Optothermally Induced Active and Chiral Motion of Colloidal Structures
Abstract
Artificial soft matter systems have appeared as important tools to harness mechanical motion for microscale manipulation. Typically, this motion is driven either by external fields or by mutual interaction between the colloids. In the latter scenario, dynamics arise from non-reciprocal interaction among colloids within a chemical environment. In contrast, we eliminate the need for a chemical environment by utilizing a large area of optical illumination to generate thermal fields. The resulting optothermal interactions introduce non-reciprocity to the system, enabling active motion of the colloidal structure. Our approach involves two types of colloids: passive and thermally active. The thermally active colloids contain absorbing elements that capture energy from the incident optical beam, creating localized thermal fields around them. In a suspension of these colloids, the thermal gradients generated drive nearby particles through attractive thermo-osmotic forces. We investigate the resulting dynamics, which lead to various swimming modes, including active propulsion and chiral motion. We also have simulated the dynamics of the colloidal structures by solving the coupled Langevin equations to gain insight into the emerging motion. By exploring the interplay between optical forces, thermal effects, and particle interactions, we aim to gain insights into controlling colloidal behavior in non-equilibrium systems. This research has significant implications for directed self-assembly, microfluidic manipulation, and the study of active matter.
- This article is part of the themed collection: Colloidal interactions, dynamics and rheology