Recent Advancements and Future Challenges of Perovskite-Based Supercapacitors

Abstract

Perovskite materials have attracted a growing interest as advanced electrode materials for the next generation of supercapacitors, providing an elegant solution to the limitations of traditional materials, including carbonaceous materials, transition metal oxides, and conducting polymers, often identified with low energy density, lack of electrical conductivity, and inhibited cycling stability. The revolutionary potential of perovskitebased supercapacitors as a result of their unique ABX₃ crystal structure allows for considerable compositional flexibility and tunable electrochemical properties. Perovskites store energy by stable, synergistic mechanisms such as electric double-layer capacitance (EDLC) and pseudocapacitance, driven by oxygen vacancies, high ionic conductivity, and reversible redox reactions. Advances in synthesis modalities including sol-gel, hydrothermal, co-precipitation, and mechanochemical methods have already yielded substantial improvements to phase purity, porosity, and scalability, improving electrochemical performance to the extent that it can enter practical applications.Perovskites integration and combination with renewable energy systems such as hybrid photovoltaic-supercapacitors illustrates the compatibility and potential of perovskites to stimulate sustainable energy storage technologies. However, drawbacks such as toxicity of halide perovskites, complexity of synthesis routes, as well as aqueous long-term stability continue to present challenges and further research is required to investigate lead-free alternatives, cheaper synthesis routes, and protective coatings. This review indicates the significant role of perovskites provide over critical energy storage obstacles, and as another form for enabling high performance sustainable environmentally friendly supercapacitors that offer renewable energy or portable electronics, and the immediate important demands.

Article information

Article type
Review Article
Submitted
04 Sep 2025
Accepted
01 Dec 2025
First published
02 Dec 2025

J. Mater. Chem. C, 2025, Accepted Manuscript

Recent Advancements and Future Challenges of Perovskite-Based Supercapacitors

D. B. Tripathy, J. Mater. Chem. C, 2025, Accepted Manuscript , DOI: 10.1039/D5TC03312H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements