

Promoted Nitrogen Photofixation over Periodic WS2@TiO2 Nanoporous Film

Journal:	Journal of Materials Chemistry A
Manuscript ID	TA-COM-11-2019-012743.R1
Article Type:	Communication
Date Submitted by the Author:	18-Dec-2019
Complete List of Authors:	 Shi, Li; University of Central Florida, NanoScience Technology Center Li, Zhao; University of Central Florida, NanoScience Technology Center Ju, Licheng; University of Central Florida, NanoScience Technology Center Carrasco-Pena, Alejandro ; University of Central Florida, NanoScience Technology Center Orlovskaya, Nina; University of Central Florida, Mechanical, Materials, and Aerospace Eng. Zhou, Haiqing; University of Houston, Department of Physics and electronics; Yang, Yang; University of Central Florida, NanoScience Technology

Promoted Nitrogen Photofixation over Periodic WS₂@TiO₂ Nanoporous Film

Li Shi ^{a,#}, Zhao Li ^{a,b,#}, Licheng Ju ^{a,b}, Alejandro Carrasco-Pena ^c, Nina Orlovskaya ^{c,f}, Haiqing Zhou ^{d,e}, Yang Yang ^{a,b,f,*}

^a NanoScience Technology Center, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA.

^b Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA.

^c Department of Mechanical and Aerospace Engineering, University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816, USA.

^d Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.

^e Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China.

^f Energy Conversion and Propulsion Cluster, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida, 32816, USA

[#]These authors contributed equally to this work

*E-mail: <u>Yang.Yang@ucf.edu</u>

Abstract: Atmospheric nitrogen fixation using a photocatalytic system is a promising approach to produce ammonia. However, most of the recently explored photocatalysts for N₂ fixation are in the powder form, suffering from agglomeration, difficulty in the collection, and leading to unsatisfied conversion efficiency. Developing efficient film catalysts for N₂ photofixation under ambient condition remains challenging. Herein, we report the efficient photofixation of N₂ over a periodic WS₂@TiO₂ nanoporous film, which is fabricated through a facile method that combines anodization, E-beam evaporation, and chemical vapor deposition (CVD). Oxygen vacancies are introduced into TiO₂ nanoporous film through Ar annealing treatment, which plays a vital role in N₂ adsorption and activation. The periodic WS₂@TiO₂ nanoporous film with an optimized WS₂ content shows highly efficient photocatalytic performance for N₂ fixation with an NH₃ evolution rate of 1.39 mmol g⁻¹ h⁻¹, representing one of the state-of-the-art catalysts.

Keywords: WS_2 ; TiO_2 nanoporous film; N_2 fixation; photocatalysis; oxygen vacancies; heterostructure

Introduction

Ammonia (NH₃) has received great attention because it serves as the carrier of hydrogen and fuel for industry.^[1] Furthermore, it is also the chemical molecule that plays a vital role in biological processes and sustains all living organisms *via* serving as the building blocks for proteins.^[1] Currently, the commercialized method for NH₃ synthesis is usually based on the Haber-Bosch process, which is performed under drastic conditions (20-40 MPa, 400-600 °C), consuming over 1% of the world's total energy supply and simultaneously induces a large amount of CO₂ emission *via* fossil fuels reforming.^[2] Converting solar energy into NH₃ by artificial photosynthesis systems has been regarded as a promising option to overcome the aforementioned problems by utilizing clean solar energy.^[3]

Unfortunately, the obtained efficiency of photocatalytic nitrogen (N₂) fixation is far from satisfactory, which is severely limited by the poor absorption of N₂ on the photocatalysts and the high energy potential of intermediate products involved in the reactions.^[4] The cleavage of the N \equiv N bond is very challenging because of its extremely high bonding energy (~941 kJ mol⁻¹), which is hard to be fully cleavaged by the photogenerated electrons from the conduction band of photocatalysts.^[5] The creation of oxygen vacancies on the photocatalysts has been demonstrated as an effective way to improve the photocatalytic N₂ fixation efficiency, as the oxygen vacancies can act as electron trap center to capture and activate N₂ molecular, efficiently promoting the N \equiv N bond cleavage.^[6] Recently, Li and co-workers have illustrated that the oxygen vacancies in BiOBr are capable of activating the adsorbed N₂ for NH₃ formation.^[6] Likewise, the oxygen vacancies in TiO₂ have also been demonstrated for N₂ photoreduction.^[7] Traditionally, the photocatalysts used for N₂ fixation are mostly made in the form of nanopowders, which may suffer poor recyclability due to the catalyst aggregation and deactivation. The nanostructured film materials should have the inherent advantages over the powdered photocatalysts in terms of easy transportation and collection for recycling.^[8] Moreover, the nanostructured films with periodic morphologies are beneficial for reducing the diffusion length and transport pathway of the photogenerated charge carriers.^[9]

