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Non-heme iron based halogenase enzymes promote selective halogenation of the sp*-C—H bond through
iron(iv)-oxo-halide active species. During halogenation, competitive hydroxylation can be prevented
completely in enzymatic systems. However, synthetic iron(iv)-oxo-halide intermediates often result in
a mixture of halogenation and hydroxylation products. In this report, we have developed a new synthetic
strategy by employing non-heme iron based complexes for selective sp®-C—H halogenation by
overriding hydroxylation. A room temperature stable, iron(iv)-oxo complex, [Fe(2PyN2Q)(O)?* was
directed for hydrogen atom abstraction (HAA) from aliphatic substrates and the iron(i)-halide
[Fe''(2PyN2Q)(X)I* (X, halogen) was exploited in conjunction to deliver the halogen atom to the ensuing
carbon centered radical. Despite iron(iv)-oxo being an effective promoter of hydroxylation of aliphatic
substrates, the perfect interplay of HAA and halogen atom transfer in this work leads to the halogenation
product selectively by diverting the hydroxylation pathway. Experimental studies outline the mechanistic
details of the iron(iv)-oxo mediated halogenation reactions. A kinetic isotope study between PhCHz and
CeDsCDs showed a value of 13.5 that supports the initial HAA step as the RDS during halogenation.
Successful implementation of this new strategy led to the establishment of a functional mimic of non-
heme halogenase enzymes with an excellent selectivity for halogenation over hydroxylation. Detailed
theoretical studies based on density functional methods reveal how the small difference in the ligand
design leads to a large difference in the electronic structure of the [Fe(2PyN2Q)(O)]*>* species. Both
experimental and computational studies suggest that the halide rebound process of the cage escaped
radical with iron(m)-halide is energetically favorable compared to iron(in)-hydroxide and it brings in
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moieties. Other halogenases such as CytC3 and SyrB2 differ
structurally compared to o-KG dependent halogenases, in
a sense wherein halide is coordinated to the iron centre instead
of carboxylate from o-KG. Although these enzymes differ

Introduction

High-valent iron-oxo species serve as the key intermediates for
performing different natural transformations like halogena-

tion, hydroxylation and olefin epoxidation.* Several oxygenases
including Cyt P450, Rieske oxygenases, o-keto gluterate-
dependent oxygenases and various halogenases exhibit their
activity via formation of an iron-oxo intermediate.> Among these
mononuclear iron based enzymes, «-KG-dependent halo-
genases carry out biosynthesis of several halogen based natural
products by implementing selective halogenation of sp* C-H
bonds by overriding hydroxylation.* These enzymes contain
a-KG as the key structural motif which is coordinated to an
iron(u) cofactor in a facial triad fashion along with two histidine
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structurally, their mode of action towards C-H halogenation is
very much similar. First, the iron(u) cofactor performs O, acti-
vation resulting in a high-spin (S = 2) cis-iron(iv)-oxo-halide
species. Subsequently, it performs the hydrogen atom abstrac-
tion (HAA) from the C-H bond. The corresponding nascent
radical and iron(m)-halide are placed in such a way that the
radical selectively undergoes rebound with halide to generate
halogenated products.

A biomimetic non-heme iron(m)-halide complex, [Fe'"(TPA)
Cl,]", was first synthesized and judiciously employed by Que
and co-workers for sp®> C-H halogenation.* The iron(v)-oxo-
halide, [Fe"(TPA)(O)(CI)]**, was proposed as the key interme-
diate for the halogenation reaction. Recent studies showed that
substrate positioning between halide and hydroxide is a key
factor to ensure selectivity for halogenation.® Later on Comba
reported C-H halogenations with [Fe"(bispidine)(Cl,)] where
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Fig. 1 sp>-C—H halogenation by non-heme complexes.

iron(iv)-oxo-halide, [Fe"(bispidine)(0)(Cl))]**, was proposed as
the key intermediate.® Subsequently Costas synthesized cis-
iron(iv)-oxo-halide, [Fe™(0)(X)(Pytacn)]" (X, Cl and Br), for
pursuing sp® C-H halogenation.” Later Paine and co-workers
reported halogenation of aliphatic and benzylic C-H bonds
where similar iron(iv)-oxo-halide, [TP*"Fe™¥(O)(C)]**, was
proposed as the key intermediate.®

Very recently Que and co-workers employed high-spin (S = 2)
iron(iv)-oxo-halide complexes, [Fe"(TQA)(O)(X)]** (X = Cl and
Br) for sp® C-H halogenations.” These elegant explorations
demonstrated that despite having the potential for promoting
selective halogenation chemistry, the formation of the
hydroxylation product often remained as the bottleneck for the
synthesis of selectively halogenated compounds (Fig. 1). A clear
opportunity for synthetic chemists, therefore, resides on
discovering a selective halogenation protocol by utilizing the
potential of the non-heme iron(iv)-oxo complex.

Results and discussion

We have explored a new strategy for the halogenation reaction
involving a non-heme iron complex with the expectation to
discover a selective sp>-C-H halogenation protocol by overriding
hydroxylation chemistry, along with what is observed in o-KG-
dependent halogenases. We planned to employ a room temper-
ature stable pentacoordinated iron(v)-oxo species [Fe'(2-
PyN2Q)(O)** (2) supported by the 2PyN2Q ligand, (1,1-di(pyridin-
2-y)-N,N-bis(quinolin-2-ylmethyl)methanamine, Fig. 2).** The
corresponding iron(im)-complex was synthesized by reacting
Fe(OTf),(CH;CN), with the ligand, 2PyN2Q in acetonitrile. The
synthesized complex [Fe'(2PyN2Q)(OTf),], 1, showed UV-vis
bands at 368 nm (e ~ 1954 M~ ' L") and 470 nm (e ~ 887 M ' LY).
Complex 1 was also characterized by ESI-MS ([Fe"(2PyN2Q)(OTf)]",
m/z = experimental 672.09; calculated = 672.09). Further, 1 showed
a paramagnetic shift in "H NMR spectroscopy (shift from —60 to
140 ppm). Complex 1 was also characterized by X-ray crystallog-
raphy (Fig. 2). Synthesis of the reactive iron(iv)-oxo ([Fe"™(2-
PyN2Q)(O)]*") complex 2 was performed by adding MesI(OAc),/
mCPBA (1.5 equiv.) in acetonitrile and it showed a characteristic
UV-vis band at 770 nm (e ~ 250 M~ L™"). Complex 2 was further
characterized by FT-IR spectroscopy where Fe=O stretching
appeared at 832.5 cm™ "%
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Fig. 2 ORTEP diagram of the triflate anion coordinated iron(i)-
complex 1 (CCDC 1505984), the DFT optimized structure of iron(iv)-
oxo 2, [Fe(2PyN2Q)(0)1?*, and the ORTEP diagram of iron(i)-halide
complexes 3 (1505989) and 4 (1505986).

Further, complex 2 was characterized by Mossbauer spec-
troscopy. Fig. 3a presents the spectrum recorded at 80 K with
a small field (60 mT) applied parallel to the v rays. The center of
the spectrum is dominated by two overlapping quadrupole
doublets and a broad component can be discerned on both
sides and positive velocities. Application of a high parallel
magnetic field (7 T, Fig. 3b bottom) turns the latter component
into a sextet extending from —7.4 to 8 mms™'. By contrast, the
two central features are slightly broadened. These two spectra
can be simulated simultaneously by considering the presence of
three components (Table S1t)."* Component A (red line in the
simulations), which amounts to 35% of the total iron, is a spin
S = 1 species with an isomer shift = 0.043 mms™", a quadru-
pole splitting AE, = 0.57 mms™ ' and a D value ca. 26 cm™ .
These parameters are consistent with an Fe'Y=0 species.
Component B (blue line in the simulations, 12% of the total
iron) is a p-oxodiferric S = 0 species with § = 0.5 mm s~ and
a quadrupole splitting AE, = 1.5 mms . The additional
magnetic component (C, green line) can be accounted for by
considering that it is a high spin Fe'™" species (53%, S = 5/2, 6 =
0.56 mms ', AEq = 0.72 mms ‘). These Mdssbauer experi-
ments thus show the formation of an iron(iv)oxo, Fe'V=0,
species which is reactive at room temperature forming a p-oxo
diferric species together with another ferric species.

