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learning of non-covalent systems†

Alberto Fabrizio,ab Andrea Grisafi,cb Benjamin Meyer,ab Michele Ceriotti cb

and Clemence Corminboeuf *ab

Chemists continuously harvest the power of non-covalent interactions to control phenomena in both the

micro- and macroscopic worlds. From the quantum chemical perspective, the strategies essentially rely

upon an in-depth understanding of the physical origin of these interactions, the quantification of their

magnitude and their visualization in real-space. The total electron density r(r) represents the simplest yet

most comprehensive piece of information available for fully characterizing bonding patterns and non-

covalent interactions. The charge density of a molecule can be computed by solving the Schrödinger

equation, but this approach becomes rapidly demanding if the electron density has to be evaluated for

thousands of different molecules or very large chemical systems, such as peptides and proteins. Here we

present a transferable and scalable machine-learning model capable of predicting the total electron

density directly from the atomic coordinates. The regression model is used to access qualitative and

quantitative insights beyond the underlying r(r) in a diverse ensemble of sidechain–sidechain dimers

extracted from the BioFragment database (BFDb). The transferability of the model to more complex

chemical systems is demonstrated by predicting and analyzing the electron density of a collection of 8

polypeptides.
1 Introduction

Non-covalent interactions (NCIs) govern a multitude of chem-
ical phenomena and are key components for constructing
molecular architectures.1 Their importance fostered an intense
research effort to accurately quantify their magnitude and
develop an intuitive characterization of their physical nature
using quantum chemistry.2–6 Among the different approaches to
characterize non-covalent interactions, one of the simplest and
most generally applicable takes as a starting point the electron
density r(r) that encodes, in principle, all the information
needed to fully characterize a chemical system.7 Despite the fact
that the universal functional relationship between total energy
and r(r) remains unknown, existing approximations within the
framework of Kohn–ShamDFT (KS-DFT)8 do permit access to all
molecular properties within a reasonable degree of accuracy.9–11

Properties that can be derived exactly from the electron
density distribution include molecular and atomic electrostatic
moments (e.g., charges, dipole, quadrupoles), electrostatic
potentials and electrostatic interaction energies. Knowledge of
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these quantities is fundamental in diverse chemical applica-
tions, including the computation of the IR intensities,12 the
identication of binding sites in host–guest compounds,13–15

and the exact treatment of electrostatics within molecular
simulations.16 Moreover, analyzing the deformation of r(r) in
the presence of an external eld provides access to another set
of fundamental properties, namely molecular static (hyper)
polarizabilities and, thus, to the computation of Raman
spectra17 and non-linear optical properties.18–21

The natural representation of the electron density in real
space makes it especially suitable for accessing spatial infor-
mation about structural and electronic molecular properties,
including X-ray structure renement22–27 and representations
using scalar elds.6 Routinely used examples include the
quantum theory of atoms in molecules (QTAIM),28,29 the density
overlap region indicator (DORI),30 and the non-covalent inter-
action (NCI) index.31,32

r(r) is generally obtained by solving the electronic structure
problem through ab initio computations. The main advantage
of this approach is that it returns the variationally optimized
electronic density for a given Hamiltonian. Yet, ab initio
computations can become increasingly burdensome if r(r) has
to be evaluated for thousands of different molecules or very
large chemical systems, such as peptides and proteins. These
large scale problems are typically tackled using a more scalable
approach that consists of either using linear scaling techniques
such as Mezey's molecular electron density LEGO assembler
(MEDLA)33,34 and adjustable density matrix assembler
(ADMA),35–37 as well as approaches based on localized molecular
This journal is © The Royal Society of Chemistry 2019
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orbitals, such as ELMO.38–41 Another methodology belonging to
this second category involves the use of experimental tech-
niques, such as X-ray diffraction, to probe the electron density
and subsequently reconstructing r(r) through multipolar
models42–44 and pseudo-atomic libraries, such as ELMAM,45–48

ELMAM2,49,50 UBDB,51,52 Invarioms53 and SBFA.54 While
successful, these two methodologies have intrinsic limits: the
rst is unable to capture the deformations of the charge density
due to intermolecular interactions unless a suitable fragment is
generated ad hoc, while the second relies on experimental data
and is difficult to extend to thousands of different chemical
systems at once. Recently, the development of several machine-
learning models targeting the electron density has effectively
established a third promising methodology, with the potential
to overcome the limitations of the more traditional approaches.

The rst machine-learning model of r(r) was developed on
the basis of the Hohenberg–Kohnmapping between the nuclear
potential and the electron density.55,56 Although successful, the
choice of the nuclear potential as a representation of the
different molecular conformations and the expansion of the
electron density in an orthogonal plane-wave basis effectively
constrained this landmark model to relatively small and rigid
molecules with limited transferability to larger systems.
Recently, we proposed an atom-centered, symmetry-adapted
Gaussian process regression57 (SA-GPR) framework explicitly
targeting the learning of the electron density.58 Using an opti-
mized non-orthogonal basis set, pseudo-valence electron
densities could be predicted in a linear-scaling and transferable
manner, meaning that the model is able to tackle much larger
chemical systems than those used to train the regressionmodel.
A third approach, that can also achieve transferability between
different systems, uses a direct grid-based representation of the
atomic environment to learn and predict the electronic density
in each point of the molecular space.59–61 Representing the
density eld on a large set of grids points rather than on a basis
set effectively avoids the introduction of a basis set error, but
also dramatically increases the computational effort.

One should also consider that machine learning, being
a data-driven approach, requires high-quality, diverse reference
data. Fortunately, several specialized benchmark databases that
target NCIs have appeared over the past decade. From the
original S22 (ref. 62) to NCIE53,63 S66,64 NBC10/NBC10ext,65–67

and S12L,68,69 the evolution of these datasets has, generally,
followed a prescription of increasing the number of entries,
principally by including subtler interactions and/or larger
systems. In this respect, the databases of Friesner,70 Head-
Gordon,71 Shaw,72 and the recent BFDb of Sherrill,73 constitute
a special category because of their exceptional size (reaching
thousands of entries) which are now sufficiently large to be
compatible with machine-learning applications. Beyond their
conceptual differences, each of these benchmark sets aims at
improving the capability of electronic structure methods to
describe the energetic aspects of non-covalent interactions.

In this work, we introduce a dramatic improvement of our
previous density-learning approach by making the regression
machinery of r(r) compatible with density-tting auxiliary basis
sets. These specialized basis sets are routinely used in quantum
This journal is © The Royal Society of Chemistry 2019
chemistry to approximate two-center one-electron densities.
Here, the auxiliary basis sets are used directly to represent the
electron densities that enter our machine-learning model, with
the additional advantage of avoiding the arbitrary basis set
optimization procedures on the machine-learning side. This
enhanced framework leverages the transferability of our
symmetry-adapted regression method and is capable of
learning the all-electron density across a vast spectrum of 2291
chemically diverse dimers formed by sidechain–sidechain
interactions extracted from the BioFragment Database (BFDb).73

The performance of the method is demonstrated through the
reproduction of r(r) between and within each monomer form-
ing the dimers. The accuracy of the predicted densities is
assessed by computing density-based scalar elds and electro-
static potentials, while the errors made with respect to the
reference densities are computed by direct integration on three-
dimensional grids. As a major breakthrough, the model is used
to predict the charge density of a set of 8 polypeptides (�100
atoms) at DFT accuracy in few minutes.

2 Methods

Gaussian process regression (GPR) can be extended to encode
all the fundamental symmetries of the O(3) group, effectively
allowing machine-learning of all the molecular properties that
transform as spherical tensors under rotation and inversion
operations.57,74 In the specic case of the electron density, the
scheme relies upon the decomposition of the eld into additive,
atom-centered contributions and the subsequent prediction of
the corresponding expansion coefficients.58 In SA-GPR, each
molecule is represented as a collection of atom-centered envi-
ronments, whose relationships and similarities are measured
by symmetry adapted kernels. An in-depth discussion about
how a symmetry adapted regression model of the electron
density can be constructed is reported in the ESI.†

The decomposition of the electron density in continuous
atom-centered basis functions is the cornerstone of the scal-
ability and transferability of our SA-GPR model. Besides being
generally desirable, these properties are actually crucial to
accurately describe the chemical diversity present in the Bio-
Fragment database within a reasonable computational cost. On
the other hand, the projection of the density eld onto a basis
set leads to an additional error on top of that which can be
ascribed to machine learning. In practice, all the efforts placed
into achieving a negligible machine-learning error are futile if
the overall accuracy of the model is dictated by a large basis set
decomposition error.

Standard quantum chemical basis sets are generally opti-
mized to closely reproduce the behavior of atomic orbitals75 and
results in unacceptable errors if used to decompose the elec-
tronic density (Fig. 1). In contrast, specialized basis sets used in
the density tting approximation (also known as resolution-of-
the-identity (RI) approximation)76–82 are specically optimized
to represent a linear expansion of one-electron charge densities
obtained from the product of atomic orbitals. Using the RI-
auxiliary basis sets {fRI

k }, the total electron density eld can be
expressed as:
Chem. Sci., 2019, 10, 9424–9432 | 9425
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Fig. 2 Ternary diagram representation of the attractive components
of the dimer interaction energies for the 2291 systems considered in
this work. The values of the SAPT analysis are taken from ref. 73.
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rðrÞ ¼
XNaux

k

 XNAO

ab

Dabd
ab
k

!
fRI
k ðrÞ ¼

XNaux

k

ckf
RI
k ðrÞ (1)

where, Dab is the one-electron reduced density matrix and
dabk are the RI-expansion coefficients. Given a molecular geom-
etry, the value of the basis functions can be readily computed at
each point of space, leaving the ck expansion coefficients as the
only ingredient needed by the machine-learning model to fully
determine r(r) (more details in the ESI†).

As shown in Fig. 1, the use of the RI-auxiliary basis sets
results in nearly two orders of magnitude increase in the overall
accuracy with respect to the corresponding standard basis set.
The addition of diffuse functions marginally improves the
performance of the decomposition, but leads to instabilities of
the overlap matrix (high condition number) and increases
dramatically the number of basis functions per atom.

In practice, Weigend's cc-pVQZ/JKFIT81 basis set (henceforth:
cc-pVQZ-RI) offers the best trade-off between accuracy and
computational demand and therefore represents the best
choice for the density decomposition.
2.1 Computational details

The dataset of molecular dimers has been selected from the
side-chain side-chain interaction (SSI) subset of the BioFrag-
ment database (BFDb).73 The original set is made of 3380
dimers formed by amino-acids side-chain fragments taken from
47 different protein structures. Dimers withmore than 25 atoms
as well as those containing sulfur atoms were not considered.
While the total number of sulfur-containing structures is too
small to enable the machine-learning model to accurately
capture its rich chemistry, the inclusion of the larger systems
does not increase dramatically the chemical diversity of the
dataset. The nal dataset contains a total of 2291 dimers.

As shown in Fig. 2, the complete set of 2291 dimers spans
a large variety of dominant interaction types, ranging from
purely dispersion dominated complexes (in blue) to mixed-
inuence (green and yellow) to hydrogen-bonded and charged
Fig. 1 (left) Decomposition error of the electron density of a single
watermolecule: evolution of the absolute percentage error depending
on the choice of decomposition basis set. (right) Comparison of the
density error made with the standard and the RI-auxiliary cc-pVQZ
basis set (cyan and orange isosurfaces refer to an error of �0.005
bohr�3). Reference density: PBE/cc-pVQZ.

9426 | Chem. Sci., 2019, 10, 9424–9432
systems (red). We retain the same classication criteria as in the
original database to attribute the nature of the dominant
interaction.

For each dimer, the reference full-electron density has been
computed at the uB97X-D/cc-pVQZ level using the resolution of
identity approximation for the Coulomb and exchange potential
(RI-JK). This implies that RI-auxiliary functions up to l ¼ 5 are
included for carbon, nitrogen and oxygen atoms while auxiliary
functions up to l ¼ 4 are used for hydrogen atoms.
3 Results and discussion

The training set for the density-learning model was chosen by
randomly picking 2000 dimers out of a total of 2291 possibili-
ties. The remaining 291 were used to test the accuracy of the
predictions. Given the tremendous number of possible atomic
environments (�40 000) associated with such a chemically
diverse database, a subset of M reference environments was
selected to reduce the dimensionality of the regression problem
Fig. 3 Learning curves with respect to RI-expanded densities (ML
error). (left) weighted mean absolute percentage error (3r (%)) of the
predicted SA-GPR densities as a function of the number of training
dimers. The weights correspond to the number of electrons in each
dimer and the normalization is defined by the total number of elec-
trons. Color code reflects the number of reference environments.
(right) 3r (%) of the predicted SA-GPR densities (M ¼ 1000) divided per
dominant contribution to the interaction energy according to ref. 73.

This journal is © The Royal Society of Chemistry 2019
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(see ESI†). To assess the consequences of this dimensionality
reduction, the learning exercise was performed on three
different sizes M ¼ {100, 500, 1000} for the reference atomic
environments. Fig. 3 summarizes the performance of the
machine learning algorithm, expressed in terms of the mean
absolute difference between the predicted and the reference
densities (QM). Here, only the machine-learning error is shown
as the reference densities derive from the RI-expansion of the
computed ab initio densities. Since the test set contains mole-
cules of different sizes, the contribution of each dimer has been
weighted considering the ratio between its number of electrons
and the total number of electrons in the test set.

3r ð%Þ ¼ 100� 1

Ne

X
i

N i
e

Ð
dr|riQMðrÞ � riMLðrÞ|Ð

drriQMðrÞ
(2)

where the sum is performed over the 291 dimers of the test set,
Ne is the total number of electrons, Ni

e is the number of elec-
trons in a dimer, riQM(r) and riML(r) are, respectively, the ab initio
and the predicted density amplitudes at a point. Both integrals
of eqn (2) are evaluated in real-space over a cubic grid with step
size of 0.1 bohr in all direction and at least 6 Å between any
atom and the cube border.

As shown in the rst panel of Fig. 3, 100 training dimers were
sufficient to reach saturation of the density error around 0.5%
for M ¼ 100. This result already outperforms the level of accu-
racy reached in our previous work, which is remarkable given
the large chemical diversity of the dataset and the consideration
of all-electron densities. Learning curves obtained withM¼ 500
and M ¼ 1000 show steeper slopes, approaching saturation at
about 2000 training dimers with errors that were reduced to
�0.2–0.3%. The predicted full-electron densities are ve times
more accurate than the previous predictions of valence-only
Fig. 4 DORImaps of representative dimers for each type of dominant inte
r(r) in the range from attractive�0.02 a.u. (red) to repulsive 0.02 a.u. (blu
attractive NCIs (e.g. H-bonds); sgn(l2)r(r) � 0 indicates weak attractive
clashes).

This journal is © The Royal Society of Chemistry 2019
densities (approximately 1%).58 A more detailed analysis of
theM¼ 1000 learning curve reveals a strong dependence on the
nature of the dominant interaction (Fig. 3). Specically,
a stronger non-local character in the interaction yields a larger
error. This is especially prevalent for dimers dominated by
electrostatic interactions (i.e., hydrogen bonds, charged
systems), which are characterized by errors that are twice as
large as those found in other regimes.

The origin of this slow convergence arises from two factors.
First, only about 20% of the dimers are dominantly bound by
electrostatics.73 The priority of the regression model is thus to
minimize the error on the other classes. Second, there is
a fundamental dichotomy between the local nature of our
symmetry-adapted learning scheme and the long-range nature
of the interactions. In fact, the electron density encodes infor-
mation about the whole chemical system at once, while the
machine-learning model represents molecules as a collection of
4 Å wide atom-centered environments. This difference in the
spatial reach of the information encoded in the target and in the
representation is a limitation. In this respect, a global molec-
ular representation, which includes the whole chemical system,
would be more suitable, but this would imply renouncing to the
scalability and transferability of the model. Given a large
enough training set, however, our SA-GPR model is able to
capture the density deformations due to the eld generated by
the neighboring molecule. The reason is rooted in the intrinsic
locality of density deformations and in the concept of “near-
sightedness”83,84 of all local electronic properties, which
constitutes a theoretical justication for a local decomposition
of such quantities.

The fundamental advantage of setting the electron density as
the machine-learning target is the broad spectrum of chemical
raction (DORI isovalue: 0.9). Isosurfaces are color-coded31 with sgn(l2)
e). In particular, sgn(l2)r(r) < 0 characterizes covalent bonds or strongly
interactions (van der Waals); sgn(l2)r(r) > 0 repulsive NCIs (e.g. steric

Chem. Sci., 2019, 10, 9424–9432 | 9427
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Fig. 6 (left) Electrostatic potential maps 3.25 Å above the plane of the
tryptophan (TRP) side-chain. The van der Waals volume of TRP is
represented in transparency. The color code represents the electro-
static potential in kcal mol�1 according the scale chosen in ref. 88.
(Right) Stacking interaction energies of TRP with the phenylalanine
(PHE), tyrosin (TYR) and tryptophan (TRP) side-chains computed as
detailed in ref. 88 on the basis of ab initio (top) and ML-predicted
(bottom) ESP.

Fig. 5 Electrostatic potential (ESP) maps of representative dimers for each type of dominant interaction (density isovalue: 0.05 e� bohr�3). ESP
potential is given in Hartree atomic units (a.u.).
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properties that are directly derivable from r(r). For instance, the
predicted charge densities are the key ingredient in density-
dependent scalar elds aimed at visualizing and character-
izing interactions between atoms and molecules in real space.
Examples of the density overlap region indicator (DORI)30 are
given in Fig. 4 for representative dimers. Compared to the
rather featureless r(r), DORI reveals ne details of the electronic
structure, which constitute a more sensitive probe for the
quality of the machine-learning predictions. In particular, it
reveals density overlaps (or clashes) associated with bonding
and non-covalent regions on equal footing through the behavior
of the local wave-vector (Vr(r)/r(r)).85–87

As shown in Fig. 4, the intra- and intermolecular DORI
domains obtained with the SA-GPR densities are indistin-
guishable from those in the ab initiomaps. This performance is
especially impressive for the density clashes associated with
low-density values, as is typical for the non-covalent domains.
All the features are well captured by the predicted densities
ranging from large and delocalized basins typical of the van der
Waals complexes (in green) to the compact and directional
domains typical of electrostatic interactions to intramolecular
steric clashes (e.g. phenol, mixed regime). A quantitative
measure of the DORI accuracy for the most characteristic basin
of each type of interaction is reported in the ESI.† Overall, these
results illustrate that the residual 0.2% mean absolute
percentage error does not signicantly affect the density
amplitude in the valence and intermolecular regions that are
accurately described by the SA-GPR model. The highest ampli-
tude errors are concentrated near the nuclei in the region
dominated by the core-density uctuations.

The versatility of the machine-learning prediction is further
illustrated by using the predicted densities to compute the
molecular electrostatic potential (ESP) for the same represen-
tative dimers (Fig. 5). ESP maps based on predicted densities
9428 | Chem. Sci., 2019, 10, 9424–9432
agree quantitatively with the ab initio reference and correctly
attribute the sign and magnitude of the electrostatic potential
in all regions of space. Importantly, the accuracy of the ESP
magnitude remains largely independent of the dominant
interaction type. This is especially relevant for charged dimers
(electrostatics) as it demonstrates that despite slower conver-
gence of the learning curve for this category, the achieved
accuracy of themodel is sufficient to describe the key features of
the electrostatic potential.
This journal is © The Royal Society of Chemistry 2019
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Fig. 7 (top left) predicted electron density of enkephalin (PBD ID: 4OLR) at three isovalues: 0.5, 0.1, and 0.001 e� bohr�3. For each isosurface, the
L(a,a0) similarity index with respect to ab initio density is reported. (top right) DORImap of enkephalin (DORI isovalue: 0.9) colored by sgn(l2)r(r) in
the range from �0.02 a.u. (red) to 0.02 a.u. (blue) (lower left) density difference between predicted and ab initio electron density (isovalues �
0.01e� bohr�3). (lower right) density difference between predicted and ab initio electron density of 3WNE (isovalues � 0.01e� bohr�3).

Fig. 8 Weighted mean absolute percentage error (3r (%)) with respect
to uB97X-D/cc-pVQZ densities of the predicted densities extrapo-
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The most widespread applications of ESP maps exploit
qualitative information (e.g., identication of the molecular
regions most prone to electrophilic/nucleophilic attack) but the
electrostatic potentials can be related to quantitative properties
such as the degree of acidity of hydrogen bonds and the
magnitude of binding energies.88–92 As a concrete example
related to structure-based drug design, we used a recent model
that estimates the strength of the stacking interactions between
heterocycles and aromatic amino acid side-chains directly from
the ESP maps.88,91,93 This model derives the stacking energies of
drug-like heterocycles from the maximum and mean value of
their ESP within a surface delimited by molecular van der Waals
volume (at 3.25 Å above the molecular plane).88 Following this
procedure, we used the ESP derived from the ML predicted
densities to compute the binding energies between a represen-
tative heterocycle included in our dataset, the tryptophan side-
chain, and the three aromatic amino acid side-chains (Fig. 6).

Comparison between ab initio and ML predicted stacking
interaction energies shows that the deviations in the ESP maps
lead to minor errors on the order of 0.05 kcal mol�1. The largest
deviations in the ESP would appear further away from the
molecule, beyond the region exploited for the computation of
the energy descriptors (i.e., the sum of the atomic van der Waals
radii). The predicted ESP shows larger relative deviations far
from the nuclei owing to the error propagation of the density
predictions r(r) to the electrostatic potential f(r). This can be
best understood in the reciprocal space, where the deviations of
the potential at a given wave-vector k are related to the density
error by df̂(k) ¼ 4pdr̂(k)/k2. Because of the k�2 scaling, the error
on f(k) increases as k/ 0, implying that larger relative errors of
the electrostatic potential are expected in regions of space
where f(r) is slowly varying (i.e., thus determined by the long-
wavelength components).
This journal is © The Royal Society of Chemistry 2019
3.1 Prediction on polypeptides

The tremendous advantage of the atom-centered density
decomposition is to deliver a machine-learning model that
depends only on the different atomic environments and not on
the identity of the molecules included in the training set.
Thanks to its transferability, the model provides access to
density information of large macromolecules, at the sole price
of including sufficient diversity, that can capture the chemical
complexity of a larger system. The predictive power of this
extrapolation procedure is demonstrated by using the machine-
learning model exclusively trained on the 2291 BFDb dimers to
predict the electron density of 8 polypeptides taken from the
Protein DataBank (PDB).94 The performance of the ML model
for each macromolecule, labeled by their PBD ID, is reported in
Fig. 8.
lated for 8 biologically relevant peptides (protein databank ID).