TiO₂ is a mostly investigated semiconductor photocatalyst due to its good activity and stability, however, it can hardly achieve the favorable charge-carrier separation because of its exciton binding energy barrier.^[10] Thus, the rational design of TiO₂-based heterostructures has been intensively pursued to facilitate the charge separation of TiO₂ by separately transferring photogenerated electron-hole pairs to opposite sites of the heterojunction.^[11] Semiconducting 2H-phase tungsten disulfide (WS₂) has achieved particular attention as it possesses suitable electronic band positions as compared to TiO₂, which enables TiO₂/WS₂ to form a type-II heterojunction with merits of improved separation efficiency of photogenerated as an effective photosensitizer for TiO₂ to achieve visible light photocatalysis due to its narrow bandgap.^[13] However, similar to other powdered photocatalysts, the synthesis of the TiO₂/WS₂ composite is based on solution-processed method, which would lead to materials agglomeration due to high surface energy. Therefore, exploring the synthetic method of the nanostructured WS₂/TiO₂ film catalysts with properly controlled geometry, size and distribution are highly demanded.

Herein, we illustrate a rationally designed route to fabricate the periodic $WS_2@TiO_2$ nanoporous films (NFs) by a facile method that combines anodization, E-beam evaporation, and chemical vapor deposition (CVD). As a consequence, nanoscale few-layer WS_2 flakes were individually deposited inside the nanopores of the periodic TiO_2 film. Oxygen vacancies were also intentionally introduced to the heterostructured $WS_2@TiO_2$ NFs to improve the

Journal of Materials Chemistry A

photocatalytic conversion of N₂ to NH₃, which is due to efficient N₂ activation on the defective surfaces. The periodic WS₂@TiO₂ NFs with an optimized WS₂ content exhibit a significantly improved photocatalytic N₂ fixation performance with NH₃ evolution rate of 1.39 mmol g⁻¹ h⁻¹, due to the enhanced separation efficiency and prolonged lifetime of charge carriers.

Results and Discussion

The schematic illustration of a synthetic procedure for the periodic $WS_2@TiO_2$ NFs is shown in Figure 1a. First of all, the periodic TiO₂ NFs were fabricated by Ti anodization,^[14] followed by thermal annealing under the Ar atmosphere. The morphology of the as-prepared TiO₂ NFs was investigated by scanning electron microscopy (SEM), showing honeycomb-like shape with an average pore size of 60 nm and thickness of 110 nm (Figure 1b, c). Then, the W metal layers with a different thickness of 10 nm, 20 nm, and 30 nm were deposited on the asprepared TiO₂ NFs by E-beam evaporation. The SEM observation shows that the W layers have been conformally coated on the TiO₂ NFs as observed from the obvious wall thickening (increased from 10 nm to 20 nm, 30 nm, and 40 nm, respectively, after the W deposition, Figure 1d, e, and Figure S1). The conformal W layer coating is also confirmed by the inner wall thickening of W@TiO₂ NFs as compared to the pristine TiO₂ NFs (Figure 1e and Figure S1). Finally, chemical vapor deposition (CVD) was employed to convert W to WS₂ using Na₂S and S mixture as an S-source, forming the periodic WS₂@TiO₂ NFs (abbreviated as nWS₂@TiO₂, n represents the W layer thickness, which is 10 nm, 20 nm, and 30 nm, respectively).

The top-view SEM images of $20WS_2@TiO_2$ (Figure 1f, g) show that the periodic TiO₂ nanopores are filled with WS₂ nanoflakes after CVD sulfurization treatment. The cross-sectional SEM image of $20WS_2@TiO_2$ (Figure 1h) further confirms the formation of WS₂ nanoflakes inside the TiO₂ nanopores. Moreover, the WS₂ nanoflakes contact well with the inner wall of

TiO₂ nanopores, resulting in the formation of the Schottky junction to facilitate the charge carrier transfer and separation. In addition, $10WS_2@TiO_2$ and $30WS_2@TiO_2$ show a similar morphology with $20WS_2@TiO_2$. The amount of WS₂ formed inside the TiO₂ nanopores increases with Mo thickness (Figure S2).

Transmission electron microscopy (TEM) image of 20WS₂@TiO₂ (Figure 2a) reveals that the WS₂ nanoflakes are grown inside the TiO₂ nanopores with a 3D laminate structure, which is consistent with the SEM observation. The High-resolution TEM (HR-TEM) image (Figure 2b) exhibits lattice fringes of 0.35 nm and 0.62 nm, well in line with the (101) anatase TiO2 and (002) WS₂ crystallographic planes, respectively.^[15] The cross-sectional TEM and high angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images of 20WS₂@TiO₂ (Figure 2c, d) further confirm that 3D laminated WS₂ are grown inside the TiO₂ nanopores, consistent with the SEM observation. During the CVD sulfurization process, the S stream derived from the Na₂S and S mixture reaches the surface of the TiO₂ NFs followed by diffusing gradually into the TiO2 nanopores. The conversion from W to WS2 occurs almost simultaneously upon S reaching the W surface. The TiO₂ nanopores provide the space-confined reaction vessel for W and S, and eventually, nanoscale laminated WS₂ are grown inside the TiO₂ nanopores. In sharp contrast, when using flat TiO₂ film as a substrate to deposit WS₂, much larger WS₂ flakes with aggregated architecture were obtained, confirming the significant contribution made by using the periodic TiO₂ NFs to suppress the overgrowth of WS₂ (Figure S3).

The phase composition of $WS_2@TiO_2$ was investigated by X-ray diffraction (XRD). As shown in Figure 3a, the as-prepared TiO₂ NFs displays the diffraction peaks of the Ti substrate and anatase TiO₂. As for $WS_2@TiO_2$, three additional weak and broad diffraction peaks at 14.0 °, 33.2 °, and 58.6 ° were observed, corresponding to the (002), (100) and (110) planes of the hexagonal 2H-WS₂ (JCPDS card No. 84-1398) respectively.^[15a] The observed broad and asymmetric WS₂ (100) and (110) peaks indicate the formation of nanosized crystals with ultrathin thickness.^[15a] The Raman spectra of WS₂@TiO₂ and TiO₂ NFs (Figure 3b) show a typical peak located at 392.6 cm⁻¹, which is assigned to the B_{1g} mode of anatase TiO₂.^[9b] As for the WS₂@TiO₂ NFs, two additional characteristic Raman peaks located at 353.1 and 417.1 cm⁻¹ are observed, ascribed to the in-plane E¹_{2g} and the out-of-plane A_{1g} vibrational modes of the 2H-WS₂ phase, respectively.^[16] The intensity ratios of E¹_{2g}/A_{1g} are 1.45 for 10WS₂@TiO₂, 1.21 for 20WS₂@TiO₂ and 1.12 for 30WS₂@TiO₂, indicating the exfoliated WS₂ nanosheets.^[17] No other phase impurities such as metallic W or its oxide can be detected from XRD and Raman, indicating a complete conversion from W to WS₂ after CVD sulfurization.

The chemical states and compositions of the samples were characterized by X-ray photoelectron spectroscopy (XPS). The high-resolution Ti 2p spectra (Figure 3c) show two peaks at the binding energy of 465.1 eV and 459.3 eV, corresponding to $2p_{1/2}$ and $2p_{3/2}$ of Ti⁴⁺, respectively.^[9b] The periodic TiO₂ NFs contains oxygen vacancies, which can be proved by O 1s spectra. The O 1s spectra of TiO₂ (Figure 3d) can be fitted into three peaks centered at 533.6 eV, 532.3 eV, and 531.1 eV, which are attributed to surface-adsorbed OH group, O-vacancy, and O-lattice, respectively.^[18] The formation of oxygen vacancies in the TiO₂ NFs is due to the annealing treatment under the Ar atmosphere (see Experimental Details). The existence of oxygen vacancies in the TiO₂ NFs can also be evidenced by the UV-vis absorption spectrum (Figure S4), which shows a strong light absorption tail in the visible light region.^[19] The WS₂@TiO₂ NFs show similar O 1s peaks with bare TiO₂ NFs, indicating that the oxygen vacancies remain in the WS₂@TiO₂ NFs after sulfurization. Figure S5 shows the high-resolution