Initially we opted for demonstrating the feasibility of the HAA
step by the iron(iv)-oxo species, [Fe" (2PyN2Q)(0)]** (2) during C-
H oxidation. Substrates like ethylbenzene, toluene and cyclo-
hexane yielded the corresponding oxidation products when
reacted with the room temperature stable iron(iv)-oxo species 2.

Kinetic studies of C-H oxidation reactions were performed
(UV-vis, Fig. 4a and b) under pseudo first order conditions. The

This journal is © The Royal Society of Chemistry 2018
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Fig. 3 (a) Mossbauer spectra recorded at 80 K and 60 mT top and (b)
at 5.5 Kand 7 T (bottom). Experimental spectra: hatched bars; solid
black line: simulation; colored lines: contributions of species A (red), B
(blue) and C (green).

second order rate constant (k,) values were found to be 20 times
higher when compared to the previously reported rates of C-H
oxidation by penta-coordinated nitrogen containing iron(iv)-oxo
species,' which could be due to the steric bulk originating from
the quinoline moiety.**

The Bell-Evans-Polayni (BEP) plot (log &', vs. BDE) showed
a linear correlation (Fig. 4c). Further we studied the kinetic
isotope effect (KIE, ku/kp) between C¢HsCH3/C¢DsCD; and the
value was found to be 9.6 (Fig. 4d). The linearity in the BEP plot
and the large KIE value suggested that the initial HAA step is the
rate-determining step (RDS) during C-H oxidation.** The slope
(—0.176 (kcal mol™")™") of the BEP plot is related to the
Bronsted parameter («) by o = [slope(RT)] and it gives « ~ —0.10
i.e. the value is closer to 0. The lower value of the Bronsted
parameter suggests that a reactant like transition state is
involved during C-H oxidation reactions via the HAA step which
is further supported by a DFT study.*

We moved towards product analysis during C-H oxidation to
gain insights into the mechanistic pathway. When ethyl
benzene was reacted with complex 2, it provided 1-phenyl-
ethanol (34%), 1-phenylethylacetate (26%) and acetophenone
(5%) under a N, atmosphere. Control reactions were carried out
between 1-phenylethanol and MesI(OAc), as well as between

This journal is © The Royal Society of Chemistry 2018
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Fig. 4 (a) UV-vis change during C—H oxidation of ethylbenzene, (b)
time trace of 2 at 770 nm, (c) bond dissociation energy (BDE) corre-
lation plot: Bell-Evans—Polyani plot during C—H oxidation by 2 and (d)
kinetic isotope effect study (kinetic studies were carried out under a N,
atmosphere at 25 °C).

1-phenylethanol and in situ generated complex 2. In none of
these cases, 1-phenyl ethyl acetate was detected. Therefore, the
formation of 1-phenylethylacetate during the reaction with ethyl
benzene could occur via a reaction between the cage-escaped
radical and the acetoxy radical (‘OAc) generated from
MeslI(OAc), during the reaction (Fig. 5). This observation
suggests that the radical could dissociate from the solvent cage
after the HAA step. Toluene and cyclohexane (N, atmosphere)
produced 48% of benzyl alcohol and 3% of benzaldehyde
(Fig. 5), whereas cyclohexane provided cyclohexanol (54%) and
cyclohexanone (3%). Further, experiments with O-18 labelled 2
and ethylbenzene provided 1-phenylethanol with 86% of O-18
labelling which supported 2 as the sole oxygen source during
C-H oxidation.

The C-H oxidation reactions with ethylbenzene, toluene and
cyclohexane under air were found out to produce alcohol/
ketone (A/K) products with a ratio of 1 or <1. Additionally,

180H OAc
Dissociative CH; CH;
Pathway +
CH; o 18, "
86% '°O  Radical trapped product
enriched [Mesl(OAc); as oxidant]
189 ~
" N Dissociative Me
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AN P{\E@ O:M" Me
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Fig. 5 C—H oxidation by [FeV(2PyN2Q)(O)1**, 2 (reactions were
carried out under a N, atmosphere inside a glove box at 25 °C).
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radical trap experiments with CCl;Br were carried out. Expect-
edly, cyclohexane and toluene provided exclusively radical
trapped products bromocyclohexane and benzyl bromide,
respectively. Similarly, ethylbenzene provided radical trapped
products (1-chloroethyl)benzene (20%), (1-bromoethyl)benzene
(10%) and 1-phenylethylacetate (25%). Such observations
implied dissociation of the carbon radical from the solvent
cage,'® following which it undergoes a rebound with iron(u)-
hydroxide to provide the C-H oxidation product. Further the
cage escape behaviour of the radical was confirmed by carrying
out a reaction of a pure stereoisomer of cis-1,2-dimethylcyclo-
hexane with 2. It provided a mixture of cis/trans-1,2-dime-
thylcyclohexanol (46% yield, 3.7 : 1 ratio). The high-degree of
epimerization in the products arises from a long-lived radical,
which could be generated due to the dissociation of the radical
from the solvent cage after HAA (Fig. 5)."

Although complex 2 was found to be suitable for HAA from
the sp>-C-H bond of cyclohexane, our attempts to promote
halogenation of cyclohexane by a combination of complex 2 and
1 equiv. of halide sources Bu,N'Cl~ or Bu,N'Br~ failed. Such an
observation could be attributed to the inability of 2 to form
a reactive iron(iv)-oxo-halide intermediate with the penta-
coordinated 2PyN2Q ligand. Additionally, complex 2 reacted
with the halide anion faster compared to abstracting the
hydrogen atom from the sp®>-C-H bond of cyclohexane.’* We
have carried out the kinetic study for the oxidation of chloride
(CI") and bromide (Br™) by 2. We found that the second order
rate constant, k,, for CI~ and Br oxidation is 221 and
938 M ' s~ respectively. The complex 2 oxidizes Br~ faster than
Cl7, which in turn is much faster compared to the hydrogen
atom abstraction process (for the C-H oxidation of toluene and
cyclohexane the second order rate constant, k,, is 0.0242 and
0.011 M~ ' s~ respectively).""

With these unsuccessful attempts, our attention returned to
the existing report for the formation of a mixture of halogena-
tion and hydroxylation products. Notably, halide rebound of the
cage escaped radical with metal-halide was well documented
with a Mn-catalyzed fluorination reaction by Groves and co-
workers.” We envisioned that if we can outcompete iron(m)-
hydroxide (formed upon HAA of the sp®>-C-H bond by 2) with
iron(m)-halide, then the cage-escaping carbon centered radical
will undergo rebound with iron(m)-halide. The iron(ur) halide
can potentially act as a suitable halide donor and can be
generated in situ via one-electron oxidation (by oxidant mCPBA)
of the corresponding iron(n)-halide complexes [Fe'(2-
PyN2Q)(X)](X) [X = CI (3) and Br (4)] (Fig. 2). Reaction of 4 with 2
and cyclohexane led to the formation of the bromocyclohexane
(90%) product selectively (Table 1, entry 1, 4 as the limiting
reagent under a N, atmosphere). Use of an excess amount of 4
was detrimental to the formation of bromocyclohexane.
Furthermore, we focused on the discovery and implementation
of the new strategy for promoting the selective halogenation
reaction by overcoming the hydroxylation chemistry described
above. The chlorination reactions with cyclohexane in the
presence of 2 and 3 gave chlorocyclohexane in 52% yield with
5:1 selectivity for halogenation over hydroxylation (Table 1,
entry 2).
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Table 1 Scope for C—H bromination and chlorination
[Fe"V(2PyN2Q)(0)1?* (2)
R—H > R—X
[Fe'(2PyN2Q)(X)1X (3/4)
MeCN, rt, N, atm. X=Cl, Br
Entry Substrate (s) Product (s)
1 QBT 90% Selective

7

52%, 10% Cy-OH

52%?2 Selective

LEFEOOO0
LY

4 60% Selective
Br Br aA:B227:1
+ 65%
(A) (B) Selective
6 Ai 50%? Selective
Br
e Br 97%
7 Selective
Me Br 60%
8 /©/ Selective
Br Br
Me
o o -
cl Cl
10 .
Ph Ph Selective
S D & S ..
Bu {Bu Selective
SRR PS.
12 Br 46%
Selective
Me
tBu tBu Selective
Cl
y ©/\|\,|e ©)\Me 54%32

¢ Minor hydroxylation (~5% w.r.t. 3 or 4). Reactions were carried out
under a N, atmosphere inside a glove box at 25 °C.

The appreciable levels of selectivity for the synthetic non-
heme iron-oxo mediated halogenation chemistry clearly suggest
that the carbon centered radical, generated upon HAA, escapes
the solvent cage and combines with the free halide radical
generated upon halide oxidation by 2. Similar to non-heme
halogenase enzymes, this carbon radical engages the halide

This journal is © The Royal Society of Chemistry 2018
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radical from the iron(ur)-halide intermediate to yield the halo-
genation product preferably over hydroxylation (Fig. 6).
Further in order to get mechanistic insight, we synthesized
iron(u)-halide complexes with perchlorate as the counter anion,
[Fe''(2PyN2Q)(X)](ClO,), X = Cl, 5 (1516453), Br, 6 (1516421),
and characterized these complexes by X-ray crystallography.
Interestingly, when 6 was used for the bromination of cyclo-
hexane, we selectively obtained bromocyclohexane (7 :1).
Similarly, employing complex 5 we selectively obtained
a benzylic chlorinated product with 4-tertbutyltoluene. More-
over the solution of 4 (also 6) with 0.5 (or 1 equiv.) mCPBA
provided a brominated product efficiently and therefore sug-
gested the feasibility of one electron oxidation of these halide
complexes to provide iron(m)-halide required for the halide
rebound step (Fig. 6).>° Additionally, we have tested the possi-
bility of one electron oxidation of the halide complexes by
recording the EPR spectrum of 6 with 0.5 equiv. or 1 equiv.
mCPBA (pre-oxidized solution) in acetonitrile at 4 k. The EPR
spectra showed a rhombic signal (g; = 1.99, g, = 4.38, g3 = 6.24)
which is characteristic of a high spin (S = 5/2) iron(u)-species
(Fig. 7)>* These observations suggested that the halide
complexes 5 and 6 (also 3 and 4) possibly undergo one electron
oxidation in the presence of 2 equiv. mCPBA used in haloge-
nation to provide iron(m)-halide which would undergo halide
rebound with the cage escaped radical (Fig. 6). Moreover, we
have measured the one electron oxidation potential of halide
complexes (3-6) by a cyclic voltammetry study. The halide
complexes, 3-6, showed Fe"/Fe™ oxidation potentials around
~0.9-1.0 V in acetonitrile vs. SCE (saturated calomel electrode).
Thus it can be oxidized by mCPBA as the oxidation potentials of
peracids are around ~1.8-2.0 V. However, we have not
observed any peak around 770 nm in UV-vis upon portion wise
addition of mCPBA to the [(L)Fe(m)X]X complexes, which indi-
cates that for the system under study Fe(ur)-X might not undergo
oxidation by mCPBA (Fig. S381)."* Notably as the iron(u)-halide
complexes (3-6) undergo rapid one electron oxidation under the
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Fig. 6 Plausible mechanism of C—H halogenation by iron(iv)-oxo, 2 in
the presence of iron(i)-halide complexes 3 or 4.
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Fig. 7 EPR spectrum showing one electron oxidation of 6 using 0.5 of
mCPBA (temperature 4 K, X-band frequency 9.376 GHz, modulation
amplitude 4G, modulation frequency 100 kHz, and attenuation 22 dB).

halogenation reaction conditions and generate iron(m)-halide
species, they do not participate in the known comproportiona-
tion reaction with iron(v)-oxo 2. However, the possibility of the
comproportionation reaction cannot be completely ruled out.

The higher selectivity of bromination over chlorination can
be rationalized by the ease of halide rebound of the cage
escaped radical with iron(u)-bromide compared to iron(i)-
chloride (Fig. 6). Additionally the ease of formation of Br® from
Br- (Egr,/Br,, 1.07 Vvs. SHE) compared to Cl° from CI~
(Egl’/cl" 1.36 V vs. SHE) from complexes 3 and 4 during the
reaction (which can combine with the cage escaped radical and
can lead to the partial formation of halogenated products) can
also be accounted for higher selectivity.® The formation of the
iron(m)-halide complex could also occur via substitution by the
halide anion from the iron(u)-halide complex (Fig. 6). Further-
more, we observed that the use of mCPBA as an oxidant, instead
of MesI(OAc),, during the bromination reaction with cyclo-
hexane increases the bromocyclohexane product yield from
18% to 90%. The ease of hydroxide substitution by the halide
ion in the presence of H' from mCPBA can be accounted for the
higher yield. Similar substitution of hydroxide bound to the
iron centre in the presence of the proton source was elegantly
described by de Visser, Hillier and Paine groups (Fig. 6).***¢

