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Modelling phosphorus loading and algal blooms in
a Nordic agricultural catchment-lake system under
changing land-use and climate

Raoul-Marie Couture,*ab Koji Tominaga,ac Jostein Starrfelt,a S. Jannicke Moe,a

Øyvind Kastea and Richard F. Wrighta

A model network comprising climate models, a hydrological model, a catchment-scale model for

phosphorus biogeochemistry, and a lake thermodynamics and plankton dynamics model was used to

simulate phosphorus loadings, total phosphorus and chlorophyll concentrations in Lake Vansjø, Southern

Norway. The model network was automatically calibrated against time series of hydrological, chemical

and biological observations in the inflowing river and in the lake itself using a Markov Chain Monte-Carlo

(MCMC) algorithm. Climate projections from three global climate models (GCM: HadRM3, ECHAM5r3

and BCM) were used. The GCM model HadRM3 predicted the highest increase in temperature and

precipitation and yielded the highest increase in total phosphorus and chlorophyll concentrations in the

lake basin over the scenario period of 2031–2060. Despite the significant impact of climate change on

these aspects of water quality, it is minimal when compared to the much larger effect of changes in

land-use. The results suggest that implementing realistic abatement measures will remain a viable

approach to improving water quality in the context of climate change.
Environmental impact

Computer-based environmental modelling offers an essential aid to understand current catchment dynamics and to investigate the potential effectiveness of
remedial actions aimed at improving water quality. Here, we present a novel network of process-based, mass-balance models linking climate, hydrology,
catchment-scale P dynamics and lake processes. This study exemplies how an objectively calibrated model network allows disentangling the effects of climate
change from those of land-use change on lake water quality and phytoplankton growth. The model network can thus support decision-making to achieve good
water quality and ecological status.
1. Introduction

The use of the nutrient phosphorus (P), an essential fertilizer
element enhancing plant growth, has underpinned global agri-
culture and food production since the beginning of the 20th

century. Global P-based food production, which has doubled
over the past 45 years,1 has been hypothesized to be responsible
for the estimated three-fold increase in the river borne ux of P
to the oceans since pre-industrial times (e.g., Haygarth2). When P
is delivered to water bodies, negative inuences on water quality
are likely, and the eutrophication of freshwater and coastal
marine ecosystems resulting from increased anthropogenic P
loadings is a global problem.3 In lake basins specically, excess
nutrients from both point and nonpoint sources throughout the
Gaustadalléen 21, 0349 Oslo, Norway.
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catchment can give rise to harmful algal blooms, degrade water
quality, and create extensive oxygen depletion.

The discharge of P to surface water is subject to compre-
hensive regulations worldwide, such as the Clean Water Act
(CWA) in the USA, Water Pollution Prevention and Control
(WPPC) Law in China and the Water Framework Directive
(WFD) in the European Union. In Europe, the WFD 2000/60/EC
has been designed to achieve good biological and chemical
status for water bodies by 2015,4 promoting an approach to
water and land management through river basin planning
explicitly aimed at reducing the impacts of eutrophication
caused by excess nutrient inputs.

Climatic conditions � in addition to land use, agricultural
practices, urban and sewage nutrient inputs� are key drivers of
eutrophication in lakes.5–8 For instance, in a given catchment,
air temperature, precipitation, and the morphometry of a lake
will determine the extent to which wind-mixing will inuence
the vertical transfer of P and inuence the effect of light on P
uptake by phytoplanktons. In the context of climate change, it is
becoming increasingly difficult to disentangle the complex
This journal is © The Royal Society of Chemistry 2014
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Fig. 1 Land-use distribution of the Vansjø–Hobøl catchment (right
panel) and the corresponding schematic representation of the
catchment-lake model network (left panel) indicating river reaches (R)
modelled with INCA-P and lake basins (L) modelled with MyLake. The
hydrological model PERSiST provides input for the catchment model,
and the climate models provide forcing for all models.

Table 1 Location and characteristics of the lake basins

Basin name Storeorden Vanemorden

Location (latitude
and longitude)

59�230240 0 N,
10�490520 0E

59�240530 0 N,
10�420460 0 E

Mean depth (m) 8.7 3.8
Maximum depth (m) 41.0 19.0
Area (km2) 23.8 12
Volume (m3) 206.1 � 106 46.1 � 106

Residence time (years) 0.85 0.21
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climatic effects inuencing water quality from the effects of
specic measures implemented to improve it.9 A better under-
standing of the response of specic catchments to both climate
and land-use change is needed for a scientically guided
management design to mitigate the impact of these changes on
water quality.

Computer-based environmental modelling offers an aid to
understanding current catchment dynamics and investigating
the potential effectiveness of remedial actions in the context of
climate change. Building on previous catchment modelling
efforts aiming at predicting P delivery to lakes in agricultural
catchments,10–13 we constructed a novel network of chained
model to integrate climate, hydrologic, catchment, and in-lake
processes. At the top of the model chain is a global climate
model (GCM) whose output for daily temperature, precipitation
and other variables was downscaled to the region. These are
used as inputs to a hydrologic rainfall-runoffmodel (PERSiST14)
to produce daily discharge values for rivers, which, in turn, are
used as inputs for INCA-P15 to simulate daily uxes of sus-
pended sediments and P to the lake. At the end of the model
chain is the lake model MyLake.16 Here, we take advantage of
these models' matching state variables, spatial scales and
temporal resolutions,17 couple them into a network consisting
of river stretches and lake basins, and perform automated
calibration and uncertainty analysis across the network. The
seamless connection between model components allows for the
propagation of changes in boundary conditions – such as
climatic or land-use changes – within the model network (e.g.,
Voinov18). The model network is applied to the Vansjø–Hobøl
catchment (Norway), whose water quality, nutrient loading,19 as
well as past and recent land-uses have been thoroughly docu-
mented due to the basin's pivotal importance for water supply
and its sensitivity to eutrophication in lake Vansjø.20

The main anthropogenic pressure on the Vansjø–Hobøl
catchment is a surplus of P, which has resulted in eutrophica-
tion and severe blooms of cyanobacteria, including the poten-
tially toxic Microcystis.7,19–23 Although it is generally recognized
that the abundance of the essential nutrients nitrogen (N) and
silicon (Si) is also a key factor controlling algal growth and thus
water quality,24,25 our work has focussed on P based on evidence
that phytoplankton growth in this system is P-limited.19 As
agricultural practices continue to expand in the basin, and with
the observed increase in temperature and precipitation in
northern Europe,26 the occurrence of algal blooms is expected to
increase. We thus aimed to model the response of biological
(i.e., chlorophyll) and chemical (i.e., phosphorus) indicators of
water quality, as dened by the WFD, to climate and land-use
changes in the Vansjø–Hobøl catchment and to assess the
inuence of climate change on the feasibility of achieving
existing water quality targets.

2. Material and methods
2.1. Site description

The Vansjø–Hobøl catchment (area ¼ 690 km2), also referred to
as the Morsa catchment, is located in south-eastern Norway
(59�240N 10�420E). The Hobøl River, with a mean discharge of
This journal is © The Royal Society of Chemistry 2014
4.5 m3 s�1, drains a sub-catchment of 301 km2 into Lake Vansjø,
the catchment's main lake. Lake Vansjø has a surface area of
36 km2 and consists of several sub-basins, the two largest being
Storeorden (eastern basin, L1 in Fig. 1) and Vanemorden
(western basin, L2 in Fig. 1), whose characteristics are described
in Table 1. The water-column of both basins remains oxygen-
ated throughout the year. In addition, there are six smaller lakes
which together represent less than 15% of the lake surface area.
The Storeorden basin drains into the Vanemorden basin
through a shallow channel. The outlet of Vanemorden
discharges into the Oslo Fjord (Fig. 1).
2.2. The model network

The model network consists of four separate models: a climate
model, a hydrological model, a catchment model for P, and a
lake model. The model network is rst calibrated to present-day
observed data, then run with four storylines to simulate
conditions in the future. The model network is shown in Fig. 1
and described in detail below.
Environ. Sci.: Processes Impacts, 2014, 16, 1588–1599 | 1589
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Climate models. For a given greenhouse gas emission
scenario (see Section 2.4), projections of future climate change
differ depending on the GCM used.27 Consequently, we tested
the following three GCMs independently as inputs: (1)
HadCM3,28 (2) ECHAM5,29 and (3) Bergen Climate Model
(BCM).30,31 The outputs from the GCMs were the basis for RCMs,
yielding dynamically downscaled daily weather projections.
Details on the GCM-RCM pairs are given in Table 2. This
approach has been shown to be an effective way to couple
climate with hydrology.32

Catchment models. The outputs of the RCMs, together with
basin characteristics, were used as inputs for the hydrological
PERSiST model to produce daily estimates of runoff, hydrolog-
ically effective rainfall and soil moisture decit. Previously,
external time series of runoff, hydrologically effective rainfall
and soil moisture decits were obtained from rainfall-runoff
models such as HBV.33 Here, we use instead the new model
PERSiST v. 1.0.17,14 a daily time step, semi-distributed rainfall-
runoff model designed specically for use with INCA models.
Although PERSiST shares many conceptual characteristics with
the HBV model, such as the temperature index representation
of snow dynamics and evapotranspiration, it differs in its
description of water storage.14 PERSiST uses the same concep-
tual representation of water storage as the INCA models.
Coupling PERSiST with INCA allows a consistent conceptual
model of the runoff generation process for both hydrological
estimations and water chemistry simulations.

Water chemistry models. Daily hydrological outputs from
PERSiST, and weather forcing from the RCMs, were used as
inputs for INCA-P. The catchment P-dynamic model INCA-P,15

one of the iterations of the INCA-suite of models, is a process-
based, mass balance model that simulates temporal variation in
P export from different land-use types within a river system. It
has been used extensively in Europe and North America to
simulate P dynamics in soils and surface waters and to assess
the potential effects of climate and land management on
surface water quality.7,11–13,15,34,35 We use a recent fully branched
version of INCA-P11 (branched-INCA-P v. 0.1.31), in which rea-
ches are dened as stretches of a river between two arbitrarily
dened points, such as a gauging station, a topographic feature
or a lake basin. INCA-P is so-called semi-distributed, that is, soil
properties are spatially averaged within user-dened sub-
catchment branches. It produces daily estimates of discharge
Table 2 Change in the yearly mean temperature (DT) and precipita-
tion (Dp) predicted by climate models for the Vansjø–Hobøl catch-
ment during the scenario period 2030–2052 relative to the reference
period 1990–2012

Scenario GCM RCM DT (�C) Dp (mm) Conguration

C1 HadRm3a HADRM3 +1.6 +78.8 Q0 with normal
sensitivity

C2 ECHAM5b RACMO +0.7 +43.4 �r3 set of initial
conditions

C3 BCMc RCA +0.9 �10.5

a Hadley Centre, UK. b Max Planck Institute for Meteorology, Germany.
c Nansen Centre, Norway.

1590 | Environ. Sci.: Processes Impacts, 2014, 16, 1588–1599
(Q, m3 d�1), concentration of suspended solids (SS, mg L�1),
soluble reactive P (SRP; mg L�1) and total phosphorus (TP; mg
L�1). The application here (Fig. 1) simulates the 7 catchment
reaches: ve reaches of the Hobøl River catchment, each with
dened land-use and hydrology (R1–R5); the local Storeorden
sub-catchment (R6); and the Vanemorden sub-catchment (R7).
The multi-branch reach structure was established using GIS
and land-use maps for the area (Section 2.3) and the location of
monitoring stations and discharge point into lake basins.11

MyLake model. The lake model used, MyLake v. 1.2.1, is a
one-dimensional process-based model designed for the simu-
lation of seasonal ice-formation and snow-cover in lakes, as well
as for simulating the daily distribution of heat, light, P species,
and phytoplankton abundance in the water column.16 MyLake
has been successfully applied to several lakes in Norway, Fin-
land and Canada16,36,37 to simulate lake stratication and ice
formation.16,36,37 It uses daily meteorological input data such as
global radiation (MJ m�2), cloud cover, air temperature (�C),
relative humidity (%), air pressure (kPa), wind speed (m s�1)
and precipitation (mm), as well as inow volumes and P uxes
to produce daily temperature (T, �C) proles in the water
column, concentration proles and outow concentrations of
SS, dissolved inorganic P (PO4–P, mg L�1), particulate inorganic
P (PIP, mg L�1), dissolved organic P (DOP, mg L�1), chlorophyll-a
(Chl, mg L�1) and TP. The biogeochemical processes linking
these state variables in the water-column are the mineralisation
of DOP and of Chl to PO4, and the removal of PO4 through
phytoplankton growth (yielding Chl) or through sorption onto
SS (yielding PIP). In the sediments, mineralisation of organic-P
and equilibrium partitioning of PIP to the pore water govern the
uxes of PO4 to the water-column, while resuspension allows
Chl and PIP to return to the bottom water. Details on the
equations governing these processes are given by Saloranta and
Andersen.16 In the MyLake model, phytoplanktons have a
constant C : P ratio of 106 : 1 and a organic-P : Chl ratio of 1 : 1,
such that particulate organic-P is a proxy for Chl. Similar stoi-
chiometries and constant P : Chl ratios can be found in other
models for lake plankton dynamics, such as PROTECH.25

Finally, total particulate P (PP ¼ TP � PO4; mg L�1) was calcu-
lated offline and compared to eld observations (see Section
2.3) to calculate performance metrics.

MyLake was set-up for 2 lake basins (Fig. 1), Storeorden (L1)
and Vanemorden (L2). The outputs of the R1 to R6 simulations
from INCA-P are combined and used as inputs for L1. L1 and R7
are then combined and used as inputs for L2. The MyLake
setups L1 and L2 are at the end of the model chain, because the
lake Vanemorden (L2) discharges into the Oslo ord.
2.3. Model input

The observed climate, precipitation, temperature and wind data
at Lake Vansjø were obtained from daily weather data at the
Norwegian Meteorological Institute stations (1715 Rygge; 1750
Fløter; 378 Igsi) located between the Vanemorden and Store-
orden basins (59�380N, 10�790E). These data were used as the
common atmospheric forcing throughout the study; either as is
for present-day climate or scaled using the RCM predictions for
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Management and climate scenarios defining the storylines.
Storyline 0 represents the referencemanagement focus and reference
climate that were compared to observations in calibrating the river-
lake model network and deriving model performance metrics.
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climate change scenarios (see Section 2.4). Catchment
hydrology was constrained using daily ows measured at the
gauging station at Høgfoss (station #3.22.0.1000.1; Norwegian
Water Resources and Energy Directorate, NVE).

The land cover structure for the Vansjø–Hobøl catchment
was constructed from GIS digital terrain elevation maps
provided by the Norwegian Forest and Landscape Research
Institute and complemented by a recent report on the fertil-
ization regimes of agricultural elds.20 Historical nutrient
outputs from waste-water treatment plants (WWTPs) were
obtained from the online database KOSTRA, maintained by
Statistics Norway (http://www.ssb.no/offentlig-sektor/kostra).
TP and SS data were analysed downstream of Høgfoss, at Kure.38

P loadings from scattered dwellings are provided by the online
GIS information system GISavløp maintained by the Norwegian
Institute for Agricultural and Environmental Research (Bio-
forsk; http://www.bioforsk.no/webgis). The land cover of the
Vansjø–Hobøl catchment is dominated by forestry (78%), agri-
culture (15%) and water bodies (7%). The agricultural land-use
is dominated by cereal production (89%), with a smaller
production of grass (9.8%), vegetables (0.6%) and potatoes
(<0.1%). Together, agricultural practices contribute an esti-
mated 48% of the total P input to the river basin, followed by
natural runoff (39%), WWTPs (5%) and scattered dwellings
(8%). It is estimated that these external sources of P contribute
to the majority of the P loads to Lake Vansjø.20

For the Vanemorden and Storeorden basins, water chem-
istry and temperature data were provided by the Vansjø–Hobøl
monitoring program, conducted by Bioforsk and by the Norwe-
gian Institute for Water Research (NIVA). Water-column sampling
was conductedweekly from 1990 to 2004, and bi-weekly from 2004
on, at the deepest-site of both basins whose coordinates are given
in Table 1, using a depth-integrating pipe water-column sampler
positioned at a 0–4 m depth. Values of TP, PP, Chl and PO4 water-
column concentrations for both basins are accessible through
NIVA's online database (http://www.aquamonitor.no).
Fig. 3 Monthly means of the changes in temperature and precipita-
tion imposed by the climate models HadCM3/HadRM3 (solid line, C1),
ECHAM5/RACMO (long dashed line, C2) and BCM/RCA (short dashed
line, C3) for the period of 2030–2052 relative to the present-day
conditions (C0) over the period of 1990–2012, along with monthly
means of the observed temperature and precipitation over the same
period (grey vertical bars).
2.4. Scenarios and storylines

Scenarios are valuable to evaluate alternative directions for
development and policy implementation. Here, we have dened
scenarios representing possible futures in global and regional
climates and in catchment management. We combine these
climate predictions and management scenarios into storylines,
which help convey the output of the simulations into quanti-
tative expectations for future P loadings in the Vansjø catch-
ment (Fig. 2). The assumptions made in dening these
scenarios, and the choice made to combine them into story-
lines, are detailed below.

Climate. Three GCMs were used to obtain predictions
according to the A1B greenhouse gas emission scenario (2030–
2052) of the Intergovernmental Panel on Climate Change
(IPCC).27 The A1 scenario family describes a future world of
rapid economic and population growth and the introduction of
new and more efficient technologies. It is subdivided into
groups that describe alternative directions of technological
change in the energy system. The A1B sub-scenario, which
This journal is © The Royal Society of Chemistry 2014
describes a balance between a growing reliance on fossil ener-
gies and an emergence of new technology, assuming that
similar improvement rates apply to all energy supply and end-
use technologies. This scenario projects that anthropogenic
emission of greenhouse gases (CO2, CH4 and N2O) peaks and
begins to decline past the year 2050. GCM runs, prepared from
the results of the ENSEMBLES EU FP6 project,39,40 provided
boundary conditions for the RCMs. The outputs of these model
pairs, all based on the A1B scenario of climate change, are
hereaer referred to as future climates C1–C3 (Table 2 and
Fig. 3), whereas the climate condition during the reference
period 1990–2012 is referred to as climate C0.

Because the RCMs were based on spatial domains much
larger than the catchment, they may contain seasonal biases.
Consequently, RCM outputs for the Vansjø–Hobøl catchment
were bias corrected on amonthly basis. Daily resolution scenario
data for surface air temperature and precipitation were derived
from a sub-set of these regional climate model simulations41 and
implemented by scaling the observed weather (1990–2012). The
observed temperatures were changed to reect the increase in
both median and variance predicted by the climate models.
Precipitation was scaled using a ratio of change approach,
multiplying observation by the ratio of observed (1990–2012)
over predicted (2030–2052) precipitation. Averaged, monthly
local changes in temperature and precipitation predicted by the
three RCMs under the A1B scenario for the 2030–2052 period are
shown in Fig. 3. Overall, HadRm3 predicts average yearly
changes in both temperature and precipitation that are greater
than those predicted by ECHAM5 or BCM (Table 2).
Environ. Sci.: Processes Impacts, 2014, 16, 1588–1599 | 1591
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Management. Three management scenarios were developed
together with stakeholders involved in the catchment's land-use
and water management. As a result, the following scenarios
represent realistic actions that the stakeholders have the
capacity to implement. The reference scenario (M0) represents
historical riverine nutrient concentrations and current loadings
from land-use, fertilization and WWTPs. The sustainable
management scenario (M1), referred to as the “water-quality
focus”, represents the implementation of measures to further
mitigate the risk of eutrophication in the catchment. These
measures impose (1) a 10% reduction in the agricultural land,
which is then converted to a forest, (2) a 25% decrease in
vegetable production, which is then converted to grass
production, (3) a 25% decrease in P-based fertilizer applica-
tions, and (4) a 90% improvement in the P-removing perfor-
mance of WWTPs. Finally, a less sustainable management
scenario (M2), referred to as the “economic focus”, reects a
projected increase in anthropogenic pressure throughout the
catchment due to population growth and an intensication of
food production. Further growth of agricultural and urban
activities in the catchment in scenarioM2 is imposed as follows:
(1) a 10% reduction of forest cover, which is then converted into
agricultural lands, (2) a shi of 25% of the grass production to
vegetable production, (3) an increase of fertilizer applications by
25%, and (4) a 25% increase in the P load of effluents from
scattered dwellings and WWTPs throughout the catchment.

Storylines. The management scenarios M1 and M2 were
either considered with the reference climate (C0) or with future
climate change, thus dening 4 storylines which represent the
possible combined effects of climate change and management
practices in the Vansjø–Hobøl catchment (Fig. 2). Storylines 1
and 2 encompass the water-quality focus scenario with and
without climate change, respectively, while storylines 3 and 4
encompass the economic focus scenario with and without
climate change, respectively. The reference storyline represents
the present climate conditions combined with the historical
management of the catchment.
2.5. Calibration and uncertainty analysis

PERSiST was manually calibrated against the measured stream
ow in the Hobøl river at the end of reach R4 for the observation
period of 1 January 1996 to 3 December 2000. The INCA-P and
MyLake models were calibrated using a Markov Chain Monte
Carlo (MCMC) approach. Given the large number of parameters
involved in the simulation of 7 river reaches and 2 lake basins
using INCA-P and MyLake, probably many alternative sets of
parameters could achieve the same degree of t with the
observed data. Manual calibration identies only one possible
set, and perhaps not the best t, while locally scoped and
uniquely dened auto-calibration soware, such as PEST,
would fail to adequately address the multimodality and equi-
nality.42 To capture the envelope of acceptable parameter sets
systematically throughout the parameter combination space, a
probabilistic calibration was performed using a Bayesian
inference scheme, where each parameter was given a prior
distribution and a posterior distribution using a recent MCMC
1592 | Environ. Sci.: Processes Impacts, 2014, 16, 1588–1599
approach, within the framework of a self-adaptive differential
evolution learning scheme (DREAM)42 implemented in MATLAB
(Starrfelt et al., this issue).68 The calibration was performed by
choosing site-specic parameters, which are not known with
certainty beforehand, and allowing those values to vary within
the parameter space.

INCA-P (28 parameters varied) was calibrated by using the
MCMC-DREAM algorithm described by Starrfelt et al. (this
issue)68 against log10-transformed time series acquired at R4
(Fig. 1) for the observation period of 1 December 1992 to 31
January 1995. Aer calibration, parameter sets from the last
iterations were sampled and the model was run for the scenario
period and over the whole catchment. Median simulated values
from �600 runs per scenarios were then passed to MyLake.
MyLake (10 parameters varied) was calibrated against a time
series of measurements in the surface waters of the Vanemf-
jorden and the Storeorden basins for the observation period of
1 April 2005 to 1 September 2012. Technical details on the
sensitivity and uncertainty analysis of such a model network are
given elsewhere.43

The goodness of t between observations in the catchment
and the model predictions from PERSiST and INCA-P, as well as
between observations in the lake water columns and the model
predictions fromMyLake, was evaluated using the coefficient of
determination (R2), the root-mean-square error (RMSE) and the
Nash–Sutcliffe coefficient (NS) statistics. The latter was calcu-
lated both on normal and on log-transformed values. These
metrics were chosen because they represent the following three
major categories of model performance metrics:44 (1) standard
regression statistics to determine the strength of the linear
relationship between simulated and measured data (i.e., R2), (2)
error indices to quantify the deviation in the units of the data of
interest (i.e., RMSE) and (3) dimensionless techniques to
provide a relative model evaluation assessment (i.e., NS). R2

values range from 0 to 1, with higher values indicating less error
variance, and typically values greater than 0.5 are considered
acceptable. RMSE values retain the same units as the constit-
uent being evaluated and can be directly compared with the
data (as in Fig. 4 and 5). A RMSE value of 0 indicates a perfect t.
NS ranges between �N and 1, with a value of 1 being optimal
and values between 0.5 and 1 being generally viewed as good.
Negative NS values indicate that the mean observed value is a
better predictor than the simulated value, pointing to poor
model performance. We refer the reader to a study by Moriasi44

for extensive discussion on the procedures used to qualify the
calculated values of these statistics.

In addition to the performance metrics described above,
“target diagrams”45,46 were used to compare the model's
performance with respect to Q, TP, Chl and PO4. Target
diagrams conveniently represent aggregated performance
metrics by plotting the normalized bias (B*, where * denotes
normalization) against the normalized unbiased root mean
square difference (RMSD'*).43,44 B* is dened as:

B* ¼

1

N

XN
n¼1

ðMn �DnÞ

sD

(1)
This journal is © The Royal Society of Chemistry 2014
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Fig. 4 Observed (symbols) and simulated (solid line) stream flows at
the end of R4 using the model PERSiST (panel A), as well as observed
and simulated stream flows and TP at the end of R4 using INCA-P
(panel B).
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where N is the total number of observations and model output
pairs, Dn is the observation at each site,Mn is the corresponding
model output, and sD is the annual standard deviation of the
observed data. RMSD'* is calculated as follows:

RMSD0* ¼ sgnðsM � sDÞ
sD

��
M

0
n �D

0
n

�2�0:5
(2)
Fig. 5 Calibration performance of MyLake at Storefjorden (L1, left panel
rophyll (Chl), particulate phosphorus (PP) and phosphate (PO4) over the c
(solid line), daily quartile statistics sampled from the parameter sets of equ

This journal is © The Royal Society of Chemistry 2014
where sgn represents the sign of the standard deviation differ-
ence and sM is the annual standard deviation of the modelled
data. If the model standard deviation is greater than the
observation standard deviation, RMSD'* is positive.
3. Results and discussion
3.1. Model performance

The hydrology of the catchment was well simulated with
PERSiST and yielded satisfactory ts to the observed discharge
(Fig. 4), as reected by the high NS coefficient (>0.85; Table 3).
The hydrological model HBV,33 previously used in conjunction
with INCA-P, yielded similarly satisfactory simulations of
ows.17 Although the use of log-transformed values yielded
satisfactory ts with respect to NSlog for both Q and TP, the
INCA-P calibration against TP measurements is characterized
by relatively poor performance metrics (Table 3 and Fig. 4).
Here, we aimed for a compromise between the performance in
some components of the individual models and a realistic
propagation of the changes in boundary conditions through the
integrated system across the model components, as discussed
by Voinov.18

The water quality simulated by MyLake during the calibra-
tion period for the surface waters of Storeorden (L1) and
Vanemorden (L2) is shown in Fig. 5, and the corresponding
model performance statistics are summarized in Table 3. The
observed P dynamics in both basins display strong seasonal
features, with TP, Chl, and PP all reaching maximum values
during the summer, when the lake productivities are at their
highest. Conversely, PO4 is at a minimum during the summer,
consistent with its uptake by phytoplanktons. The observed TP
values show a high degree of variability from week-to-week,
likely due to the integrating nature of the TP parameter. A visual
inspection of Fig. 5 shows that MyLake simulations for both
basins well captured the seasonal minima in PO4 and maxima
in both PP and Chl. The seasonal trends in Chl, a measure of the
s) and Vanemfjorden (L2, right panels) for total phosphorus (TP), chlo-
alibration period of 2005–2012. The results are reported as the median
al likelihood (continuous area) together with the observations (circles).
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Table 3 Summary of models' performance statistics. The coefficient
of determination (R2), root-mean-square error (RMSE), and Nash–
Sutcliffe coefficient on normal (NS) and log-transformed data (NSlog)
for reach R4 (Hobøl at Kure), stations L1 (Storefjorden) and L2
(Vanemfjorden) of the model network

Parameter Model (station) R2 RMSE NS NSlog

Q PERSiST (R4) 0.85 52.58 m3 s�1 0.85 0.99
Q INCA-P (R4) 0.59 3.34 m3 s�1 0.48 0.99
TP INCA-P (R4) 0.04 0.09 mg L�1 �0.51 0.16
TP MyLake (L1) 0.93 6.37 mg L�1 0.19 0.99
TP MyLake (L2) 0.94 7.76 mg L�1 �0.23 0.99
PO4 MyLake (L1) 0.92 6.70 mg L�1 0.39 0.84
PO4 MyLake (L2) 0.72 2.54 mg L�1 �0.96 0.90
Chl MyLake (L1) 0.74 4.48 mg L�1 �0.68 0.89
Chl MyLake (L2) 0.82 8.11 mg L�1 0.21 0.96
PP MyLake (L1) 0.47 11.36 mg L�1 �0.52 0.92
PP MyLake (L2) 0.85 8.16 mg L�1 �0.50 0.98
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abundance of phytoplanktons, are also well captured by the
model, with the exception of an algal bloom in the summer of
2006, whose magnitude was not fully captured (Fig. 5). The algal
bloom in the summer of 2008 is reproduced by the model,
although also underestimated, despite the high magnitude rain
events that occurred throughout the catchment during that
year. In particular, a single bank erosion event in the winter of
2008 resulted in high SS in the river.22 The NS metric is high for
simulated Q with PERSiST, but low for simulations of TP with
both INCA-P and MyLake (Table 3). This metric is unforgiving,
in that it is strongly affected by simulations that do not match
observed peak concentrations.

