Preparation and glass transition temperatures of elastomeric PolyHIPE materials

(Note: The full text of this document is currently only available in the PDF Version )

Neil R. Cameron and David C. Sherrington


Abstract

Highly porous elastomeric PolyHIPE materials have been prepared by polymerisation of the continuous phase of high internal phase emulsions (HIPEs) containing styrene, divinylbenzene and varying amounts of either 2-ethylhexyl acrylate or the corresponding methacrylate monomer. The glass transition temperatures of the resulting copolymers were investigated by differential scanning calorimetry (DSC). For each series,Tg was found to vary non-linearly with copolymer composition. By consideration of the comonomer unit sequencing along the polymer backbone, as deduced from reactivity ratios, the relationship between Tg and composition in each case has been qualitatively explained. Comparison between experimental results and values calculated using an entropic approach have been made. It is thought that the (meth)acrylate comonomers reduce the overall Tg by three mechanisms: by introducing large amounts of free volume, due to their bulky side groups; by providing a much higher degree of flexibility to the polymer chains; and by reducing the proportion of adjacent styrene units, which display particularly unfavourable steric interactions.


References

  1. D. Barby and Z. Haq, Eur. Pat. 0,060,138 ( 1982)(to Unilever) Search PubMed.
  2. J. M. Williams and D. A. Wrobleski, Langmuir, 1988, 4, 656 CrossRef CAS.
  3. N. R. Cameron and D. C. Sherrington, Colloid Polym. Sci., 1996, 274, 592 CrossRef.
  4. J. M. Williams, A. J. Gray and M. H. Wilkerson, Langmuir, 1990, 6, 437 CrossRef CAS.
  5. J. Kizling and B. Kronberg, Colloids Surf., 1990, 50, 131 CrossRef CAS.
  6. M. P. Aronson and M. F. Petko, J. Colloid Interface Sci., 1993, 159, 134 CrossRef CAS.
  7. P. Hainey, I. M. Huxham, B. Rowatt, D. C. Sherrington and L. Tetley, Macromolecules, 1991, 24, 117 CrossRef CAS.
  8. A. Guyot, Synthesis and Structure of Polymer Supports, in Syntheses and Separations using Functional Polymers, ed. D. C. Sherrington and P. Hodge, Wiley, New York, 1988, ch. 1 Search PubMed.
  9. P. W. Small and D. C. Sherrington, J. Chem. Soc., Chem. Commun., 1989, 1589 RSC.
  10. H. F. M. Schoo, G. Challa, B. Rowatt and D. C. Sherrington, React. Polym., 1992, 16, 125 Search PubMed.
  11. E. Ruckenstein and L. Hong, Chem. Mater., 1992, 4, 122 CrossRef CAS.
  12. N. R. Cameron and D. C. Sherrington, Adv. Polym. Sci., 1996, 126, 163 CAS.
  13. Polymer Handbook, ed. J. Brandrup and E. H. Immergut, 2nd edn., Wiley Interscience, USA, 1975 Search PubMed.
  14. B. B. Kine and R. W. Novak, Acrylic and Methacrylic Ester Polymers, in Encyclopedia of Polymer Science and Engineering Vol. 1, Wiley-Interscience, USA, 1985 Search PubMed.
  15. T. G. Fox, Bull. Am. Phys. Soc., 1956, 1, 123 Search PubMed.
  16. E. A. DiMarzio and J. H. Gibbs, J. Polym. Sci., 1959, 40, 121 Search PubMed.
  17. J. M. Barton, J. Polym. Sci., Polym. Symp., 1970, 30, 573 Search PubMed.
  18. N. W. Johnston, J. Macromol. Sci., Rev. Macromol. Chem., 1976, C14, 215 Search PubMed and references therein.
  19. K. H. Illers, Kolloid-Z., 1963, 190, 16 Search PubMed.
  20. J. Schellenberg and J. Vogel, J. Polym. Sci. B, Polym. Phys., 1995, 32, 1969 CrossRef.
  21. D. P. Gregory, Unilever Research, Port Sunlight, personal communication.
  22. S. Loshaek, J. Polym. Sci., 1955, 15, 391 Search PubMed.
  23. L. E. Nielsen, J. Macromol. Sci., Rev. Macromol. Chem., 1969, C3, 69 Search PubMed.
  24. T. G. Fox and S. Loshaek, J. Polym. Sci., 1955, 15, 371 Search PubMed.
  25. J. Bicerano, R. L. Sammler, C. J. Carriere and J. T. Seitz, J. Polym. Sci. B, Polym. Phys., 1996, 34, 2247 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.