Exploring a solid-state nanopore approach for single-molecule protein detection from single cells†
Abstract
Direct protein analysis from complex cellular samples is crucial for understanding cellular diversity and disease mechanisms. Here, we explored the potential of SiNx solid-state nanopores for single-molecule protein analysis from complex cellular samples. Using the LOV2 protein as a model, we designed a nanopore electrophoretic driver protein and fused it with LOV2, thereby enhancing the capture efficiency of the target protein. Then, we performed ex situ single-cell protein analysis by directly extracting the contents of individual cells using glass nanopipette-based single-cell extraction and successfully identified and monitored the conformational changes of the LOV2 protein from single-cell extracts using SiNx nanopores. Our results reveal significant differences between proteins measured directly from single cells and those obtained from purified samples. This work demonstrates the potential of solid-state nanopores as a powerful tool for single-cell, single-molecule protein analysis, opening avenues for investigating protein dynamics and interactions at the cellular level.
- This article is part of the themed collection: 15th anniversary: Chemical Science community collection