Chem. Sci., 2019, 10, 9424–9432 | 9429
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Overall, the predictions lead to a low average error of only
1.5% for the 8 polypeptides, which is in line with the highest
density errors obtained on the BFDb test set. Relevantly, the
largest discrepancies are obtained for 3WNE, which is the only
cyclopeptide of the set. The origin of these differences can be
understood by performing a more detailed analysis of a repre-
sentative polypeptide, the leu-enkephalin (4OLR). The errors in
this percentage range do not affect the density-based properties,
such as the spatial analysis of the non-covalent interactions
with scalar elds (Fig. 7 top right panel). Yet, the density
differences indicate that the highest absolute errors occur along
the amino acid backbone (Fig. 7 lower panels). In addition, the
analysis of the relative error with the Walker–Mezey L(a,a0)
index34 shows the highest similarity at the core (99.3%), slowly
decreasing while approaching the non-covalent domain (96.3%)
(Fig. 7 top le panel). The L(a,a0) index complements the density
difference information by showing that the actual density
amplitudes and the prediction error do not decrease at the same
rate. Nevertheless, the loss of relative accuracy remains modest
and the quality of the density is mainly governed by the
predictions along the peptide backbone, which are especially
sensitive for the more strained 3WNE cyclopeptide. Although
similar chemical environments were included in the training
set, the error is mainly determined by the lack of an explicit
peptide bond motif and cyclopeptides in the training set. While
this limitation could be addressed by ad hocmodication of the
training set, the overall performance of the machine-learning
model is rather exceptional as it provides in only a few
minutes, instead of almost a day (about 500 times faster for e.g.
enkephalin with the same functional and basis set), electron
densities of DFT quality for large and complex molecular
systems. For comparison, the superposition of atomic densities
(i.e., the promolecular approach), which has been used to
qualitatively analyze non-covalent interactions in peptides and
proteins (e.g. ref. 32) lead to much larger mean absolute
percentage errors (17 times higher, see Fig. S1 in the ESI†).

4 Conclusion

Given its central role in electronic structure methods, the total
electron density is a very promising target for machine learning,
since accurate predictions of r(r) give access to all the infor-
mation needed to characterize a chemical system. Among the
many possible properties that can be computed from the elec-
tron density, the patterns arising from non-covalent interac-
tions constitute a particular challenge for machine learning
models owing to their long-range nature and subtle physical
origin. An effective ML model should be transferable across
different systems, efficient in learning from relatively small
training sets, and accurate in predicting r(r) both in the quickly-
varying region around the atomic nuclei, in the tail and –

crucially for the study of non-covalent interactions – in those
regions that are characterized by low densities and low density
gradients. In this work, we have presented a model that fullls
all of these requirements, based on an atom-centered decom-
position of the density with a quadruple-zeta resolution-of-
identity basis set, a symmetry-adapted Gaussian Process
9430 | Chem. Sci., 2019, 10, 9424–9432
regression ML scheme, and training on a diverse database of
2000 sidechain–sidechain dimers extracted from the BioFrag-
ment database.

The model reaches a 0.3% accuracy on a validation set, that
is sufficient to investigate density-based ngerprints of NCIs,
and to evaluate the electrostatic potential with sufficient accu-
racy to quantitatively estimate residue–residue interactions.
The transferability of the model is demonstrated by predicting,
at a cost that is orders of magnitude smaller than by explicit
electronic structure calculations, the electron density for
a demonstrative set of oligopeptides, with an accuracy sufficient
to reliably visualize bonding patterns and non-covalent
domains using the DORI scalar eld. Even though the model
reaches an impressive accuracy (0.5% mean absolute
percentage error) for dimers that are predominantly bound by
electrostatic interactions, the comparatively larger error
suggests that future work should focus on resolving the
dichotomy between the local machine learning framework and
the long-range nature of the intermolecular interactions.
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