

Cite this: *Chem. Sci.*, 2019, **10**, 9679

All publication charges for this article have been paid for by the Royal Society of Chemistry

Received 17th July 2019
Accepted 17th August 2019DOI: 10.1039/c9sc03531a
rsc.li/chemical-science

Introduction

The enantioselective synthesis of tertiary homoallylic alcohols¹ continues to attract attention as these are highly useful intermediates in complex molecule synthesis and for medicinal chemistry.² An established way to access that motif is by ketone allylation^{3–7} where enantiofacial discrimination and low reactivity are the key challenges compared to aldehydes as electrophiles.⁸ Many methods are based on preformed allylmetal reagents.^{3–6} An alternative to these nucleophiles is their *in situ* formation by hydrometalation of 1,3-dienes^{9,10} and allenes,¹⁰ and examples of transition-metal-catalyzed reductive couplings with ketones were recently achieved.^{10–12} A powerful variation of this approach is the borylation of 1,3-dienes in the presence of a carbon electrophile.^{13–17} These and related stereoselective borylative coupling reactions of other π -systems form a carbon–boron and a carbon–carbon bond in a single operation.¹³ However, reactions involving ketones as electrophiles are scarce.^{14,17a,d–g} To the best of our knowledge, there are only three examples of the preparation of tertiary homoallylic alcohols by the borylative coupling strategy. Morken and co-workers reported a nickel-catalyzed three-component coupling of 1,3-dienes, bis(pinacolato)diboron, and ketones in racemic fashion (Scheme 1, top).¹⁴ The reaction outcome was dependent on the substitution pattern of the 1,3-diene; (*E*)-penta-1,3-diene converted into 4,3-hydroxyalkylboration products while isoprene (one example) afforded the 4,1-hydroxyalkylboration product. Starting from allenes as the precursor of the allylic nucleophiles, Hoveyda and co-workers realized enantioselective borylative couplings with carbonyl

compounds with *syn* selectivity but enantiocontrol was lower for ketones than for aldehydes (Scheme 1, middle).^{17a} Low enantioselectivity was found by Tian and Tao in an

Morken (2011):
Nickel-catalyzed borylative coupling of 1,3-dienes and ketones

Hoveyda (2013):
Enantioselective copper-catalyzed borylative coupling of allenes and ketones

This work:
Diastereodivergent and enantioselective copper-catalyzed borylative coupling of 1,3-dienes and ketones

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany. E-mail: martin.oestreich@tu-berlin.de

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc03531a

‡ These authors contributed equally.

intramolecular borylative cyclization of allenes tethered to cyclohexanenediones (not shown).^{17f} Hence, there is a demand for the development of new enantioselective borylative coupling reactions of π -systems and ketones to access chiral tertiary homoallylic alcohols. We disclose here such a copper-catalyzed three-component reaction with 1,3-dienes as the allylic coupling partner where the diastereoselectivity is determined by the ligand (Scheme 1, bottom).^{9d,e}

Results and discussion

For optimization, the three-component reaction of acetophenone (**1a**), isoprene (**2a**), and $B_2(\text{pin})_2$ was chosen as the model reaction. The ligand effects are summarized in Table 1. In general, the reaction catalyzed by CuCl and phosphoramidite ligands afforded *anti*-**4aa** as the major diastereomer after oxidative degradation of the carbon–boron bond (see the ESI† for the complete set of data).¹⁸ As an example, *anti*-**4aa** formed in decent yield and with moderate stereoselectivity at room temperature in the presence of $\text{CuCl}/\text{L1}$ and NaOtBu (entry 1). Further optimization of the copper source, solvent, and temperature led to a system which afforded the tertiary homoallylic alcohol *anti*-**4aa** as the major diastereomer in 94% NMR yield and with 90% ee (entries 2–4). In contrast to phosphoramidite ligands, bisphosphine ligands commonly used in copper catalysis such as **L2** to **L12** furnished *syn*-**4aa** as the major diastereomer at room temperature (entries 5–17), and commercially available josiphos derivative **L9** was found to be optimal (entry 12). Lowering of reaction temperature from room temperature to $-20\text{ }^\circ\text{C}$ increased the enantiomeric excess and diastereoselectivity significantly but was detrimental to the yield (entry 13). Finally, high yield (98% NMR yield) and stereoselectivity (93% ee and d.r. = 87 : 13 in favor of *syn*) were restored in toluene/THF 8 : 2 with 5.0 mol% CuOAc and 6.0 mol% **L9** as the catalyst–ligand combination (entry 14).

We next investigated the scope of ketones using **L1** in the *anti*-selective procedure and **L9** in the *syn*-selective setup (Conditions A and B, Scheme 2). Acetophenones with various substituents in the *para* position, including electron-donating groups (as in **1b–e**) and halogens (as in **1d–f**), exhibited high reactivity and stereoselectivity. A carboxyl group was compatible (as in **1g**), thus further emphasizing the functional-group tolerance of this reaction. **1h** and **i** with *meta* substitution also gave satisfactory results. The reaction of *ortho*-methyl-substituted **1j** was successful under Condition B and yielded *syn*-**4ia** with 98% ee (*anti*-**4ja**: 80% ee); conversely, poor stereoselectivity was obtained under Condition A. Pyridyl-substituted **1l** reacted smoothly under Condition B and furnished *syn*-**4la** with good diastereoselectivity (d.r. = 90 : 10) and enantioselectivity (90% ee); in turn, the reaction of **1l** under Condition A produced *anti*-**4la** with a moderate ee value. Aside from aromatic methyl ketones, propiophenone (**1m**), which had not been compatible with Morken's¹⁴ and Hoveyda's^{17a} catalytic system (cf. Scheme 1), also furnished *anti*-**4ma** in excellent yield and good enantioselectivity with moderate diastereoselectivity under Condition A; B afforded the target compound in a similar

Table 1 Selected examples of the optimization of the borylative hydroxyalkylation of 1,3-dienes^a

Entry	Ligand	Yield ^b (%)	d.r. (<i>anti</i> : <i>syn</i>)	<i>ee</i> ^c (%)	
				<i>anti</i> - 4aa	<i>syn</i> - 4aa
1	L1	53	71 : 29	60	21
2 ^d	L1	88	66 : 34	64	10
3 ^{d,e}	L1	96	68 : 32	68	30
4 ^{d,e,f}	L1	94	80 : 20	90	64
5	L2	75	42 : 58	43	32 ^g
6	L3	92	35 : 65	6	35
7	L4	93	28 : 72	35 ^g	32 ^g
8 ^e	L5	84	44 : 56	13	22
9	L6	45	23 : 77	22 ^g	61
10	L7	98	23 : 77	13 ^g	80
11	L8	80	22 : 78	72 ^g	88
12	L9	98	23 : 77	74 ^g	88
13 ^h	L9	61	15 : 85	79 ^g	94
14 ^{h,i}	L9	98	13 : 87	71^g	93
15	L10	65	28 : 72	71 ^g	87
16	L11	37	47 : 53	0	37
17	L12	29	49 : 51	—	—

^a Unless otherwise noted, the reactions were performed with **1a** (0.2 mmol), **2a** (1 mmol), and $B_2(\text{pin})_2$ (0.3 mmol) in THF (2 mL).

^b Combined NMR yield determined by ^1H NMR spectroscopy with CH_2Br_2 as an internal standard. ^c Determined by HPLC analysis on chiral stationary phases. ^d CuOAc instead of CuCl . ^e Toluene instead of THF. ^f Run at $-30\text{ }^\circ\text{C}$. ^g The other enantiomer was obtained. ^h Run at $-20\text{ }^\circ\text{C}$. ⁱ 0.4 mmol scale, 5.0 mol% CuOAc and 6.0 mol% **L9** were used and toluene/THF 8 : 2 instead of THF.

yield yet with a high diastereomeric ratio and a markedly diminished ee value. Interestingly, α,β -unsaturated ketone **1n** reacted regioselectively (1,2- over 1,4-addition) with good to excellent diastereoselectivity; *syn*-**4na** was the major product under both Condition A and B. Moreover, dialkyl ketone **1o** converted into the corresponding products *anti*- and *syn*-**4oa** under A and B but with low diastereoselectivity likely due to the little steric differentiation between the methyl and methylene groups attached to the carbonyl carbon atom.

We then examined the scope of 1,3-dienes (Scheme 3). Isoprene (**2a**) could be replaced by buta-1,3-diene (**2b**),

Scheme 2 Scope I: variation of the ketone.^{a–c} ^aCondition A: CuOAc (10 mol%), L1 (12 mol%), NaOtBu (40 mol%), ketone 1 (0.20 mmol), isoprene (2a, 1.0 mmol), and B2(pin)2 (1.5 equiv.) in toluene (2 mL) at -30 °C. Condition B: CuOAc (5.0 mol%), L9 (6.0 mol%), NaOtBu (40 mol%), ketone 1 (0.40 mmol), isoprene (2a, 2.0 mmol), and B2(pin)2 (1.5 equiv.) in toluene/THF – 8 : 2 (3.5 mL) at -20 °C. ^bYields are combined isolated material; diastereomers are usually separable by flash chromatography on silica gel. ^cThe enantiomeric excess of the major diastereomer was determined by HPLC analysis on chiral stationary phases. ^dCuOAc (15 mol%) and L1 (18 mol%) were used. ^eCuOAc (10 mol%) and L9 (12 mol%) were used. ^fanti-4ja: 29% ee. ^ganti-4ja: 80% ee. ^hee value of anti-4la. ⁱsyn-4ma: 78% ee. ^jsyn-4na: 72% ee.

myrcene (2c), its functionalized derivative 2d, and 2,3-dimethylbuta-1,3-diene (2e). Yields were generally good but stereoselectivities ranged from poor to good under Condition A. In contrast, good to excellent stereoselectivities were observed for these 1,3-dienes under Condition B, *e.g.*, d.r. = 96 : 4 and 92% ee for 1n → syn-4nb and d.r. = 93 : 7 and 91% ee for 1a → syn-4ad. In the case of 2-aryl-substituted 1,3-diene 1f, diastereodivergency was not achieved. Subjecting 1f to Condition A afforded syn-4af in low yield as a single syn-isomer (not shown). However, applying Condition B at -5 °C significantly improved the yield and furnished the syn-4af with d.r. > 98 : 2 and 85% ee.

To explore synthetic transformations of these tertiary homoallylic alcohols (Scheme 4), a scale-up synthesis of syn-4aa (1.0 mmol) under Condition B was done without any loss in efficiency and selectivity (see the ESI†). The primary alkyl borane generated by the multicomponent reaction was subjected to a Suzuki–Miyaura coupling to afford syn-5 in 83%

yield (Scheme 4, top). The versatility of the diol products 4 is illustrated for several transformations (Scheme 4, bottom). The 1,1-disubstituted double bond in anti-4ha was hydrogenated over Pd/C to produce anti-6 in 87% yield. The hydroxyl group in syn-4aa was replaced by an azide group through an S_N2 reaction of an intermediate mesylate with NaN₃ (syn-4aa → syn-7). Pyran syn-8 was synthesized from syn-4ab by sequential alcohol allylation and ring-closing metathesis. Of note, a chemoselective tosylation of the primary alcohol in syn-4aa followed by a 4-exo-tet ring closure allowed for the construction of enantioenriched, trisubstituted oxetane trans-9 in 86% yield.

Conclusion

In summary, we have developed an efficient copper-catalyzed diastereodivergent and enantioselective borylative coupling of 1,3-dienes and ketones. Using a Feringa-type ligand L1, the

Scheme 3 Scope II: variation of the 1,3-diene.^{a–c} For footnotes a–c, see Scheme 2. ^dThe absolute configuration was assigned by chemical correlation after separation of the diastereomers by flash chromatography on silica gel (see the ESI†). ^eanti-4ab: 84% ee. ^fCuOAc (8.0 mol%) and L9 (10 mol%) were used. ^gRun at –5 °C with CuOAc (10 mol%), L9 (12 mol%), NaOtBu (50 mol%), and B₂(pin)₂ (2.0 equiv.). ^hCuOAc (15 mol%) and L1 (18 mol%) were used.

Scheme 4 Tertiary homoallylic alcohols as versatile building blocks. (a) PhBr (1.8 equiv.), Pd(OAc)₂ (5.0 mol%), RuPhos (10 mol%), KOTBu (3.0 equiv.), toluene/H₂O (10/1), 80 °C, 24 h; (b) Pd/C (10%), H₂ (1 atm), MeOH, rt, 26 h; (c) (i) MsCl (1.5 equiv.), Et₃N (1.5 equiv.), CH₂Cl₂, 0 °C to rt, 50 min; (ii) NaN₃ (2.0 equiv.), DMF/H₂O (10/1), 80 °C, 12 h; (d) (i) NaH (2.0 equiv.), allyl bromide (1.1 equiv.), THF, 0 °C to rt, 14 h; (ii) Hoveyda–Grubbs II (5.0 mol%), CH₂Cl₂, 4, 12 h; (e) (i) TsCl (2.4 equiv.), pyridine, 0 °C to rt, 24 h; (ii) nBuLi (1.1 equiv.), –25 °C to rt, 15 h. Ms = methanesulfonyl.

reaction yielded *anti*-configured tertiary homoallylic alcohols while a switch to josiphos ligand L9 resulted in *syn* selectivity (see the ESI† for a discussion of the reaction mechanism). This three-component coupling reaction represents a useful method for the preparation of stereochemically diverse tertiary alcohols bearing versatile alkenyl and boryl motifs from feedstock 1,3-dienes, ketones, and B₂(pin)₂. The synthetic utility of the reaction was showcased by several transformations.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

J.-J. F. gratefully acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship (2017–2020), and Y. X. thanks the China Scholarship Council for a predoctoral fellowship (2018–2022). M. O. is indebted to the Einstein Foundation Berlin for an endowed professorship. Solvias AG is thanked for a generous gift of josiphos ligands.

Notes and references

- For reviews of related asymmetric allylation of carbonyl compounds, see: (a) Y.-L. Liu and X.-T. Lin, *Adv. Synth. Catal.*, 2019, **361**, 876–918; (b) M. Hatano and K. Ishihara, *Synthesis*, 2008, 1647–1675; (c) S. E. Denmark and J. Fu, *Chem. Rev.*, 2003, **103**, 2763–2793.
- M. Yus, J. C. González-Gómez and F. Foubelo, *Chem. Rev.*, 2013, **113**, 5595–5698.
- With allylboron reagents: (a) R. Wada, K. Oisaki, M. Kanai and M. Shibasaki, *J. Am. Chem. Soc.*, 2004, **126**, 8910–8911; (b) S. Lou, P. N. Moquist and S. E. Schaus, *J. Am. Chem. Soc.*, 2006, **128**, 12660–12661; (c) U. Schneider, M. Ueno and S. Kobayashi, *J. Am. Chem. Soc.*, 2008, **130**, 13824–13825; (d) S.-L. Shi, L.-W. Xu, K. Oisaki, M. Kanai and M. Shibasaki, *J. Am. Chem. Soc.*, 2010, **132**, 6638–6639; (e) D. S. Barnett, P. N. Moquist and S. E. Schaus, *Angew. Chem., Int. Ed.*, 2009, **48**, 8679–8682; (f) R. Alam, T. Vollgraff, L. Eriksson and K. J. Szabó, *J. Am. Chem. Soc.*, 2015, **137**, 11262–11265; (g) D. W. Robbins, K. A. Lee, D. L. Silverio, A. Volkov, S. Torker and A. H. Hoveyda, *Angew. Chem., Int. Ed.*, 2016, **55**, 9610–9614; (h) K. A. Lee, D. L. Silverio, S. Torker, D. W. Robbins, F. Haeffner, F. W. van der Mei and A. H. Hoveyda, *Nat. Chem.*, 2016, **8**, 768–777; (i) F. W. van der Mei, C. Qin, R. J. Morrison and A. H. Hoveyda, *J. Am. Chem. Soc.*, 2017, **139**, 9053–9065.
- With allylsilicon reagents: (a) S. Yamasaki, K. Fujii, R. Wada, M. Kanai and M. Shibasaki, *J. Am. Chem. Soc.*, 2002, **124**, 6536–6537; (b) M. Wadamoto and H. Yamamoto, *J. Am. Chem. Soc.*, 2005, **127**, 14556–14557; (c) M. Wadamoto, M. Naodovic and H. Yamamoto, *Eur. J. Org. Chem.*, 2009, 5132–5134.
- With allyltin reagents: (a) S. Casolari, D. D'Addario and E. Tagliavini, *Org. Lett.*, 1999, **1**, 1061–1063; (b) K. M. Waltz, J. Gavenonis and P. J. Walsh, *Angew. Chem.*,

Int. Ed., 2002, **41**, 3697–3600; (c) A. Cunningham and S. Woodward, *Synthesis*, 2002, 43–44; (d) J. G. Kim, K. M. Waltz, I. F. Garcia, D. Kwiatkowski and P. J. Walsh, *J. Am. Chem. Soc.*, 2004, **126**, 12580–12585; (e) Y.-C. Teo, J.-D. Goh and T.-P. Loh, *Org. Lett.*, 2005, **7**, 2743–2745; (f) J. G. Kim, E. H. Camp and P. J. Walsh, *Org. Lett.*, 2006, **8**, 4413–4416; (g) X. Zhang, D. Chen, X. Liu and X. Feng, *J. Org. Chem.*, 2007, **72**, 5227–5233.

6 With allyl halides using a stoichiometric metal reductant: (a) J. J. Miller and M. S. Sigman, *J. Am. Chem. Soc.*, 2007, **129**, 2752–2753; (b) X.-R. Huang, C. Chen, G.-H. Lee and S.-M. Peng, *Adv. Synth. Catal.*, 2009, **351**, 3089–3095; (c) R.-Y. Chen, A. P. Dhondge, G.-H. Lee and C. Chen, *Adv. Synth. Catal.*, 2015, **357**, 961–966; for a review, see: (d) Z.-L. Shen, S.-Y. Wang, Y.-K. Chok, Y.-H. Xu and T.-P. Loh, *Chem. Rev.*, 2013, **113**, 271–401.

7 With hydrocarbon pronucleophiles: (a) R. Yazaki, N. Kumagai and M. Shibasaki, *J. Am. Chem. Soc.*, 2009, **131**, 3195–3197; (b) R. Yazaki, N. Kumagai and M. Shibasaki, *J. Am. Chem. Soc.*, 2010, **132**, 5522–5531; (c) X.-F. Wei, X.-W. Xie, Y. Shimizu and M. Kanai, *J. Am. Chem. Soc.*, 2017, **139**, 4647–4650.

8 For authoritative reviews, see: (a) M. Shibasaki and M. Kanai, *Chem. Rev.*, 2008, **108**, 2853–2873; (b) C. García and V. S. Martín, *Curr. Org. Chem.*, 2006, **10**, 1849–1889.

9 For key reviews, see: (a) S. W. Kim, W. Zhang and M. J. Krische, *Acc. Chem. Res.*, 2017, **50**, 2371–2380; (b) K. D. Nguyen, B. Y. Park, T. Luong, H. Sato, V. J. Garza and M. J. Krische, *Science*, 2016, **354**, aah5133; for seminal work on the use of 1,3-dienes as allylmetal equivalents, see: ; (c) F. Shibahara, J. F. Bower and M. J. Krische, *J. Am. Chem. Soc.*, 2008, **130**, 6338–6339; (d) E. L. McInturff, E. Yamaguchi and M. J. Krische, *J. Am. Chem. Soc.*, 2012, **134**, 20628–20631; (e) J. R. Zbieg, E. Yamaguchi, E. L. McInturff and M. J. Krische, *Science*, 2012, **336**, 324–327.

10 M. Holmes, L. A. Schwartz and M. J. Krische, *Chem. Rev.*, 2018, **118**, 6026–6052.

11 For reviews of reductive couplings, see: (a) M. Kimura and Y. Tamaru, *Top. Curr. Chem.*, 2007, **279**, 173–207; (b) J. Montgomery, *Angew. Chem., Int. Ed.*, 2004, **43**, 3890–3908.

12 Selected examples of reductive couplings of ketones and 1,3-dienes. Racemic reactions: (a) Y. Sato, M. Takimoto, K. Hayashi, T. Katsuhara, K. Takagi and M. Mori, *J. Am. Chem. Soc.*, 1994, **116**, 9771–9772; (b) M. Kimura, H. Fujimatsu, A. Ezoe, K. Shibata, M. Shimizu, S. Matsumoto and Y. Tamaru, *Angew. Chem., Int. Ed.*, 1999, **38**, 397–400; (c) M. Kimura, A. Ezoe, M. Mori, K. Iwata and Y. Tamaru, *J. Am. Chem. Soc.*, 2006, **128**, 8559–8568; (d) J. C. Leung, L. M. Geary, T.-Y. Chen, J. R. Zbieg and M. J. Krische, *J. Am. Chem. Soc.*, 2012, **134**, 15700–15703; (e) B. Y. Park, T. P. Montgomery, V. J. Garza and M. J. Krische, *J. Am. Chem. Soc.*, 2013, **135**, 16320–16323. Asymmetric reactions: (f) Y. Yang, I. B. Perry, G. Lu, P. Liu and S. L. Buchwald, *Science*, 2016, **353**, 144–150; (g) C. Li, R. Y. Liu, L. T. Jesikiewicz, Y. Yang, P. Liu and S. L. Buchwald, *J. Am. Chem. Soc.*, 2019, **141**, 5062–5070.

13 For authoritative reviews of borylative couplings, see: (a) K. Semba and Y. Nakao, *Tetrahedron*, 2019, **75**, 709–719; (b) D. Hemming, R. Fritzemeier, S. A. Westcott, W. L. Santos and P. G. Steel, *Chem. Soc. Rev.*, 2018, **47**, 7477–7494; (c) A. P. Pulis, K. Yeung and D. J. Procter, *Chem. Sci.*, 2017, **8**, 5240–5247; (d) H. Yoshida, *ACS Catal.*, 2016, **6**, 1799–1811; (e) Y. Tsuji and T. Fujihara, *Chem. Rec.*, 2016, **16**, 2294–2313; (f) K. Semba, T. Fujihara, J. Terao and Y. Tsuji, *Tetrahedron*, 2015, **71**, 2183–2197; (g) H. Y. Cho and J. P. Morken, *Chem. Soc. Rev.*, 2014, **43**, 4368–4380.

14 H. Y. Cho, Z. Yu and J. P. Morken, *Org. Lett.*, 2011, **13**, 5267–5269.

15 Examples of catalytic asymmetric platinum- and nickel-catalyzed borylative aldehyde–diene couplings: (a) J. B. Morgan and J. P. Morken, *Org. Lett.*, 2003, **5**, 2573–2575; (b) H. E. Burks, L. T. Kliman and J. P. Morken, *J. Am. Chem. Soc.*, 2009, **131**, 9134–9135; (c) L. T. Kliman, S. N. Mlynarski, G. E. Ferris and J. P. Morken, *Angew. Chem., Int. Ed.*, 2012, **51**, 521–524.

16 Selected examples of enantioselective copper-catalyzed borylative couplings of dienes. With α,β -unsaturated acceptors: (a) X. Li, F. Meng, S. Torker, Y. Shi and A. H. Hoveyda, *Angew. Chem., Int. Ed.*, 2016, **55**, 9997–10002; with imines: (b) L. Jiang, P. Cao, M. Wang, B. Chen, B. Wang and J. Liao, *Angew. Chem., Int. Ed.*, 2016, **55**, 13854–13858; with acylsilanes: (c) J.-J. Feng and M. Oestreich, *Angew. Chem., Int. Ed.*, 2019, **58**, 8211–8215; with electrophilic cyanating reagents: (d) T. Jia, M. J. Smith, A. P. Pulis, G. J. P. Perry and D. J. Procter, *ACS Catal.*, 2019, **9**, 6744–6750; with aryl halides: (e) S. R. Sardini and M. K. Brown, *J. Am. Chem. Soc.*, 2017, **139**, 9823–9826; (f) K. B. Smith, Y. Huang and M. K. Brown, *Angew. Chem., Int. Ed.*, 2018, **57**, 6146–6149.

17 Selected examples of copper-catalyzed borylative couplings with carbonyl compounds. Intermolecular: (a) F. Meng, H. Jang, B. Jung and A. H. Hoveyda, *Angew. Chem., Int. Ed.*, 2013, **52**, 5046–5051; (b) F. Meng, F. Haefner and A. H. Hoveyda, *J. Am. Chem. Soc.*, 2014, **136**, 11304–11307; (c) S. Gao and M. Chen, *Chem. Sci.*, 2019, **10**, 7554–7560; (d) X.-C. Gan and L. Yin, *Org. Lett.*, 2019, **21**, 931–936; intramolecular: (e) A. R. Burns, J. S. González and H. W. Lam, *Angew. Chem., Int. Ed.*, 2012, **51**, 10827–10831; (f) Y.-S. Zhao, X.-Q. Tang, J.-C. Tao, P. Tian and G.-Q. Lin, *Org. Biomol. Chem.*, 2016, **14**, 4400–4404; (g) E. Yamamoto, R. Kojima, K. Kubota and H. Ito, *Synlett*, 2016, **27**, 272–276.

18 For reports on the synthesis of chiral compounds by carbonyl (hydroxymethyl)allylations with anti-diastereoselectivity, see: (a) Y. J. Zhang, J. H. Yang, S. H. Kim and M. J. Krische, *J. Am. Chem. Soc.*, 2010, **132**, 4562–4563; (b) J. Feng, V. J. Garza and M. J. Krische, *J. Am. Chem. Soc.*, 2014, **136**, 8911–8914.

