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Porous nickel doped titanium dioxide nanoparticles
with improved visible light photocatalytic activity
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A green hydrothermal synthesis route to prepare a porous nickel doped titanium dioxide (Ni-TiO,)

nanostructured photocatalyst has been developed in this research. The results show that Ni doping can
greatly increase the visible light photocatalytic performance of TiO, through the introduction of impurity
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bands in the band gap of TiO,. After 5 cycles of reuse, Ni—TiO, nanoparticles still show stable
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1. Introduction

Due to the prosperity of modern industries, especially the ones
dealing with plastics, paper and textile dying, a huge amount of
wastewater with various kinds of effluents is discharged,
resulting in a great crisis in the acquirement of fresh water.*
Organic dye pollutants, one of the main produced effluents, can
seriously disturb and destroy the ecological balance, leaving
a heavy negative impact on the living, both human beings and
plants.” To mitigate the above mentioned crisis, a great number
of studies have focused on dye wastewater treatment, and
various strategies have been developed, such as biodegrada-
tion,® chlorination,* electrochemical,” photocatalytic®*® and
adsorption™** methods. As one of the most effective methods,
heterogeneous photocatalysis can greatly facilitate the oxida-
tion of the pollutants and the by-products of hazardous organic
pollutants.’> These catalysts typically have an excellent capa-
bility to convert photon energy into chemical energy which is
favorable for the decomposition of the main toxic organic
contaminants. Among these catalysts, TiO, has been proved to
be the most effective one due to its first usage in heterogeneous
photocatalysis under UV light irradiation by Fujishima and
Honda in 1972.** Afterwards, photocatalysis with TiO, catalysts
became a research hotspot to decay the harmful chemical
effluents present in wastewater.'*'> After several decades of
development, anatase TiO, is now considered to be one of the
most common photocatalysts with high photocatalytic
activity.*
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expected to have great potential applications in wastewater treatment due to the advantages of strong
visible light photocatalytic performance, a simple synthetic process and high cycle utilization performance.

TiO, has a favorable band gap, good chemical stability, good
photostability, and high corrosion resistance.'”*® TiO, is also
one of the most noticeable photocatalysts with particular
properties: it is a recoverable and reusable catalyst and can offer
an eco-friendly and non-toxic approach for dye wastewater
treatment. The photocatalytic activity of TiO, is based on the
mechanism of the formation of electron/hole (e /h") pairs
under the illumination of light which can initiate chemical
reactions by generating radical species on the surface of TiO,."
However, its poor efficiency in response to visible light limits its
application due to the hindrance of the large band gap to
catalyst efficiency under natural sunlight illumination which
mostly contains visible regions.*

Doping of TiO, with different transition metals (Fe, Mn, Cu,
Ni, etc.) can enhance the degradation under visible light irra-
diation, which has been successfully applied in wastewater
treatment.** The reducing of the band gap of the catalysts has
been achieved by doping metals through different processes.
Benjwal et al. reported that a Zn and Mn co-doped TiO, pho-
tocatalyst showed high activity and excellent adsorption prop-
erties in low concentration aqueous solutions.” Copper
phthalocyanine (CuPc) doped TiO, was confirmed to be an
efficient and stable photocatalyst for degradation of methylene
blue from aqueous solution under solar light irradiation.”® The
doping of TiO, with other transition metals such as Fe, Ni and
Co has also been employed in various applications.**>*
However, the applications of doped TiO, are still limited by
their high cost and relatively low stability.

To obtain highly effective TiO, photocatalysts, the synthesis
techniques need to be well controlled. In this work, novel Ni-
TiO, nanoparticles have been developed using a green
hydrothermal-synthesis route. Different from traditional TiO,
preparation techniques, this synthesis route is easy to be
operated and could save time. Meanwhile, the novel Ni-TiO,
nanoparticles exhibit outstanding performance on adsorption
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of MB dye from aqueous solutions in darkness and high pho-
tocatalytic activity towards MB dye under visible light. The
catalyst also exhibits extremely high cycle performance and
recyclability. The synthesis strategy presented in this work can
prepare materials with outstanding properties and will show
potential application in water treatment systems.

2. Experimental
2.1 Materials

Butyl titanate ([CHj3(CH,);0],Ti), absolute ethyl alcohol
(C,H50H), hydrochloric acid (HCl), ammonium hydroxide
(NH;3-H,0), nickel nitrate (Ni(NOs), - 6H,0), and methylene blue
(MB), were all purchased from Sinopharm Reagent Co Ltd. All
the chemicals were of analytical grade and used without further
purification. Deionized water was used throughout for the
preparation of all the experimental solutions.

2.2 Preparation of TiO, and Ni-TiO, nanoparticles

Tetrabutyl titanate (10 mL) and absolute ethyl alcohol (10 mL)
were mixed to obtain solution A. Absolute ethyl alcohol (20 mL)
and deionized water (100 mL) were mixed to obtain solution B.
Solution A was then added into solution B dropwise under
magnetic stirring for 30 min. Then, the pH value was adjusted
to 9 by ammonium hydroxide. After homogenization for 30 min,
the mixed solution was transferred into a Teflon-lined autoclave
for crystallization at 140 °C for 4 h. The resulting product was
washed with ethyl alcohol and deionized water 3 times each.
Then the nanoparticles were separated from the liquid phase by
centrifugation to remove the remaining compounds. The final
product was dried at 80 °C overnight to obtain TiO, powders.
The synthetic steps for Ni-(3 wt%) TiO, nanoparticles were little
different from the above. In step three, solution A and a nickel
nitrate solution (0.85 mL, 1 mol L") were added into solution B
dropwise under magnetic stirring for 30 min.

2.3 Characterization

FT-IR spectra were recorded using a Shimadzu instrument
(model 84008S) in the region 4000-400 cm ™. The phase analysis
of the as-synthesized products was carried out using X-ray
diffraction (XRD, DX-2700) with Cu-Ka radiation (A = 1.5406
A). UV-vis-NIR absorption spectra of the samples were recorded
using a UV-1800 spectrophotometer (Shimadzu). SEM images
were obtained using a S-4800 instrument (Hitachi, Japan). The
specific surface area was calculated by the Brunauer-Emmett-
Teller (BET) method, and the pore size distribution was ob-
tained using the Barrett-Joyner-Halenda (BJH) model using
a Micromeritics ASAP 2020 adsorption analyzer.

2.4 Photocatalytic experiments

Degradation of MB was used as an indicator for the photo-
catalytic activity of the TiO, nanoparticles. The prepared TiO,
nanoparticles were immersed in 10 mg L™' MB solution and
were allowed to completely equilibrate with MB for 20 min in
darkness. Then the system was irradiated by simulated solar
light (Xe lamp, 300 W) or UV light. 10 mL of solution was taken
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and analysed at different reaction times (every 15 min) using
a UV-1800 spectrophotometer.

3. Results and discussion
3.1 FTIR spectra

Fig. 1 shows the FTIR spectra of the TiO, and Ni-TiO, nano-
particles. The strong absorption bands at 662 and 704 cm™*
might be due to the Ti-O vibrations in the TiO, lattice.
Furthermore, a broad absorption band in the region of 3000-
3500 cm ™' can be assigned to the surface-bound hydroxyl
groups and their stretching vibration on the surface of TiO,.”” A
second adsorption band at 1000-1700 cm ' is assigned to
surface-adsorbed molecules (H-O-H bending,
1633 cm ™ ').>® It can confirm a strong interaction of water
molecules with the TiO, surface to form a number of broad OH-
stretching vibrations.”® A broad intense vibration region at
1000-1200 cm ™' is credited to the Ti-O-Ti vibration. Moreover,
occurrence of bands between 1300-1500 cm™ ' for Ni-TiO,
nanoparticles indicates the presence of a small amount of
organic material in the sample.”” With an increase in Ni
concentration, the shift to lower wavenumbers of the Ti-O-Ti
band could be attributed to the increase in powder particle
size.*

water

3.2 Phase analysis and morphology

XRD patterns of TiO, and Ni-TiO, nanoparticles are shown in
Fig. 2A. The Ni-TiO, sample exhibits peaks at 25.28°, 37.80°,
48.05°, 53.89°, 55.06°, 62.69°, 70.31°, and 75.03°, corresponding
to the anatase phase (JCPDF 21-1272), with no other phases. In
addition, peaks corresponding to Ni oxides are not detected.
These results further indicate that Ni ions have been success-
fully doped into TiO, nanoparticles.” Fig. 2B shows the spheri-
cally shaped Ni doped TiO, nanostructures. Compared with the
pure TiO, image (Fig. 2C), Ni-TiO, shows homogeneous nano-
particles with sizes of 20-30 nm.
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Fig.1 FT-IR spectral analysis of (a) TiO, and (b) Ni-TiO, nanoparticles.
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Fig. 3 UV-visible absorption spectra of (a) TiO, and (b) Ni-TiO,
samples.

3.3 UV-vis spectral analysis

The electronic structure of the samples that furnishes the
optical properties (e.g., absorption and band gap) through the
irradiating light intensity was determined by UV-vis spectral
analysis,”” as shown in Fig. 3. In the absorption spectra, it is
noticeable that the optical absorption edge of the pure TiO, is at
400 nm. The band gap of TiO, is 3.21 eV which is favorable to
produce electron-hole pairs under the UV light irradiation.
However, the pure TiO, can not degrade dyes under visible light.