The target diagrams (Fig. 6) allow for the comparison of the
model performance among parameters and stations in a
normalized manner, independent of the magnitudes of the
simulated values. The RMSD'* calculation involves the multi-
plication of a term in eqn (2) by the sign of difference between
Fig. 6 Target diagram presenting the normalized bias (B*) against the
normalized unbiased root mean square difference (RMSD'*) of simu-
latedQ, TP and TP loads for INCA-P at R4 and of simulated TP, PO4, and
Chl for MyLake at Vanemfjorden and Storefjorden over the calibration
periods. The median simulated values were used for TP, PO4 and Chl.
The inner and outer circles indicate �0.75 and �1 standard deviations
(s) on the X-axis and 75% and 100% B* on the Y-axis, respectively.

1594 | Environ. Sci.: Processes Impacts, 2014, 16, 1588–1599
the standard deviation (s) of simulations and observations. As a
result, the RMSD'* provides information whether the s of
simulated values is larger or smaller than the s of the obser-
vations. An increase in RMSD'* reects an increase in the
discrepancy between simulations and observations,46 pointing
to incommensurability between what is modelled and the
available observations, while lower values indicate less residual
variance between them. B* represents systematic over- or under-
estimation of the simulated vs. observed values. Fig. 6 reveals
that the simulations are generally unbiased, and that the
residual variances increase as we move from INCA-P to MyLake,
that is, further along the model network. When compared to the
observations, INCA-P simulations are less biased and, on an
absolute scale, have a smaller RMSD'* than the simulations
generated by MyLake. This information was not revealed solely
by calculating the metrics reported in Table 2.

Despite the low NS metrics reported for INCA-P, three lines
of evidence suggest that the model delivers representative TP
loads to the lake model: (1) a linear regression of cumulative TP
loads estimated from the observed Q and TP vs. those predicted
by INCA-P yields a R2 of 0.90 (n ¼ 124, p < 0.05), (2) the B* and
RMSD'* values obtained when comparing the estimated and
predicted TP loads are low (Fig. 6), and (3) the performance of
the lake models is acceptable. Previous – although simpler –

INCA-P setups calibrated on data from other Norwegian catch-
ments35,47 were also deemed satisfactory when evaluated against
fortnightly or monthly TP loads rather than daily TP values.
Thus, during the scenario period, the response of INCA-P to the
climate and land-use changes is expected to be reasonable both
in magnitude and in direction.

MCMC-DREAM analysis provides information on the sensi-
tivity of the simulations to INCA-P and MyLake parameters. For
INCA-P, of the 28 parameters tested, TP concentrations were the
most sensitive to parameters controlling hydrology and erosion
across the different land-uses, in particular the soil reactive zone
time constant (d�1), which in INCA refers to the amount of water
present in the soil and its residence time, the soil erodibility
(kg m�2 d�1), the direct runoff time constant, and the base ow
index. Downstream, P speciation predicted by MyLake was
the most sensitive to 5 out of the 10 parameters tested: the re-
suspension rate of sediments (m d�1), the sinking rate of sus-
pended inorganic particles (m d�1), the algae growth rate (d�1),
the heat vertical diffusion coefficient, and the wind sheltering
coefficient. P speciation was moderately sensitive to the sinking
rate (m d�1), the sorption coefficient of P onto inorganic particles
(mg P m�3), and to the algae mortality rate (d�1), while insensi-
tive to PAR saturation (mol quanta m�2 s�1) and snow albedo.
The co-variance structure in the parameter space gathered by
applying MCMC-DREAM analysis is described elsewhere for
INCA-P (Starrfelt et al., this issue)68 and MyLake.43
3.2. Impact of climate and land-use change on the water
quality

Several P-mitigation measures have been implemented in the
Vansjø–Hobøl catchment over recent decades. These measures
consist of reduced tillage to control erosion, reduced fertilizer
This journal is © The Royal Society of Chemistry 2014
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application rate, implementation of vegetated buffer strips
along most of the streams in cultivated areas, construction of
articial wetlands, and incremental improvement of WWTP
performance.20,21 As a result, TP loads and Chl concentrations
steadily decreased throughout the reference period (Fig. 7).
Imposing the storylines described in Section 2.4 under these
historical reference conditions reveals (i) what the water quality
status in the Vansjø–Hobøl catchment would have been should
additional management decisions have been made and (ii) the
effect of different climate change scenarios on the water quality.

PERSiST and INCA-P predict that the hydrological response to
climate change causes a signicant increase in runoff and in the
uxes of TP to the lake basins. This result is consistent with
observations in Danish lakes5 where higher TP loads were
ascribed to climate-induced increases in rainfall. The MyLake
output indicated no signicant differences between the ther-
mocline depths predicted under climate change and those pre-
dicted under present-day climate conditions (t-test, n ¼ 523, p >
0.05). This suggests that changes in air temperature and precip-
itation in storylines 2 and 4 do not induce signicant variations
in the water-column structures at the scale modelled by MyLake
Fig. 7 Predicted yearly median total P (panel A) and chlorophyll (panel
B) at Storefjorden (L1) and Vanemfjorden (L2) by the MyLake model
without (C0; storylines 1 and 3) or with climate change predictions
made using the HadRm3 (C1), the ECHAM5 (C2) or the BCM models
(C3) as climate forcing (storylines 2 and 4) for the river-lake model
network. The thick solid lines represent the reference conditions and
the thin horizontal solid lines indicate the WFD thresholds specific to
each basin (see Table 4).

This journal is © The Royal Society of Chemistry 2014
(i.e., vertical resolution of 1 m). On the other hand, the ice cover
duration was predicted by MyLake to decrease signicantly
(p < 0.05) under climate change; indeed, MyLake projected a
shorter duration of ice cover for lakes in the entire Nordic
region.37 For a given management scenario, TP and Chl values
predicted under climate change were signicantly higher (t-test,
n¼ 523, p < 0.05) than those predicted using present-day climate
conditions (96% of the times for Chl and 76% of the times for
TP). Amongst the three climate models tested, HadRm3 (C1)
projected the largest climate change39 and yielded the highest TP
and Chl values. Most likely this was done to the higher amount of
precipitation projected by HadRm3, which resulted in higher P
loads and runoff from the catchment in INCA-P.

The increase in Chl production predicted by MyLake was
higher in the summer months (Fig. 8). The model's handling of
phytoplankton growth, which is temperature-driven when
neither light nor PO4 is limiting,16 explains this result. Recent
studies have further highlighted that temperature-mediated P
release from lake sediments can increase under a warmer
climate,5,6,48 thus promoting algal growth. However, the inu-
ence of higher temperatures on internal P loadings in Lake
Fig. 8 Seasonal range of MyLake-predicted daily TP (panel A) and
chlorophyll (panel B) concentrations in the top 4 m of the Storefjorden
(L1) and Vanemfjorden (L2) water columns. The green, yellow and red
shaded zones indicate the basin-specific WFD water quality targets for
good, moderate and bad water quality status, respectively (see Table
4), while the asterisks indicate the 5th and 95th percentile outliers.

Environ. Sci.: Processes Impacts, 2014, 16, 1588–1599 | 1595
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Table 4 Proportion (%) of days above the good/moderate or the
moderate/bad thresholds set by the WFD for TP and Chl for basins of
classes L-N3 (Storefjorden) and L-N8 (Vanemfjorden) in the months of
June, July and August. Lower numbers indicate better water quality

Threshold name Good/moderate Moderate/bad

Basin Store. Vanem. Store. Vanem.

Parameter TP Chl TP Chl TP Chl TP Chl

Threshold values (mg L�1) 16 7.5 19 10.5 30 35 15 20
Reference (%) 99 99 99 95 21 32 58 58
Storyline 1 (%) 92 99 88 90 0 0 30 29
Storyline 4 (%) 98 99 99 99 94 95 99 93
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Vansjø cannot be ascertained here, because the relevant
sediment–water processes are only partly implemented in the
MyLake model (see Section 3.4). In addition, the climate
scenario used here, A1B, predicted that greenhouse gas
emissions will be curbed by the mid-21st century. Other
scenarios, such as those in the A2 and B2 families of scenarios,
assume larger increases of greenhouse gas emissions as well as
higher increases in temperature and precipitation in Nordic
catchments. The outcome of our simulations indicates that
these climatic conditions would further increase the risk of
eutrophication in Nordic lakes, as previously suggested.6,12,49,50

Thus, projected increases of Chl concentrations are likely
conservative.

In general, any given management scenario resulted in higher
TP and Chl concentrations when the climate change was
included. This is seen for the Storeorden basin in the years
following 2040, for which the detrimental effect of climate
change overrides the benecial effects of the water-quality focus
storylines. Both TP and Chl reach values above those of the
reference storylines, for which no additional P-load reduction
was imposed. Nonetheless, and although the effects of climate
change are signicant, variations in water quality brought about
by different management scenarios are always greater than
those brought about by climate change (Fig. 7). Land-use and
management regimes had a profound impact on the water
quality, more so than the projected climate change under the A1B
scenario. Relative to the reference storyline, imposing a water-
quality focus (storyline 1) improved the water quality overall by
decreasing TP and Chl by 24% and 33%, respectively, in Store-
orden, and by 18% and 23%, respectively, in Vanemorden.
Conversely, an economic focus (storyline 3) adversely affected the
water quality by increasing TP and Chl by 58% and 59%,
respectively, in Storeorden, and by 44% and 42%, respectively,
in Vanemorden. It thus follows that storyline 1 represents the
best case, while storyline 4 represents the worst case (Fig. 2).
3.3. Implications of climate and land-use change for water
management

The seasonal distributions of the daily predicted TP and Chl
concentrations (Fig. 8) show that the water quality is much
worse during the summer months under all storylines. Using
the lake-specic water quality thresholds of the WFD,51 we
calculated the proportion of simulated days for which the
regulatory thresholds for good/moderate and moderate/bad
water quality were exceeded. These thresholds are specic to
each lake type, so that the TP and Chl concentrations below
which the water quality meets the guidelines are different for
Storeorden and Vanemorden (Table 4).

The water-quality focus scenario without climate change
(storyline 1) increases the number of days for which the
concentrations of TP and Chl are deemed “good” and has a
greater inuence on Chl than for TP (Table 4). Nevertheless, the
“good/moderate” water quality threshold will still be exceeded
98–99% of the time for TP and 88–90% of the time for Chl.
Under an economic focus scenario with climate change (story-
line 4), the water quality degrades such that the concentrations
1596 | Environ. Sci.: Processes Impacts, 2014, 16, 1588–1599
of both TP and Chl exceed the moderate/bad threshold values
99% of the time in the summer. Together, these results suggest
that it will be difficult to achieve the environmental targets set
for TP and Chl in Lake Vansjø under the European WFD, even
under the best-case scenario represented by storyline 1. More
stringent water-quality focused measures are, therefore, likely
needed. Arguably, a full assessment of the compliance of water
quality indicators to the WFD directive requires greater details
regarding algal species assemblages, in particular observations
and predictions regarding the abundance of potentially harmful
algae such as cyanobacteria, which in addition to higher TP
levels are expected to be stimulated by the increased
temperature.52
3.4. Sources of uncertainty

Assessing the level of uncertainty in the outcome of an envi-
ronmental model provides a forthright basis for decision-
making and regulatory formulation. The sources of uncertainty
in water quality modelling at the river-basin scale range from
uncertainty linked to the choice of processes represented, the
uncertainty in the model parameters and the data themselves.
Here, the uncertainty was assessed by performing auto-cali-
bration (see Section 2.4) and accepting as usable those param-
eter sets yielding simulations of equal likelihood. This
uncertainty is represented by the interquartile space shown in
Fig. 5. Overall, the uncertainty in Chl predictions is the greatest
around the time where its level peaks during spring and
summer months (Fig. 5). Conversely, the model generally
agreed with the observation on the timing of the clear water
period occurring between the spring and summer blooms, as
the uncertainty band visibly narrows around the simulated
median (Fig. 5). For the scenario simulations, the uncertainty
was the largest for scenarios where climate change and
increased external nutrient loads were combined, relative to the
scenarios with climate change alone. MyLake's predictions of
phytoplankton abundance thus bear a greater uncertainty at
higher biomass levels.

In addition to estimating uncertainty statistically, we iden-
tied shortcomings in the models that likely introduce further
uncertainty in the predictions. As mentioned above, INCA-P
This journal is © The Royal Society of Chemistry 2014
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predictions are sensitive to soil erosion parameters. INCA-P is
somewhat limited in its handling of erosion processes and of
particle transport, resulting in an increased uncertainty
surrounding its predictions. Erosion events generating pulses
of particles, such as landslides, were observed in the Vansjø–
Hobøl catchment, for instance in 2008,20 when river bank
erosion occurred following a ood and temporarily increased
the particle load in the Storeorden basin. The effect of bank
collapse on runoff and particle transport is not spatially repre-
sented in INCA and particle retention measures, such as sedi-
mentation ponds and buffer strips, cannot be explicitly
represented in the model. Although such structures are better
modelled using fully distributed codes,53 their effect on P
migration in the catchment and on erosion control remains
problematic tomodel because landscapes are not at steady-state
and are subject to tipping points under increasing climatic
pressures54 and extreme hydrologic events. Finally, INCA-P is a
rather heavily parameterized model, and the lack of data on
some of the processes represented in the model introduces
uncertainty. Using INCA-P within the framework of an auto-
mated parameter estimation procedure, as has been done here,
is likely a reasonable approach to estimate this uncertainty.34

MyLake's underlying conceptual model is purposely simple,
in order to allow fast use of the model in automated auto-cali-
bration schemes, as has been done here or in global sensitivity
analysis. The drawback is that MyLake lacks the representation
of some key processes, the most relevant of which are identied
below. First, MyLake does not represent the phytoplankton
community dynamics, thus not capturing possible community
shis due to climate change.55 Second, MyLake does not capture
the thermodynamic decrease of oxygen availability at higher
temperatures which, combined with the higher metabolism of
respiring heterotrophic organisms, enhances the risk of oxygen
depletion and ultimately of anoxia, in the hypolimnion.5 Given
that the hypolimnetic oxygen concentration may control P
sequestration and release by sediments, neglecting it intro-
duces a source of uncertainty in the model's predictions, espe-
cially for lakes with high internal P loads. As suggested by Mooij
et al.56 and others,5,48,57–60 describing the exchange of phos-
phorus between the sediments and the overlying water column
beyond the daily timescale, as it is currently done in MyLake, is
an important step in predicting eutrophication. Although
recent lake models do represent internal P loading processes61,62

we elected to use the simpler MyLake model based on the
available information on internal P loading in lake Vansjø (see
Section 2.3). Third, MyLake, as with most lake system models
used to study eutrophication, does not consider the coupled
biogeochemical cycles of key macronutrients such as sulphur
(S), calcium (Ca) and iron (Fe). It has long been recognized that
these elements play a key role in controlling P cycling in the
water column and in the sediments.63,64 In oligotrophic lakes a
decrease in Ca concentrations, correlated with acid deposition,
has been reported in Nordic lakes over the past decade and may
have induced changes in plankton assemblages.63 Finally, a
recent increase in dissolved organic carbon (DOC) loadings to
Nordic lakes65 may have an effect on the lake photon budget and
thus on phytoplankton growth. Although photon absorption by
This journal is © The Royal Society of Chemistry 2014
DOC is included in MyLake, it was not systematically investi-
gated here due to the lack of DOC data in the river. These
phenomena, acting in conjunction with climate and land-use
change, may be changing the lake productivity in directions
that, to our knowledge, current models do not predict.

4. Conclusion

This study demonstrates the usefulness and potential limita-
tions of a novel network of process-based, mass-balance models
linking climate, hydrology, catchment-scale P dynamics, and
lake processes to support the decision-making needed to
improve the surface water quality. The management scenarios
tested here are projected to have a profound effect on the water
quality. The model results suggest that achievement of the
water quality target of good ecological status in eutrophic
Nordic lakes such as Lake Vansjø represents a challenge, given
the current land use and the expected changes in climatic
conditions. In order to achieve good water quality status,
managerial choices consistent with a water-quality focus
scenario are needed. Such measures are deemed “climate-
proof” because they will not only improve the water quality but
also counteract the detrimental impact of projected climate
change. Nevertheless, consistent with previous catchment-scale
studies conducted in northern,35 central,66 and southern
Europe,67 climate changes will probably worsen the water
quality. Should the future Nordic climate (2030–2060) be wetter
and warmer than that projected by the A1B scenario, additional
stringent management measures must be implemented in
order to achieve water quality. The conclusions presented here
on the changes of water quality as a result of management and
climate change are likely to hold even if different calibration
periods, parameter sets, or even different catchment and lake
models were used.
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