No halogenation products were obtained in the presence of
air; rather we obtained exclusively C-H oxidation products. This
phenomenon suggested that the cage escaped radical was inter-
cepted by O, (air).? Further studies were carried out in order to get
insights about these selective halogenation reactions. Addition of
[Fe"(2PyN2Q)Br|(Br) (3) to a solution of [Fe™(2PyN2Q)O]*" (2)
showed the iron(iv)-oxo band at 770 nm (Fig. 8a). This experiment
suggests that iron(wv)-oxo exists in solution in the presence of
iron(n) halides. Iron(iv)-oxo is the key species for the initiation of
the halogenation reactions. The kinetic isotope effect study
between C¢HsCH; and C¢DsCD; under standard halogenation
reaction conditions gave a value of 13.5 (Fig. 8c), which supported
the initial HAA step as the rate determining step.

Chem. Sci,, 2018, 9, 7843-7858 | 7847
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Fig. 8 (a) UV-vis change during the bromination of toluene, (b) inset
770 nm decay plot of 2 during the bromination of toluene, (c) kinetic
isotope effect study during the bromination reaction (kinetic studies
were carried out under a N, atmosphere at 25 °C).

Following the above protocol, cyclopentane, cycloheptane,
cyclooctane and norbornane were subjected to the same reac-
tion conditions. Expectedly, selective formation of halogenation
products was encountered in these cases (Table 1, entries 3-6).
After successful halogenation of the sp>-C-H bond of aliphatic
substrates, we decided to explore benzylic halogenation. Under
the standard reaction protocol, toluene provided benzyl
bromide in an excellent yield (97%, Table 1, entry 7). Differen-
tially substituted benzylic substrates provided selective bromi-
nated products as well (Table 1, entries 8-12). Interestingly,
4-tertbutyltoluene showed excellent selectivity towards benzylic
chlorination (Table 1, entry 13). By overriding the hydroxylation
reaction, ethyl benzene was chlorinated at the benzylic position
selectively (Table 1, entry 14).

Computational study

To fully comprehend the mechanistic proposal based on the
experimental evidence, we have turned to computational tools
where the B3LYP/LACVP//B3LYP/TZVP setup has been used to
model the reaction pathway for the halogenation reaction (see
computational details for elaborate discussion on the method-
ology employed). To begin with, calculations are performed on
the putative [Fe"V(2PyN2Q)O]*(2) species. Calculations reveal
S =1 as the ground state for this species with the S =2 and § =
0 states lying 12.7 k] mol " and 121.2 kJ mol " higher in energy,
respectively. The ground state predicted by the calculations is
consistent with the Mdssbauer observations and in accord with
the literature reports for such pentadentate aminopyridine
ligands.”® While the ground state is the same as that of the
structurally similar [Fe"™(N4Py)O]** species, the S = 2 excited
state is found to lie closer in species 2 and this is attributed to
the steric and electronic differences in the ligand moiety. The
smaller triplet-quintet gap is known to enhance the reactivity in
iron(v)-oxo species as reported earlier.>
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The optimized structure of the S = 1 state is given in Fig. 9a.
The Fe-0 bond length is found to be 1.626 A which is consistent
with the experimental data reported for other Fe(iv)=O spe-
cies.?” Since an asymmetric ligand environment is maintained
at the equatorial plane with two strong pyridine donors and
moderate quinoline donors, two sets of Fe-N distances are
visible with Fe-Ngq, distances slightly longer than the Fe-Ny,
distances (Fig. 9a). Due to the steric hindrance of the quinoline
group, the ferryl oxygen atom is found to incline towards the
pyridine ring and this is clearly reflected in the N(1)-Fe-O angle
which has been found to be 170.1° (for most of the Fe(iv)=0
species reported this angle is found to be close to linearity).*»*
Other notable differences in species 2, include two strong
C-H---O interactions between the C(8)-H-atom of the quinoline
and ferryl-oxygen atom and the distances are noted as 2.016 A.
This interaction is likely to weaken the Fe-O bond in species 2
compared to the [Fe™(N4Py)O]** species where such interac-
tions are absent. Besides, the steric crowding at the active site
offered by the quinoline ligand could hinder or facilitate the
reactions further. The spin density distribution reveals a strong
oxyl-radical character at both the S = 1 and S = 2 states with the
oxygen atom possessing a significant spin density. Interestingly,
the H-atoms involved in the C-H:--O interactions with the
ferryl-oxygen atoms are strongly polarized with sizable negative
spin density (Fig. 9b) and this is similar to the behavior
observed earlier with strong H-bonding ligands.>® The Eigen-
value plot of the S = 1 state computed is shown in Fig. 9c. Due to
two weaker Fe-N bonds in the equatorial plane, the Fe-N anti-
bonding interaction diminishes for the U;Lyz orbital leading to
a smaller gap between the 'n::Z Jy and the a;fyz orbital compared
to the [Fe'(N4Py)O]*" species and this leads to a smaller triplet-
quintet gap. Besides, the degeneracy between the T, and ch;Z
orbitals is lifted due to weak C-H---O interactions. With these
insights into the electronic structure of the active species, we
turn to study the mechanistic aspect. The mechanism adapted
for DFT calculations is shown in Fig. 10. In the first step, C-H
bond activation by the Fe(iv)=O0 species is expected.

Initially, the Fe(iv)=0 moiety abstracts the H-atom from the
cyclohexane via ts1 leading to the formation of Fe(ur)-hydroxide
and a radical intermediate (int1) where the carbon centered
radical at the cyclohexane is expected. This radical species is
expected to be in the vicinity of the Fe(ur)-OH units stabilized by
weak non-covalent interactions (cage-radical species). For the
C-H bond activation, the barrier heights are computed to be
69.4 k] mol™' and 96.0 k] mol ' in the quintet and triplet
surfaces, respectively. For the S = 0 state on the other hand, the
computed barrier height is prohibitively high (175.2 k] mol™")
and rules out the possibility of S = 0 participating in the reac-
tion mechanism. Although the triplet state is the ground state
for the Fe(1iv)=0 species, the quintet state is found to have the
lowest energy barrier for the C-H bond activation and this
suggests a two-state reactivity scenario as witnessed in several
other cases."****

The optimized structure of the transition state correspond-
ing to S = 2 is shown in Fig. 11a. In the ®ts1, the Fe-O bond is
elongated from 1.626 A to 1.693 A whereas the C-H bond is
stretched from 1.101 A to 1.194 A. The distance for the newly

This journal is © The Royal Society of Chemistry 2018
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3Kls ISKIs] {1Kls}
r(Fe-0) =1.626 [1.619] {1.631}
r(Fe-N1)=2.086 [2.103] {2.084}
r(Fe-N2)=2.000 [2.132] {2.016}
r(Fe-N3)=2.036 [2.141] {2.008}
r(C-H...0)=2.010 [2.110] {2.033}
<N1-Fe-0=170.1°[171.6"]{165.3"}

pro= 1.198 [2.933] {0.000}
po= 0.854 [0.725] {0.000}

(c)

Fig. 9 (a) Important structural parameters and (b) spin densities of B3LYP-D2 optimized structures of [Fe!V(2PyN2Q)(O)1?*, and (c) key orbitals

of 3K.

developed O---H interaction is 1.432 A. All these parameters
indicate that the Fe-O double bond and C-H bond are not
broken completely in the transition state suggesting a reactant
like transition state. The spin density plot of *ts1 (Fig. 11b)
clearly suggests transfer of an a-electron from the substrate to
the Fe-center and this is also reflected in the enhanced value of
spin densities computed at the Fe centre for the transition state
revealing a o-type pathway (Fig. 12a and b) as shown in the
orbital evolution diagram. In the °ts1 transition state, the Fe-
O---H angle is estimated to be 167.3° degrees and this indicates
a o-type pathway for the H-atom abstraction reaction. A similar
scenario is witnessed also for the high-lying 3ts1 species, except
for the fact that the Fe-O---H angle is estimated to be 127.4°
degrees indicating a m-type pathway at the S = 1 surface.

After the H-abstraction transition state, int1 formation is
expected and this step is computed to be endothermic for all the
spin states. For the int1 species, a triplet state arising from the S
=1 spin surface is found to be the lowest lying in energ