Examining the contribution of charge transport layers to boost the performance over 26% in Sr3PCl3 absorber-based bifacial perovskite solar cells
Abstract
Strontium phosphorus chloride (Sr3PCl3) presents a promising option for photovoltaic (PV) applications due to its distinctive optical, electrical, and structural characteristics. This research uses density functional theory (DFT) to examine its structural stability and optoelectronic properties. The PV performance of Sr3PCl3-based cell designs was examined, utilizing an electron transport layer (ETL) of ZnO and four different hole transport layers (HTLs): Cu2O, CBTS, MoO3, and CuI. Essential parameters, including band alignment, layer thickness, defect density, doping concentration, interface defect density, carrier concentration, and generation-recombination rates, were consistently assessed via numerical simulations utilizing SCAPS-1D software. The findings indicated that the Cu2O HTL structure attained the highest power conversion efficiency (PCE) of 26.67%, with an open-circuit voltage (VOC) of 1.3 V, a short-circuit current density (JSC) of 22.79 mA cm−2 and a fill factor (FF) of 89.9%. The CBTS, MoO3, and CuI HTL designs attained PCEs of 26.39%, 24.86%, and 21.78%, respectively. To enhance device performance, the bifacial mode was investigated, and the PV efficacy of the proposed PSC structure was examined. Among these, the Cu2O-based structure shows the highest performance, attaining a bifacial factor of 87.21%, a bifacial gain of 16.74% and bifacial efficiency of 31.07%. These findings provide significant insights and propose a viable approach for the advancement of economic and excellent performance Sr3PCl3-based perovskite solar cells.