Issue 10, 2025, Issue in Progress

Dihedral–torsion model potentials that include angle-damping factors

Abstract

This groundbreaking study derives and tests several new dihedral torsion model potentials for constructing classical forcefields for atomistic simulations of materials. (1) The new angle-damped dihedral torsion (ADDT) model potential is preferred when neither contained equilibrium bond angle is linear (i.e., (θeqABC and θeqBCD) ≠ 180°), at least one of the contained equilibrium bond angles is ≥ 130° (i.e., (θeqABC or θeqBCD) ≥ 130°), and the dihedral torsion potential contains some odd-function contributions (i.e., U[ϕ] ≠ U[−ϕ]). (2) The new angle-damped cosine only (ADCO) model potential is preferred when neither contained equilibrium bond angle is linear (i.e., (θeqABC and θeqBCD) ≠180°), at least one of the contained equilibrium bond angles is ≥ 130° (i.e., (θeqABC or θeqBCD) ≥ 130°), and the dihedral torsion potential contains no odd-function contributions (i.e., U[ϕ] = U[−ϕ]). (3) The new constant amplitude dihedral torsion (CADT) model potential is preferred when neither contained equilibrium bond angle is linear (i.e., (θeqABC and θeqBCD) ≠ 180°), both contained equilibrium bond angles are <130° (i.e., (θeqABC and θeqBCD) < 130°), and the dihedral torsion potential contains some odd-function contributions (i.e., U[ϕ] ≠ U[−ϕ]). (4) The constant amplitude cosine only (CACO) model potential is preferred when neither contained equilibrium bond angle is linear (i.e., (θeqABC and θeqBCD) ≠180°), both contained equilibrium bond angles are <130° (i.e., (θeqABC and θeqBCD) <130°), and the dihedral torsion potential contains no odd-function contributions (i.e., U[ϕ] = U[−ϕ]). (5) The new angle-damped linear dihedral (ADLD) model potential is preferred when at least one contained equilibrium bond angle is linear (i.e., (θeqABC or θeqBCD) = 180°). Most importantly, this article derives combined angle-dihedral coordinate branch equivalency conditions and angle-damping factors that ensure the angle-damped torsion model potentials (e.g., ADDT, ADCO, and ADLD) are mathematically consistent and continuously differentiable even as at least one contained bond angle approaches linearity (i.e., as (θABC or θBCD) → 180°). This article introduces the torsion offset potential (TOP). I show the TOP gives rise in some materials to the unusual physical phenomenon of slip torsion. For various molecules, extensive quantitative comparisons to high-level quantum chemistry calculations (e.g., CCSD) and experimental vibrational frequencies showed these new dihedral torsion model potentials perform superbly.

Graphical abstract: Dihedral–torsion model potentials that include angle-damping factors

Supplementary files

Article information

Article type
Paper
Submitted
23 N’w 2024
Accepted
22 Sun 2025
First published
07 Kul 2025
This article is Open Access
Creative Commons BY license

RSC Adv., 2025,15, 7257-7306

Dihedral–torsion model potentials that include angle-damping factors

T. A. Manz, RSC Adv., 2025, 15, 7257 DOI: 10.1039/D4RA08960J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements