
The interplay between activity and filament flexibility 
determines the emergent properties of active nematics

Journal: Soft Matter

Manuscript ID SM-ART-10-2018-002202

Article Type: Paper

Date Submitted by the 
Author: 29-Oct-2018

Complete List of Authors: Joshi, Abhijeet; Brandeis University, Physics
Putzig, Elias; Brandeis University, Martin A. Fisher School of Physics
Baskaran, Aparna; Brandeis University, Physics
Hagan, Michael; Brandeis University, Physics

 

Soft Matter



The interplay between activity and filament flexibility determines the emergent
properties of active nematics

Abhijeet Joshi, Elias Putzig, Aparna Baskaran,∗ and Michael F. Hagan†

Martin Fisher school of Physics, Brandeis University, Waltham, MA 02453, USA
(Dated: November 28, 2018)

Active nematics are microscopically driven liquid crystals that exhibit dynamical steady states
characterized by the creation and annihilation of topological defects. Motivated by differences
between previous simulations of active nematics based on rigid rods and experimental realizations
based on semiflexible biopolymer filaments, we describe a large-scale simulation study of a particle-
based computational model that explicitly incorporates filament semiflexibility. We find that energy
injected into the system at the particle scale preferentially excites bend deformations, reducing the
apparent filament bend modulus. The emergent characteristics of the active nematic depend on
activity and flexibility only through this activity-renormalized bend ‘modulus’, demonstrating that
apparent values of material parameters, such as the Frank ‘constants’, depend on activity. Thus,
phenomenological parameters within continuum hydrodynamic descriptions of active nematics must
account for this dependence. Further, we present a systematic way to estimate these parameters
from observations of deformation fields and defect shapes in experimental or simulation data.

I. INTRODUCTION

Active nematics are a class of non-equilibrium liquid
crystalline materials in which the constituent particles
transduce energy into stress and motion, driving orien-
tationally inhomogeneous dynamical steady states char-
acterized by generation, annihilation, and streaming of
topological defects [1–7]. Being intrinsically far-from-
equilibrium, active nematics enable developing materi-
als with capabilities that would be thermodynamically
forbidden in an equilibrium system. However, such ap-
plications require understanding how an active nematic’s
macroscale material properties depend on the microscale
features of its constituent nematogens.

The challenge in this task can be illustrated by con-
sidering the shape of a defect. Defects have been the
subject of intense research in equilibrium nematics, since
they must be eliminated for display technologies, and
controlled for applications such as directed assembly and
biosensing [8–10]. Theory and experiments [10–12] have
shown that defect morphologies depend on the relative
values of the bend and splay elastic modulii, k33 and k11

(Fig. 1a), defined in the Frank free energy density for

a 2D nematic as fF = k11 (∇ · n̂)
2

+ k33 (n̂× (∇× n̂))
2

with n̂ the director field [13, 14]. Different experimental
realizations of active nematics also exhibit variations in
defect morphologies (e.g. Fig. 1c and Fig. 1d). However,
relating these defect morphologies to material constants
is much less straightforward than in equilibrium systems.
Since modulii are an equilibrium concept, they cannot be
rigorously defined in a non-equilibrium system such as an
active nematic. If it is possible to define ‘effective mod-
ulii’ in active systems, there is currently no systematic
way to measure them, and it is unclear whether and how
they may depend on activity.

∗ email:aparna@brandeis.edu
† email:hagan@brandeis.edu

Computational and theoretical modeling could over-
come these limitations. Symmetry-based hydrodynamic
theories [15–17] have led to numerous insights about ac-
tive nematics, including describing defect dynamics (e.g.
[18–23]), induced flows in the suspending fluid (e.g. [24–
26]), and how confinement in planar [27–30] and curved
geometries [31–34] controls defect proliferation and dy-
namics. However, hydrodynamic theories cannot predict
how material constants or emergent behaviors depend on
the microscale properties of individual nematogens. Fur-
ther, while simulations of active nematics composed of
rigid rods [2, 35–37] have elucidated emergent morpholo-
gies, these models do not account for internal degrees of
freedom available to flexible nematogens [1, 38, 39].

FIG. 1. (a,b) The equilibrium director field configuration
near a + 1

2
defect for (a) bend modulus larger than splay

modulus k33/k11 = 3.4, leading to pointed defects and (b)
splay modulus larger than bend k33/k11 = 0.3 leading to
rounded defects. In each case the director field was calcu-
lated by numerically minimizing the Frank free energy around
a separated ± 1

2
defect pair. (c,d) Typical defect morpholo-

gies observed in (c) a vibrated granular nematic [5] and (d)
a microtubule-based active nematic [1, 40].

