-NOx Analyzer (ThermoFisher Scientic, Franklin, MA,
USA), while the 11 other sites had Teledyne-API T200 (Teledyne
API, San Diego, CA, USA), all chemiluminescent based instru-
ments. All 12 sites had a Teledyne-API T400 (Teledyne API, San
Diego, CA, USA) to measure ozone via UV absorption. Data from
these instruments were obtained from MCAQD at a one-hour
resolution.
2.2 Sensor collocation and deployment locations

Table 1 shows the 12MCAQDmonitoring sites that were used in
this study, while Fig. S1† shows the spatial layout of the
network. These sites were chosen to cover a wide area of
Environ. Sci.: Atmos., 2023, 3, 894–904 | 895
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Table 1 MCAQD sites used as collocation and deployment locations

Site name Abbreviation AQS ID# Pollutant measured MCAQD site type

Blue Point BP 04-013-9702 O3 Max O3 concentration
Buckeye B 04-013-4011 O3 & NO2 Population exposure and upwind background for O3

Cave Creek CC 04-013-4008 O3 Max O3 concentration
Central Phoenix CP 04-013-3002 O3 & NO2 Population exposure for O3, highest concentration for NO2

Dysart D 04-013-4010 O3 Population exposure
Mesa M 04-013-1003 O3 Population exposure
North Phoenix NP 04-013-1004 O3 Max O3 concentration
Pinnacle Peak PP 04-013-2005 O3 Max O3 concentration
South Phoenix SP 04-013-4003 O3 Population exposure
South Scottsdale SS 04-013-3003 O3 Population exposure
West Chandler WC 04-013-4004 O3 Population exposure
West Phoenix WP 04-013-0019 O3 & NO2 Population exposure for NO2 & O3
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Maricopa County, focusing on areas that experience high ozone
levels, while avoiding near-roadway sites. All 12 LCSs were
collocated at the West Phoenix site for two weeks at the begin-
ning and end of the study (April 12, 2021–April 18, 2021,
October 4, 2021–October 19, 2021). During the ve-month
deployment period the LCSs were rotated between collocation
sites, MCAQD sites that measure NO2, and deployment sites,
MCAQD sites that only measure O3, every six weeks. This rota-
tion schedule is summarized in Table S1.† This summer period
was chosen for the deployment as Maricopa County experiences
the majority of its ozone exceedances during this period and the
goal of the network was to better understand the NO2 concen-
tration gradient in respect to ozone formation in the region.

2.3 Calibration models

2.3.1 Original calibration models. The original calibration
models included the sensor manufacturer calibration (SM), the
Clarity Baseline calibration, and the Ozone correction model.
The SM model calculates NO2 concentrations by using the
direct electrochemical cell measurements in an equation
provided by the manufacturer (Alphasense Ltd, Great Notely,
UK). The Clarity Baseline calibration also uses the electro-
chemical cell readings combined with the internal temperature
and relative humidity measurements in a multivariate regres-
sion model to calculate NO2 concentrations. The Ozone
correction model uses FEM O3 measurements to correct for the
impact of ozone on NO2 concentrations, using the Clarity
Baseline Calibration values as a starting point. The SM cali-
bration, Clarity Baseline calibration, and Ozone correction
calibration models are detailed in Miech et al.23

2.3.2 Revised calibration model. Adjustments to the ozone
correction model were made incrementally to continue to
improve performance measured by minimizing root-mean-
square error. With this iteration, there are sensor-specic
secondary adjustments for relative humidity, temperature,
and ozone, separate calibration factors for daytime (07:00–19:00
labelled NO2Day) and night-time measurements (20:00–06:00
labelled NO2Night), and a correction to force all data above zero.
This process is detailed in eqn (1)–(8) and summarized in
Fig. S2.† Briey, all tting parameters were determined by trial
and error to minimize root-mean-squared error between sensor
896 | Environ. Sci.: Atmos., 2023, 3, 894–904
and reference concentration measurements. For eqn (1)–(8),
these parameters represent an initial ozone threshold (a), tting
coefficients (c1–7), negative value threshold (b), and nal ozone
thresholds (d, e). This revised calibration model (Model 1.0) was
initially trained by using the full two-week collocation period
hourly data at West Phoenix in April 2021.

x = ((O3 > a) / (NO2Clarity

− (c1 × O3))) ^ (:(O3 > a) / NO2Clarity
) (1)

y = ((x > 0) / (x + (−c2 × RH%))) ^ (:(x < 0) / x) (2)

z = (y + (c3 × ˚C)) + c4 (3)

w = ((z < 0) / (z + (−c4 × z))) ^ (:(z < 0) / z) (4)

v ¼
�
ð1\w\bÞ/

�
wþ c5

w

��
^ð:ð1\w\bÞ/wÞ (5)

u = ((0 < v < 1) / (v + (c6 × v))) ^ (:(0 < v < 1) / v) (6)

NO2Day
¼

�
ðe.O3 . dÞ/

�
uþ c7

O3

��
^ð:ðe.O3 . dÞ/uÞ

(7)

NO2Final
= ((19 # Hour $ 7) / NO2Day

) ^ (:(19 # Hour $ 7) /

NO2Night
) (8)

2.3.3 Revised calibration training. As the study progressed,
a need was recognized to periodically re-train the Model 1.0
calibration and the clarity baseline calibration model, as envi-
ronmental conditions signicantly changed throughout the
course of deployment. Referred to as Model 2.0, this was
accomplished by dividing the LCS deployment into four
different periods and re-training the calibration model for each
sensor using collocation data from before and aer each
deployment period. These four weeks of collocation data were
then randomized and split 50 : 50 by day into training and
evaluation datasets. Table S2† summarizes these calibration
period intervals for the 12 sensors. Using this rotation pattern,
the average data loss at each deployment site due to moving the
sensors was less than 0.6%. With this method, sensors were
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Comparison of a (A) Buckeye trained calibration and (B)
a Buckeye trained calibration including high NO2 data points applied to
Sensor 6 at West Phoenix.

Fig. 2 (A) RMSE, (B) R2, and (C) slope values for all 12 sensors based on
hourly data over the April 2021 collocation period at West Phoenix
using the SM calibration, Clarity Baseline Model, and Model 1.0.
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now being trained at one of three collocation sites, one of
which, Buckeye, exhibited signicantly lower (p < 0.05) FRM
NO2 values (�x= 5.9 ppb) than the other sites, Central Phoenix (�x
= 11.1 ppb) & West Phoenix (�x = 10.4 ppb). To enable calibra-
tion to higher NO2 levels than were routinely observed at
Buckeye, wemodied the calibration training for sensors 3, 6, 9,
and 12 to include several high NO2 datapoints (n = 16) from
either the initial or nal collocation at West Phoenix in the
training datasets that originally only contained Buckeye data.
This was incorporated into an additional calibration step, as
shown in Fig. S3.† Fig. 1 shows the effect of this inclusion of
higher observed NO2 data on a calibration trained at Buckeye
and applied to West Phoenix.

2.4 Calibration evaluation methods

To evaluate the performance of the LCSs against FRM NO2

measurements, the root-mean-square error (RMSE), normalized
RMSE (NRMSE), Coefficient of Determination (R2), standard
deviation, and slope were calculated. Most of these parameters
are the recommended performance metrics for O3 air sensors
from the EPA's Performance Testing Protocols, Metrics, and
Target Values for O3 Air Sensors.24 NRMSE was used to compare
accuracy across sites with varying magnitudes of NO2 by
dividing the RMSE by average site FRM NO2. Additionally, the
Pearson correlation coefficient (r) was used to measure the
inuence of environmental factors such as relative humidity,
temperature, and ozone on the calibration performance.

3 Results and discussion
3.1 Initial calibration performance

Fig. 2 shows the performance metrics of the SM data, Clarity
Baseline model data, andModel 1.0 data trained on April for the
© 2023 The Author(s). Published by the Royal Society of Chemistry
initial collocation period, while Fig. 3 show the time series for
the calibrations. With the SM calibration model, we see both
underprediction at minimum FRM NO2 values and over-
prediction at maximum FRM NO2 values. This is reected in
RMSE values above 9 ppb, R2 values below 0.6, and variable
slopes for all 12 sensors compared to the FRM NO2. Addition-
ally, we see a high average standard deviation, 10.3 ppb,
between the sensors; with LCSs #5 and #11 having exceptionally
high RMSE and slope values compared to the other 10 sensors,
demonstrating inter-sensor variability.

By applying the clarity baseline calibration, the model no
longer overpredicts at maximum FRM NO2 values, but we still
see some underprediction at minimum values and new under-
prediction at maximum values. Additionally, we see that the
average RMSE decreased by 78%, the average R2 increased by
67%, and the average slope improves from 1.679 to 0.719.
Environ. Sci.: Atmos., 2023, 3, 894–904 | 897

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ea00145d


Fig. 3 (A) SM calibrated NO2 for all 12 sensors during the April 2021 collocation at West Phoenix. The average standard deviation is 10.3 ppb. (B)
Clarity calibrated NO2 for all 12 sensors during the April 2021 collocation at West Phoenix. The average standard deviation is 1.66 ppb. (C) NO2

values using Model 1.0 for all 12 sensors during the April 2021 collocation at West Phoenix. The average standard deviation is 1.65 ppb.
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Furthermore, the standard deviation is reduced to 1.66 ppb and
LCSs #5 and #11 have more comparable performance to the
other sensors. Using Model 1.0, the underprediction of the
clarity baseline model is corrected, as the average RMSE
decreased by 25%, the average R2 increased by 21%, and the
average slope improves from 0.719 to 0.878 with minimal
change in standard deviation.
3.2 Initial calibration performance over time

Throughout the deployment period, the LCSs were periodically
collocated at reference monitor sites to verify calibration
performance. Their performance is summarized in Fig. 4, where
each box is a compilation of three sensors over a two-week
collocation period. The average RMSE of the Clarity Baseline
model over the whole period was 14 ± 5 ppb, while the average
Model 1.0 RMSE was 6.1 ± 0.9 ppb. In addition to the large
standard deviation, the Clarity Baseline RMSE had a substantial
dri over time, while Model 1.0 was consistent. The R2 values
were more similar, with the Clarity Baseline having an average
R2 of 0.3 ± 0.2 and 0.5 ± 0.3 for Model 1.0. Both models saw
898 | Environ. Sci.: Atmos., 2023, 3, 894–904
a signicant decrease in R2 during the beginning of July and
August. Similar trends are seen in the average slopes, where for
the clarity baseline it was 0.8 ± 0.3 and for Model 1.0 0.7 ± 0.3,
with a decrease in performance at the beginning of July.

Individual LCS performance and site-specic performance
over the deployment period can be found in Fig. S4 and S5.† For
the individual LCS performance LCSs #1, #2, #3, #6, #10, and
#12 all experienced R2 values below 0.2 and slopes below 0.4
during a period from the beginning of July to the end of August.
However, with the Model 1.0 calibration, there were no clear
outlier sensors across the whole deployment period, as was seen
with LCSs #5 and #11 using the SM calibration. For the site-
specic performance, LCSs had lower performances at the
Buckeye collocation site compared to West Phoenix and Central
Phoenix. To account for magnitude differences in FRM NO2

between the sites, NRMSE was used as a calibration perfor-
mance parameter instead of RMSE. The average NRMSE at the
Buckeye site over the deployment period was 0.9 ± 0.3
compared to 0.7 ± 0.2 and 0.6 ± 0.1 at West Phoenix and
Central Phoenix respectively. The average R2 and slope values at
Buckeye were 0.3 ± 0.2 and 0.6 ± 0.4 compared to R2 values of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Box and whisker plots for the (A) RMSE, (B) R2, and (C) slope values of the Model 1.0 and Clarity baseline calibrated data from each 2 weeks
collocation. Each point is a compilation of values from the 3 collocated sensors for that period. The lines within the boxes represent the medians,
the interquartile range is the range of the boxes with the top representing the 75th and the bottom the 25th percentile. The whiskers represent
the maximum and minimum values in the data.

Fig. 5 (A) RMSE, (B) R2, and (C) slope values for all 12 sensors over the
April 2021 and October 2021 collocation periods at West Phoenix
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0.6 ± 0.3 and 0.5 ± 0.3 and slopes of 0.8 ± 0.3 and 0.7 ± 0.3 at
West Phoenix and Central Phoenix.

The nal October collocation at West Phoenix provided an
opportunity to compare the performance of all LCSs to their
initial performance during the April collocation. Fig. 5 shows
the RMSE, R2, and slope values for Model 1.0 during the April
and October collocation. Nearly all 12 LCS RMSE values doubled
from April to October, coupled with reductions in R2 and slope.
Both the SM calibration and clarity baseline model saw variable
results when comparing October to April, shown in Fig. S6 and
S7† possibly as these models may not be able to accurately
correct for changing environmental conditions. While sensor
degradation may play a role in this decreased performance, the
environmental conditions that the LCSs experienced may also
affected their performance.

3.2.1 Impact of environmental factors on calibration
performance. As previously shown, the Model 1.0 calibration
performance decreased signicantly from the time of calibra-
tion in April to the last collocation in October. Additionally,
there were periodic decreases in calibration performance
throughout the summer, specically in the beginning of July
and August. To better explain these changes in performance we
need to examine the environmental conditions at those time
points. Doing that also offers the possibility of evaluating
a calibration methodology that is based on periodic re-training,
i.e. Model 2.0 detailed in Section 3.3. For example, the average
hourly FRMNO2, FEMO3, RH, and temperature during the April
collocation were 9 ppb, 38 ppb, 20%, and 25 °C, while during
the October collocation it was 14 ppb, 25 ppb, 33%, and 24 °C.
using Model 1.0.

© 2023 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos., 2023, 3, 894–904 | 899
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Fig. 6 (A) Average FRM NO2, (B) FEM O3, (C) internal sensor relative humidity, and (D) internal sensor temperature for each 2 weeks collocation
period at the three collocation sites.

Fig. 7 (A) RMSE, (B) R2, and (C) slope correlations for theModel 1.0 and
Model 2.0 calibrations to FRM NO2, FEM O3, internal sensor relative
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Fig. 6 shows the average FRM NO2, FEM O3, internal sensor
relative humidity, and internal sensor temperature for the three
colocation sites for each two-week collocation period. Fig. 6A
shows that the NO2 is variable over time with a sharp decrease
around 08/06, and as expected the Buckeye site has lower
average NO2 values than the more urban Central and West
Phoenix sites. Looking at the average FEM O3, it is consistent
over time and between the three sites. With internal relative
humidity, Fig. 6C, there are peaks around 07/09 and 08/06 at all
three sites which may explain the decrease in calibration
performance we saw during those same time periods. The
average internal temperature does not greatly vary between sites
and over time.

To conrm whether these environmental factors impacted
the performance of the calibrations, we calculated the Pearson
correlation coefficients of the average FEM O3, FRM NO2,
internal sensor relative humidity, and internal sensor temper-
ature to the RMSE, R2, and slope of Model 1.0 and Model 2.0
calibrations, shown in Fig. 7. For both Model 1.0 and Model 2.0
calibrations the RMSE, R2, and slope correlations to ozone were
below j0.3j, therefore the calibration performance is not
strongly affected by ozone demonstrating that the ozone
correction step in both models is effective. With temperature,
there was a decrease in correlation to RMSE, R2, and slope of the
humidity, and internal sensor temperature.

900 | Environ. Sci.: Atmos., 2023, 3, 894–904 © 2023 The Author(s). Published by the Royal Society of Chemistry
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Model 2.0 calibration compared to the Model 1.0 calibration,
showing that the Model 2.0 calibration may be counteracting
any effects temperature has on the calibration performance.
This counteracting effect from the Model 2.0 calibration also
applied to relative humidity as the correlation between RH and
R2 and slope decreased for the Model 2.0 calibration compared
to the Model 1.0 calibration. Additionally, we see that relative
humidity is one of the factors most strongly correlated to the
calibration performance, specically R2 and slope. This helps
explain why we saw decreases in R2 and slope during periods of
high RH (07/09 & 08/06) but not an increase in RMSE. Finally, we
do see a strong correlation between FRM NO2 and calibration
performance for both the Model 1.0 and Model 2.0 calibrations.
However, this may be an artifact of the RMSE, R2, and slope
Fig. 8 Box and whisker plots for the (A) RMSE, (B) NRMSE, (C) R2, and (D)
period. Each point is a compilation of values from the 12 sensors for tha
quartile range is the range of the boxes with the top representing the
maximum and minimum values in the data.

© 2023 The Author(s). Published by the Royal Society of Chemistry
calculations which do include FRM NO2 values. Fig. S8† shows
the correlations between the environmental variables and NO2

residuals for Model 1.0 and Model 2.0 calibrations where there
is little difference between the models.
3.3 Period-specic calibration

As noted above, changes in ambient temperature, relative
humidity, and ozone result in changes to the calibration
parameters of the LCSs. For Phoenix, where seasonal changes in
the local weather patterns lead to dramatically different relative
humidity levels over the course of the summer, this means that
the calibration of LCSs needs to use intercomparison data that
is collected contemporaneously with the calibration period. For
local conditions, simply using data from a sensor collocation at
slope values of the Model 1.0 and Model 2.0 calibrated data from each
t period. The lines within the boxes represent the medians, the inter-
75th and the bottom the 25th percentile. The whiskers represent the

Environ. Sci.: Atmos., 2023, 3, 894–904 | 901

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2ea00145d


Environmental Science: Atmospheres Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
N

ye
ny

an
ku

lu
 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

02
6-

01
-2

3 
23

:5
2:

48
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
the beginning of the summer (April) and the end of the summer
(October) will not correctly capture the changes in relative
humidity that occur with the onset of the southwestern
monsoon season. Fig. S3† recaps the entire calibration process
(Model 2.0) that we have developed and applied to each sensor,
while Table S2† details the interval periods used to calibrate
each sensor.

As a comparison to the Model 2.0 calibrated data, we have
also analyzed the Model 1.0 calibration using the Model 2.0
evaluation dates for a more equivalent comparison. Fig. 8 shows
box and whisker plots of RMSE, R2, and slope for Model 1.0 and
Model 2.0 for Periods 1–4. Compared to Model 1.0, Model 2.0
data has a lower RMSE, higher R2, and improved slope during
Periods 1–4, in addition to lower variability. While Fig. 8A
appears to show an upward dri in RMSE over the periods, the
NRMSE values in Fig. 8B demonstrates that this is an artifact of
increasing NO2 concentrations throughout the deployment.

Fig. S9–12† show the RMSE, NRMSE, R2, and slope values for
the twelve individual sensors during the 4 collocation periods.
For Period 1, LCSs #7, #8, #9, #10, and #12 with the Model 2.0
calibration, all experienced improvements in RMSE and slope,
with an average RMSE reduction of 28% compared toModel 1.0.
During Period 2, eight out of the twelve sensors experienced at
Fig. 9 Box and whisker plots for the (A) RMSE, (B) R2, and (C) slope values
Each point is a compilation of values from the 3 sensors collocated during
interquartile range is the range of the boxes with the top representing th
maximum and minimum values in the data.

902 | Environ. Sci.: Atmos., 2023, 3, 894–904
least a 20% reduction in RMSE, with all experiencing
improvements in slope and R2, except for LCS #7. All but one
LCS, LCS #1, had at least a 20% decrease in RMSE for Period 3
compared to Model 1.0. Of note, LCSs #3, #6, #9, and #12 were
collocated at Buckeye during rotations throughout the summer
and at West Phoenix in April and October. For these sensors, we
see signicant improvement from the Period 3 Model 2.0 cali-
bration when compared to the Model 1.0 calibration. For
example, LCS #3 Model 1.0 had a R2 of 0.0094 and a slope of
0.0596, but with the Model 2.0 calibration this improved to
0.6737 and 0.83127 respectively. Finally, for Period 4, all three
LCSs that were calibrated during this period experienced lower
RMSE values, and higher R2 and slope values closer to unity
thanModel 1.0. Fig. 9 shows box and whisker plots of RMSE, R2,
and slope for Model 1.0 and Model 2.0 by date, using the eval-
uation dataset. Fig. 9B and C clearly show an improvement in R2

and slope for Model 2.0 during the summer period that Model
1.0 was having trouble with. Fig. S13† directly compares Model
1.0 and Model 2.0 to the FRM data for Period 3, where there is
a clear improvement in t from Model 1.0 to 2.0. Additionally,
Model 2.0 is more stable over the entire deployment period with
a lower variability compared to Model 1.0. This is consistent
with Fig. 7, where we saw the performance characteristics of
of the Model 1.0 andModel 2.0 calibrated data from two-week periods.
that date range. The lines within the boxes represent the medians, the

e 75th and the bottom the 25th percentile. The whiskers represent the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Model 2.0 were less susceptible to changes in RH and temper-
ature than Model 1.0. Sensor variability is extremely important
in this network application since data from multiple sensors
will be compiled to produce NO2 measurements from each site
across the whole deployment. Fig. S14† demonstrates how
seamless the sensor-to-sensor transition is for the Mesa site
using Model 2.0 compared to the SM calibrated data.
4 Conclusion

With an increasing demand for spatially resolved air quality
data, low-cost sensor networks have emerged as a possible
answer, but are not without their challenges. One of the biggest
tasks is to develop a robust calibration that works for the whole
network and in a variety of conditions. With our initial Model
1.0 calibration, we demonstrated the importance of developing
a calibration capable of correcting for environmental condi-
tions such as temperature, relative humidity, and ozone, for
NO2 LCSs specically. But even with these corrections, we saw
a decrease in sensor accuracy throughout the deployment
period and at different locations. To counteract this diminished
performance, we periodically collocated the LCSs at a reference
monitor site and re-trained the calibration model using the
periodic collocation data which accounted for the environ-
mental conditions at the time of data collection as opposed to
using a single training dataset from the initial deployment.
Using this calibration training method, we were able to improve
the RMSE, NRMSE, R2, and slope values for the LCSs
throughout the deployment period. The nal data had an
average RMSE of 4.2 ppb, NRMSE of 0.5, R2 of 0.734, and a slope
of 0.855, a considerable improvement over the SM calibrated
LCS data output. Even with these improvements the LCSs are
still at least an order of magnitude lower in terms of resolution
and accuracy compared to traditional chemiluminescence
instruments, but they make up for this in price, portability, and
ease of use. These results highlight the value of training the
sensor calibration model on environmental conditions
comparable to those expected at and during the deployment
period. However, it should be noted that the method used here
required bi-weekly trips to rotate the sensors between the
collocation and deployment sites, which may not be feasible for
larger sensor networks. An ideal solution for larger networks
would be a mobile reference instrument that could be rotated
between LCS deployment locations for periodic collocation and
recalibration.
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