Issue 4, 2025

In situ Raman studying the microstructure and function of FeIV species in advanced oxidation processes

Abstract

Due to the efficient and stable pollutant degradation properties, FeIV species from Fe-based single-atom catalysts (Fe-SACs) have garnered significant interest in advanced oxidation processes (AOPs). However, the microstructure and function of FeIV species in these processes remain contentious. In this study, we developed Au@SiO2@Fe-SACs and utilized a combination of in situ surface-enhanced Raman spectroscopy, theoretical calculations, and synchrotron radiation techniques to elucidate the structure and functional mechanisms of FeIV species during AOPs. Our findings demonstrated that Fe-SACs with an FeIIN4 structure were loaded on Au@SiO2 to obtain Au@SiO2@Fe-SACs. During PMS oxidation, a Raman peak associated with the Fe–O bonds appeared at 837 cm−1 along with blue-shifts of Fe–N bonds from 183 cm−1 and 322 cm−1 to 191 cm−1 and 335 cm−1, proving the generation of FeIV species. Specifically, the elongation of the Fe–O bond displaced the Fe atom from the NC plane, resulting in an extension of the Fe–N bond length from 1.88 Å to 1.93 Å. Furthermore, the FeIV species directly oxidized typical pollutant phenol through a direct oxidation transformation pathway (DOTP) within a wide pH range of 3 to 9. They exhibited a significant increase in removal efficiency of phenol compared to the hydroxyl radicals (·OH) from activated H2O2 and effective reduction of total organic carbon (TOC). This study offers critical insights into the structural and functional attributes of FeIV species, providing valuable guidance for the design of more efficient Fe-SACs in AOPs.

Graphical abstract: In situ Raman studying the microstructure and function of FeIV species in advanced oxidation processes

Supplementary files

Article information

Article type
Paper
Submitted
14 Huk 2024
Accepted
14 Yan 2025
First published
18 Yan 2025

Environ. Sci.: Nano, 2025,12, 2297-2308

In situ Raman studying the microstructure and function of FeIV species in advanced oxidation processes

C. Wang, S. Li, Y. Zhang, X. Zhang, W. Ran and R. Liu, Environ. Sci.: Nano, 2025, 12, 2297 DOI: 10.1039/D4EN01066C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements