Issue 29, 2024

Photonic crystal gas sensors based on metal–organic frameworks and polymers

Abstract

A photonic crystal (PC) is an optical microstructure with an adjustable dielectric constant. The PC sensor was deemed a powerful tool for gas molecule detection due to its excellent sensitivity, stability, online use and tailorable optical performance. The detection signals are generated by monitoring the changes of the photonic band gap when the sensing behavior occurs. Recently, many efforts have been devoted to improving the PC sensor's detection performance and reducing technical costs by selecting and refining functional materials. In this case, metal–organic frameworks (MOFs) with a large specific surface, tunable structural properties and polymers with unique swelling properties have attracted increasingly attention. In this review, a systematic review of PC gas sensors based on MOFs and polymers was carried out for the first time. Firstly, the optical properties and gas sensing mechanism of PCs were briefly summarized. Secondly, a detailed discussion of the structural properties and rapid preparation methods of distributed Bragg reflectors (DBRs), opals and inverse opals (IOPCs) was presented. Thirdly, the recent advances in MOF, polymer and MOF/polymer-based PC sensors over the past few years were summarized. It should be noted that the sensitivity and selectivity enhancement strategy by appropriate material species selection, organic ligand functionalization, metal-ion doping, diverse functional material arrays, and multi-component compounding were analyzed in detail. Finally, prospects on PC gas sensors are given in terms of preparation methods, material functionalization and future applications.

Graphical abstract: Photonic crystal gas sensors based on metal–organic frameworks and polymers

Article information

Article type
Critical Review
Submitted
25 Dzi 2024
Accepted
12 Kho 2024
First published
09 Maw 2024

Anal. Methods, 2024,16, 4901-4916

Photonic crystal gas sensors based on metal–organic frameworks and polymers

J. Wei, Z. Yi, L. Yang, L. Zhang, J. Yang, M. Qin and S. Cao, Anal. Methods, 2024, 16, 4901 DOI: 10.1039/D4AY00764F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements