Issue 5, 2022

Porous carbon nano-sheets as excellent carbocatalysts for organic pollutant removal via persulfate activation: the role of the sp2/sp3 carbon ratio

Abstract

Carbon-driven persulfate-based advanced oxidation processes have attracted extensive attention for organic pollutant degradation in recent years. Nevertheless, the catalytic activities of carbocatalysts are still unsatisfactory for practical application, and their structure–activity relationships also remain ambiguous. Herein, a series of porous carbon nano-sheets (PCNSs) with tunable sp2/sp3 carbon hybridizations were developed to efficiently remove organic pollutants via persulfate (PS) activation and demonstrate the intrinsic correlation between the structure and the catalytic activity. The optimal catalyst exhibits outstanding catalytic activity in PS activation, which can completely degrade 80 mg L−1 bisphenol A (BPA) in just 45 s. The rate constant (kobs) is up to 7.12 min−1, which is superior to those of all reported catalysts in the remediation of wastewater so far. Moreover, this system exhibits good pH and environmental matrix adaptabilities and also demonstrates excellent catalytic performances for various organic pollutants, presenting great potential for practical applications. Electron paramagnetic resonance (EPR), quenching tests and Raman spectroscopy indicate that holes are the primary active species to degrade BPA through a direct electron transfer process. X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) reveal a positive linear relationship between the ratios of sp2/sp3 carbon and the catalytic efficiencies. These findings provide useful insights for the design of high-performance metal-free catalysts and have important implications for persulfate-based environmental remediation processes.

Graphical abstract: Porous carbon nano-sheets as excellent carbocatalysts for organic pollutant removal via persulfate activation: the role of the sp2/sp3 carbon ratio

Supplementary files

Article information

Article type
Paper
Submitted
29 N’w 2021
Accepted
10 Kul 2022
First published
11 Kul 2022

Environ. Sci.: Nano, 2022,9, 1748-1758

Porous carbon nano-sheets as excellent carbocatalysts for organic pollutant removal via persulfate activation: the role of the sp2/sp3 carbon ratio

Q. Fu, H. Yang, J. Yu, N. Li, Y. Tong, S. Wei, Z. Hao, J. Wang and G. Ouyang, Environ. Sci.: Nano, 2022, 9, 1748 DOI: 10.1039/D1EN01205C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements