Exploring a solid-state nanopore approach for single-molecule protein detection from single cells

Abstract

Direct protein analysis from complex cellular samples is crucial for understanding cellular diversity and disease mechanisms. Here, we explored the potential of SiNx solid-state nanopores for single-molecule protein analysis from complex cellular samples. Using the LOV2 protein as a model, we designed a nanopore electrophoretic driver protein and fused it with LOV2, thereby enhancing the capture efficiency of the target protein. Then, we performed ex situ single-cell protein analysis by directly extracting the contents of individual cells using glass nanopipette-based single-cell extraction and successfully identified and monitored the conformational changes of the LOV2 protein from single-cell extracts using SiNx nanopores. Our results reveal significant differences between proteins measured directly from single cells and those obtained from purified samples. This work demonstrates the potential of solid-state nanopores as a powerful tool for single-cell, single-molecule protein analysis, opening avenues for investigating protein dynamics and interactions at the cellular level.

Graphical abstract: Exploring a solid-state nanopore approach for single-molecule protein detection from single cells

Supplementary files

Article information

Article type
Edge Article
Submitted
05 Kul 2025
Accepted
05 Dzi 2025
First published
07 Dzi 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2025, Advance Article

Exploring a solid-state nanopore approach for single-molecule protein detection from single cells

Z. Zhou, S. Liu, J. Wang, K. Chen, B. Xie, Y. Ying and Y. Long, Chem. Sci., 2025, Advance Article , DOI: 10.1039/D5SC01764E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements