Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

Tin selenide (SnSe) nanostructures hold great promise as an anode material in lithium-ion batteries (LIBs) due to their high storage capacity, rapid lithiation kinetics and long-term cycling stability. However, a scalable synthesis of SnSe nanostructures with a well-defined size remains a challenge in chemistry. Here, we report cathodic exfoliation of a bulk SnSe crystal for a high-yield (>90%) synthesis of sub-5 nm scale SnSe quantum dots (QDs). As-exfoliated SnSe QDs demonstrate a superior performance as the anode material for LIBs. Our results reveal that SnSe QDs not only accommodate the volume expansion/contraction during the reversible charging/discharging in LIBs but also increase the effective contact interface area between the nanostructured anode materials and electrolyte, leading to a high charging/discharging rate and superior cycling performance. Additionally, SnSe QD based LIBs exhibit a reversible capacity retention of 550 mA h g−1 and high coulombic efficiency approaching 100% after 1500 charging/discharging cycles at a current density of 0.5 A g−1.

Graphical abstract: High yield electrochemical exfoliation synthesis of tin selenide quantum dots for high-performance lithium-ion batteries

Page: ^ Top