XPS spectra of W and S, respectively. The peaks are observed at binding energies of 38.0 eV, 34.7 eV, and 32.5 eV, illustrating the presence of W(IV) in WS₂.^[20] The S 2p spectra show two strong peaks centered at binding energies of 163.4 eV and 162.2 eV, which are assigned to the S²⁻ in WS₂.^[20] The XPS spectra of the air-annealed TiO₂ NFs were also recorded as shown in Figure S6. It is obvious that the content of oxygen vacancies in the air-annealed TiO₂ NFs dramatically decreases as compared to the Ar-annealed TiO₂ NFs (Figure 3d). The formation of oxygen vacancies in the Ar-annealed TiO₂ NFs is due to the fact that the surface of TiO₂ NFs is unsaturated in the Ar-atmosphere. The air-annealed TiO₂ NFs show less amount of oxygen vacancies because the unsaturated surface of TiO₂ NFs would be compensated by the oxygen gas when the sample was heated in the air.

Photocatalytic N₂ reduction was conducted in a single-compartment cell with TiO₂ and WS₂@TiO₂ NFs immersed in the water/Na₂SO₃ solution with continuous N₂ bubbling under AM 1.5G irradiation. The Indophenol blue method was used to quantitatively determine the produced NH₃, and the calibration curves of the relationship between the concentration of NH⁴⁺ and absorbance were obtained (Figure S7). Figure 4a shows the time-dependent NH₃ production over different samples. It can be seen that all the samples show photocatalytic performance for NH₃ production, and the amount of NH₃ increases almost linearly along with reaction time. In comparison with the bare TiO₂ NFs, the N₂ photofixation activities of the WS₂@TiO₂ NFs are greatly boosted to 0.13 µmol h⁻¹ (ca. 1.39 mmol g⁻¹ h⁻¹) in the 20WS₂@TiO₂ NFs. This photocatalytic N₂ fixation efficiency obtained by 20WS₂@TiO₂ is comparable to the state-of-the-art photocatalysts for N₂ reduction (Table S1).^{16, 8a, 8c, 8d, 21]} Control experiment carried out by using aprotic solvent CH₃CN instead of water as a reaction solution shows no photocatalytic activity, suggesting that the proton source for NH₃ evolution originates from the water. The

photocatalytic performance of 20WS₂/flat TiO₂ was evaluated (Figure S8), which shows lower activity than 20WS₂@TiO₂ NFs, demonstrating the advantages of porous structure for photocatalysis. Under visible light irradiation, no detectable activity was observed over 20WS₂@TiO₂ NFs, indicating that the excitation of TiO₂ is necessary for NH₃ evolution (Figure S9). In pure water, the dramatically decreased activity was observed (Figure S10), indicating the sacrificial agent plays a dominated role in trapping photogenerated holes, thus promoting the photocatalytic activity. The 20WS₂@TiO₂ NFs also exhibit good stability for photocatalytic N₂ fixation, with no obvious change in activity after four successive cycles (Figure 4b). After the photocatalytic test, the 20WS₂@TiO₂ NFs show no obvious change of morphology and composition, as revealed by SEM and energy-dispersive spectroscopy (EDS) analysis (Figure S11, S12). The Inductively Coupled Plasma Mass Spectrometry (ICP-MS) of 20WS₂@TiO₂ before and after the reaction was measured. The weight ratio of W in 20WS₂@TiO₂ is 38.6%, while it slightly decreased to 36.5% after four successive cycles test.

In order to track the N-related functional groups on the 20WS₂@TiO₂ surface during the N₂ fixation, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRFTIRS) was adopted. It can be seen that some bands gradually increased with the light irradiation time from 0 to 3 h (Figure S13). The sharp peak at 1415 cm⁻¹ and weak peaks at 1736 cm⁻¹ and 2807 cm⁻¹ can readily be attributed to surface NH⁴⁺ species.^[6] Furthermore, the peaks at 3040 cm⁻¹ and 3142 cm⁻¹ are assigned to the adsorbed H₂O and N-H stretching vibrations.^[6, 21b] The DRFTIRS results indicate that the 20WS₂@TiO₂ NFs can facilitate the activation of N≡N bond until it is cleaved to NH⁴⁺ in the final step. As we knew, N₂ is difficult to be reduced directly under ambient conditions, due to its strong nonpolar N≡N bond. The oxygen vacancy on the surface of TiO₂ contributes to the photocatalytic N₂ reduction by acting as binding sites for N₂ activation.^[22] The

mechanism for the N₂ photofixation on the surface oxygen vacancy of TiO₂ is presented in Figure S14, in which the adsorbed N₂ can be converted to NH₃ *via* multiple reaction steps of proton-coupled hydrogenations on TiO₂.^[8a] In order to demonstrate the importance of oxygen vacancies for photocatalytic N₂ fixation, the activities of the periodic TiO₂ NFs without surface oxygen vacancies were evaluated. The periodic TiO₂ NFs without surface oxygen vacancies were prepared *via* annealing the anodized TiO₂ NFs in the air at 450 °C. The air-annealed TiO₂ NFs show the similar morphology with the defective Ar-annealed TiO₂ NFs, however, its light absorption in the visible region is greatly weakened, due to the lack of oxygen vacancies (Figure S4, Figure S15). As expected, the air-annealed TiO₂ NFs show much lower activity than the Arannealed TiO₂ NFs, suggesting the critical role of oxygen vacancies for N₂ fixation (Figure S16).

The WS₂@TiO₂ NFs show higher photocatalytic performance for N₂ fixation than the bare TiO₂. The mechanism behind the functions of the heterostructures is further investigated. Due to the well-matched energy levels between WS₂ and TiO₂, a type II heterojunction can be formed in WS₂@TiO₂, resulting in an enhanced charge-carrier separation and transfer.^[12a] In order to prove this assumption, time-resolved PL decay and electrochemical impedance spectroscopy (EIS) measurements were performed. As shown in Figure 4c, the decay curves support the triexponential fitting model and indicate a prolonged lifetime from 3.51 ns of TiO₂ to 4.72 ns of $30WS_2@TiO_2$, 5.31 ns of $10WS_2@TiO_2$ and 6.16 ns of $20WS_2@TiO_2$. The increased fluorescence lifetime suggests the suppressed recombination of the photogenerated charge carriers and the improved separation of electron-hole pairs in the WS₂@TiO₂ NFs.

Figure 4d shows the Nyquist plots of TiO_2 and $WS_2@TiO_2$ NFs. The diameter of the semicircle in the Nyquist plots provides the information of the electron transfer resistance, which indicates the electron transfer kinetics.^[23] The diameter of the semicircle follows the order: $TiO_2 >$

 $30WS_2@TiO_2 > 10WS_2@TiO_2 > 20WS_2@TiO_2$. The smallest diameter is found for the curve of $20WS_2@TiO_2$, indicating a decreased charge-transfer resistance in $20WS_2@TiO_2$. The EIS result indicates that the formation of heterostructure assisted in the separation and transfer of photogenerated charge carriers. The inhibited surface recombination in WS_2@TiO_2 is further proved by the open-circuit potential (OCP) decay transients analysis. The OCP decay gives information about the surface charge recombination of the electrodes. Figure S17 exhibits the normalized transient decay profiles of OCP in the bare TiO_2 and WS_2@TiO_2 NFs after interrupting the light illumination in H₂O/Na₂SO₃ electrolyte. The transient OCP curves of WS₂@TiO₂ show a much slower decay than the bare TiO₂, which is ascribed to the trapped holes being quickly scavenged by surface absorbed Na₂SO₃. Thus the accumulated electrons in the WS₂@TiO₂ electrodes have a longer survival time, contributing to the activation of the adsorbed N₂ since the fixation of N₂ is a multi-electron process (Figure S14).^[6]

An N₂ photofixation mechanism over WS₂@TiO₂ (Figure 4e and 4f) was proposed based on the above discussion. Upon AM 1.5G light illumination, electron-hole pairs are generated in both WS₂ and TiO₂. A type II band alignment forms between WS₂ and TiO₂ due to the well-matched band positions. The photo-excited electrons from the conduction band of WS₂ transfer to TiO₂ across the WS₂/TiO₂ interfaces. Subsequently, the electrons accumulated on the conduction band of TiO₂ will be trapped by oxygen vacancies states in TiO₂ and then injected into the empty antibonding orbitals (π^*) of the N₂ molecules, eventually leading to the formation of NH₃. Na₂SO₃ acts as an electron donor to consume the holes. The separation of the photogenerated charge carriers is facilitated by the increase of WS₂ content in WS₂@TiO₂, leading to the improved photocatalytic N₂ fixation. However, a further increase in the WS₂ content (30WS₂@TiO₂) leads to a reduced light reception area (shading effect). In that case, some photogenerated charges on WS_2 tend to recombine instead of transferring to the adjacent TiO_2 , leading to a decreased separation efficiency of electron-hole pairs.

Conclusion

In summary, the periodic $WS_2@TiO_2$ NFs synthesized by a facile method that combines anodization, E-beam evaporation and CVD were illustrated. The TiO_2 nanopores provide the space-confined reaction vessel for W and S, beneficial for the conformal growth of nanoscale laminated WS₂ nanoflakes. The photocatalytic conversion of N₂ to NH₃ was achieved over the WS₂@TiO₂ films under room temperature and atmospheric pressure. Oxygen vacancies were introduced in the TiO₂ through post-annealing in Ar-atmosphere, which plays a vital role in photocatalytic N₂ fixation. The WS₂@TiO₂ film with an optimized WS₂ content (20 nm W) shows significantly improved photocatalytic performance than the bare TiO₂, reaching the NH₃ evolution rate as high as 0.13 µmol h⁻¹ (ca. 1.39 mmol g⁻¹ h⁻¹), due to the enhanced separation efficiency and prolonged lifetime of charge carriers. The catalyst design strategy developed in this work can be used for other solar energy conversion applications via altering the material composition.

Supporting Information

Supplementary information is available in the online version of the paper.

Acknowledgements

This work was supported by the National Science Foundation under Grant No. CMMI-1851674 and the startup grant from the University of Central Florida. L.S. acknowledges the financial support from the Preeminent Postdoctoral Program (P3) at the University of Central Florida. The XPS analysis performed by H. Z. was partially supported by Science and Technology Innovation Platform No.2018RS3070 and Hundred Youth Talents Programs of Hunan Province, the

'XiaoXiang Scholar' Talents Foundation of Hunan Normal University in Changsha of P.R. China.

Reference

- [1] X. Chen, N. Li, Z. Kong, W.-J. Ong and X. Zhao, *Mater. Horiz.*, 2018, 5, 9-27.
- [2] T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens and R. Schlogl, *Angew. Chem. Int. Ed.*, 2013, **52**, 12723-12726.
- [3] a) L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi and C. J. Li, *Angew. Chem. Int. Ed.*, 2017, 56, 8701-8705; b) S. Hu, X. Chen, Q. Li, F. Li, Z. Fan, H. Wang, Y. Wang, B. Zheng and G. Wu, *Appl. Catal. B: Environ.*, 2017, 201, 58-69.
- [4] H. Li, J. Li, Z. Ai, F. Jia and L. Zhang, Angew. Chem. Int. Ed., 2018, 57, 122-138.
- [5] S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang, X. Meng, Z. Yang, H. Chen and J. Ye, *Adv. Mater.*, 2017, *29*, 1701774.
- [6] H. Li, J. Shang, Z. Ai and L. Zhang, J. Am. Chem. Soc., 2015, 137, 6393-6399.
- [7] H. Hirakawa, M. Hashimoto, Y. Shiraishi and T. Hirai, J. Am. Chem. Soc., 2017, 139, 10929-10936.
- [8] a) C. Li, T. Wang, Z. J. Zhao, W. Yang, J. F. Li, A. Li, Z. Yang, G. A. Ozin and J. Gong, *Angew. Chem. Int. Ed.*, 2018, 57, 5278-5282; b) T. Oshikiri, K. Ueno and H. Misawa, *Angew. Chem. Int. Ed.*, 2014, 53, 9802-9805; c) T. Oshikiri, K. Ueno and H. Misawa, *Angew. Chem. Int. Ed.*, 2016, 55, 3942-3946; d) M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang and D. R. MacFarlane, *Nat. Commun.*, 2016, 7, 11335.
- [9] a) L. Shi, W. Zhou, Z. Li, S. Koul, A. Kushima and Y. Yang, ACS nano 2018, 12, 6335–6342; b) L. Shi, Z. Li, T. D. Dao, T. Nagao and Y. Yang, J. Mater. Chem. A 2018, 6, 12978-12984.
- [10] J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann, *Chem. Rev.*, 2014, *114*, 9919-9986.
- [11] J. Low, J. Yu, M. Jaroniec, S. Wageh and A. A. Al-Ghamdi, *Adv. Mater.*, 2017, 29, 1601694.
- [12] a) B. Mahler, V. Hoepfner, K. Liao and G. A. Ozin, J. Am. Chem. Soc., 2014, 136, 14121-14127; b) W. Ho, J. C. Yu, J. Lin, J. Yu and P. Li, Langmuir 2004, 20, 5865-5869.
- [13] a) D. Jing and L. Guo, *Catal. Commun.*, 2007, 8, 795-799; b) L. Zheng, W. Zhang and X. Xiao, *Korean J. Chem. Eng.*, 2015, 33, 107-113.
- [14] J. E. Yoo, K. Lee, M. Altomare, E. Selli and P. Schmuki, Angew. Chem. Int. Ed., 2013, 52, 7514-7517.
- [15] a) X. Zeng, Z. Ding, C. Ma, L. Wu, J. Liu, L. Chen, D. G. Ivey and W. Wei, ACS Appl. Mater. Interfaces 2016, 8, 18841-18848; b) Z. Li, L. Shi, D. Franklin, S. Koul, A. Kushima and Y. Yang, Nano Energy 2018, 51, 400-407.
- [16] F. Raza, D. Yim, J. H. Park, H. I. Kim, S. J. Jeon and J. H. Kim, J. Am. Chem. Soc., 2017, 139, 14767-14774.
- [17] Y. Yang, H. Fei, G. Ruan, Y. Li and J. M. Tour, Adv. Funct. Mater., 2015, 25, 6199-6204.
- [18] H. Tan, Z. Zhao, W. B. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan and Z. Sun, ACS Appl. Mater. Interfaces 2014, 6, 19184-19190.
- [19] L. Hou, M. Zhang, Z. Guan, Q. Li and J. Yang, Appl. Surf. Sci., 2018, 428, 640-647.

- [20] Y. Yan, B. Xia, N. Li, Z. Xu, A. Fisher and X. Wang, J. Mater. Chem. A 2015, 3, 131-135.
- [21] a) A. Banerjee, B. D. Yuhas, E. A. Margulies, Y. Zhang, Y. Shim, M. R. Wasielewski and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2015, *137*, 2030-2034; b) Y. Zhao, Y. Zhao, G. I. N. Waterhouse, L. Zheng, X. Cao, F. Teng, L. Z. Wu, C. H. Tung, D. O'Hare and T. Zhang, *Adv. Mater.*, 2017, *29*, 1703828.
- [22] J. Yang, Y. Guo, R. Jiang, F. Qin, H. Zhang, W. Lu, J. Wang and J. C. Yu, *J. Am. Chem. Soc.*, 2018, *140*, 8497-8508.
- [23] L. Shi, K. Chang, H. Zhang, X. Hai, L. Yang, T. Wang and J. Ye, Small 2016, 12, 4431-4439.

Figure 1. (a) Schematic illustration of the WS₂@TiO₂ fabrication. SEM images of (b, c) TiO₂; (d, e) 20 nm W@TiO₂; (f-h) 20WS₂@TiO₂. Scale bars: (b) 200 nm, (c) 100 nm, (d) 200 nm, (e) 100 nm, (f) 200 nm, (g, h) 100 nm.

Figure 2. (a) TEM images of $20WS_2@TiO_2$; (b) HRTEM image of $20WS_2@TiO_2$; (c) Crosssectional TEM image of $20WS_2@TiO_2$; (d) Cross-sectional STEM image of $20WS_2@TiO_2$. Scale bars: (a) 100 nm, (b) 5 nm, (c) 50 nm, (d) 50 nm.

Figure 3. (a) XRD patterns, (b) Raman spectra, (c) High-resolution Ti XPS and (d) high-resolution O XPS spectra of samples.

Figure 4. (a) Time-dependent NH_3 evolution over various films. (b) Recycling test of $20WS_2@TiO_2$ for photocatalytic NH_3 evolution. (c) Decay time measurement and (d) Nyquist plots of various films. (e) Schematic illustrating the electron generation and transfer for N_2 reduction processes with the $WS_2@TiO_2$. (f) Artistic illustration of the efficient N_2 photofixation. OV refers to oxygen vacancies.

TOC

The $WS_2@TiO_2$ nanoporous films were fabricated by implanting WS_2 nanosheet in TiO_2 nanoporous films, which show efficient photocatalytic N_2 fixation.