1354 | Nanoscale Adv, 2020, 2, 1352-1357

(A) XRD patterns of (a) TiO, and (b) Ni-TiO, nanoparticles; (B) morphology of Ni=TiO,; (C) morphology of TiO,.
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Fig. 4 Nitrogen adsorption—desorption isotherms and pore size
distribution curve of Ni-TiO.

Compared to pure TiO,, Ni-TiO, nanoparticles exhibit a broad
absorption covering the range as shown in Fig. 3b, which can be
ascribed to the doping energy levels caused by the doped Ni in
the band gap of TiO,.

3.4 Nitrogen adsorption-desorption isotherm of Ni-TiO,

The nitrogen adsorption-desorption isotherm and BJH pore size
distribution curve (inset) of Ni-TiO, are shown in Fig. 4, which
displays a type-IV isotherm with a specific surface area of 124.02
m?® g~ '. This implies that the pores within the materials are
mainly within the mesoporous range. The pore size distribution

This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Photodegradation of MB dye using TiO, and Ni-TiO, nano-
particles under UV and solar light irradiation.
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Fig. 6 Photocatalytic stability test of Ni—-TiO, nanoparticles.

is calculated using the BJH method (desorption curve).** The
pore-size distribution of Ni-TiO, shows that the pore diameters
distribution (Fig. 4 inset) has a peak at about 9 nm, indicating
that Ni-TiO, has a mesoporous structure. These small pores can
enhance photocatalytic activities by favoring the adsorption of
small dye molecules on the active surface.
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3.5 MB decomposition capacity under solar and UV light

Fig. 5 depicts the photocatalytic degradation of MB using TiO,
and Ni-TiO, nanoparticles under UV and solar light irradiation
as a function of time with an initial MB concentration of
10 mg L' The degradation efficiencies of Ni-TiO, nano-
particles under solar and UV after 60 min irradiation are found
to be 92.7% and 96.3%, respectively. However, the corre-
sponding degradation efficiencies are only 85.9% and 27.7% for
pure TiO,. It can be found that Ni doping can increase the
visible light degradation performance greatly. The TiO, catalyst
shows very weak photocatalytic performance for MB degrada-
tion under solar light irradiation. After Ni doping, the visible
light photocatalytic performance increases to a similar level
compared with that under UV light. The result demonstrates
that Ni doping can improve the photocatalytic activity of TiO,
nanoparticles under visible light.

3.6 Photocatalytic performance stability

The stability is also important for the practical application of
the photocatalyst. Therefore, the cyclic stability of Ni-TiO,
nanoparticles was investigated by monitoring the catalytic
activity during successive cycles of degradation. As shown in
Fig. 6, after a five cycles test, the Ni-TiO, nanoparticles exhibit
avery stable photocatalytic performance without any significant
deactivation, thereby demonstrating high stability after
multiple reuse cycles.

3.7 Photocatalytic mechanism of Ni-TiO,

The plausible mechanism of the photocatalytic activity of the
synthesized Ni-TiO, nanoparticles can be explained by the
energy band gap structure of TiO, shown in Fig. 7. The direct
excitation of an electron from the valence band (VB) to the
conduction band (CB) in the presence of visible light is not
possible due to the broad band gap (3.21 eV) of pure TiO,.
Through the incorporation of Ni ions into the TiO, lattice, the
band gap of TiO, decreases due to the formation of impurity
levels below the CB in the band gap, then the electrons can
transfer from the VB to these energy levels. These electrons
travel to the surface and are adsorbed by O, and produce ‘O,

Fig. 7 Possible mechanism of the MB degradation by Ni—-TiO, nanoparticles.

This journal is © The Royal Society of Chemistry 2020

Nanoscale Adv., 2020, 2,1352-1357 | 1355


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9na00760a

Open Access Article. Published on 29 Nyenyenyani 2020. Downloaded on 2025-11-05 19:25:52.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Nanoscale Advances

ions, which can further convert to the strong redox species ‘OH
ions.** These redox ions are responsible for the degradation of
the surface adsorbed hazardous MB.>?

4. Conclusions

Ni-TiO, nanoparticles synthesized by a green
hydrothermal-synthesis route and characterized in detail. The
activities of the synthesized nanoparticles were studied through
MB photocatalytic degradation. The results demonstrate that Ni
doping can greatly increase the visible light photocatalytic
performance of TiO, through the introduction of impurity
bands in the band gap of TiO,. After 5 cycles of reuse, Ni-TiO,
nanoparticles still show stable photocatalytic activity for MB
degradation. Thus the Ni-TiO, nanoparticles developed in the
present study are expected to have great potential applications
in wastewater treatment due to the advantages of strong visible
light photocatalytic performance, a simple synthetic process
and high cycle utilization performance.
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