In this work, we perform large-scale simulations on a
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2

model active nematic composed of semiflexible filaments,
and determine how its emergent morphology depends on
filament stiffness and activity. Fig. 2 shows represen-
tative simulation outcomes. We find that the intrinsic
bending modulus of nematogens κ undergoes an apparent
softening in an active nematic, according κeff ∼ κ/(fa)2,
where fa is a measure of its activity. Furthermore, the
characteristics of the active nematic texture — the de-
fect density, magnitudes and characteristic scales of bend
and splay deformations, the shape of motile +1

2 defects,
and number fluctuations — depend on activity and rigid-
ity only through the apparent nematogen rigidity κeff.
Moreover, we show that one can define effective bend
and splay modulii analogous to their equilibrium coun-
terparts, but that the apparent bend modulus is propor-
tional to κeff. This observation demonstrates that activ-
ity preferentially dissipates into particular modes within
an active material, depending on the internal degrees of
freedom of its constituent units. Further, these results
suggest revisiting assumptions underlying existing hydro-
dynamic theories of active matter, since a microscopic
model for an active fluid results in macroscopic proper-
ties that depend on activity in nontrivial ways, which
cannot be simply described by an active stress. Finally,
we present a method of parameterizing defect shapes,
which enables estimating the relative magnitudes of ap-
parent bend and splay constants from experimental ob-
servations of defects, and thus allows direct experimental
testing of our prediction.

+1/2 +1/2

+1/2 +1/2

κe� = 2:  κ = 200, fa = 10

κe� = 25:  κ = 2500, fa = 10

κe� = 20:  κ = 500, fa = 5

κe� = 100:  κ = 2500, fa = 5κe�=100: κ=2500, fa= 5

κe�=2: κ=200, fa= 10

FIG. 2. A visual summary of how active nematic emergent
properties depend on the activity parameter fa and the fil-
ament modulus κ. The left panel in each row shows 1/16th

of the simulation box for indicated parameter values, with
white arrows indicating positions and orientations of + 1

2
de-

fects and white dots indicating positions of − 1
2

defects. Fil-
ament beads are colored according to the orientations of the
local tangent vector. The right 4 panels are each zoomed in
on a + 1

2
defect, with indicated parameter values. The white

lines are drawn by eye to highlight defect shapes. Animations
of corresponding simulation trajectories are in [41]. The box
size is (840 × 840σ2) for all simulations in this work. Other
parameters are τ1 = 0.2τ and kb = 300kBTref/σ

2.

II. METHODS

We seek a minimal computational model that captures
the key material properties and symmetries of active ne-
matics, namely extensile activity, nematic inter-particle
alignment and semiflexibility. We model active filaments
as semiflexible bead-spring polymers, each containing M
beads of diameter σ, with flexibility controlled by a har-
monic angle potential between successive bonds that sets
the filament bending modulus κ. Activity is implemented
as a force of magnitude fa acting on each filament bead
along the local tangent to the filament. To make activity
nematic, the active force on every bead within a given fil-
ament reverses direction after a time interval chosen from
a Poisson distribution with mean τ1. The Langevin equa-
tions governing the system dynamics were integrated us-
ing a modified version of LAMMPS [42]. The model com-
bines features of recent models for polar self-propelled
polymers [43] and the reversing rods approach to rigid
active nematic rods [36].

Equations of motion and interaction potentials: We
simulate the dynamics according to the following
Langevin equation for each filament α and bead i (with
filaments indexed by Greek letters, α = 1 . . . N , and
beads within a filament indexed in Roman, i = 1 . . .M):

mr̈α,i = fa
α,i − γṙα,i −∇rα,iU + Rα,i(t). (1)

with m as the bead mass, rα,i as the bead position, fa

as the active force, U as the interaction potential which
gives rise to the conservative forces, γ as the friction co-
efficient providing the damping and Rα,i(t) as a delta-
correlated thermal noise with zero mean and variance
〈Rα,i(t) ·Rβ,j(t

′)〉 = 4γkBTδα,βδijδ(t− t′).
The interaction potential includes three contributions

which respectively account for non-bonded interactions
between all bead pairs, stretching of each bond, and the
angle potential between each pair of neighboring bonds:

U({rα,i}) =
1

2

N∑
α,β=1

M∑
i,j=1

(1− δα,βδi,j)Unb(|rβ,j − rα,i|)

+
N∑
α=1

M∑
i=2

Us(|rα,i − rα,i−1|)

+
N∑
α=1

M∑
i=3

Uangle(θα,i,i−1,i−2) (2)

with θα,i,j,k the angle made by the bead triplet {i, j, k}
on filament α. The non-bonded interactions account
for steric repulsion and are modeled with the Weeks-
Chandler-Anderson potential[44]

Unb(r) = 4ε
(
(σ/r)12 − (σ/r)6 + 1/4

)
Θ(21/6σ − r) (3)

with ε controlling the strength of steric repulsion and
Θ(x) the Heaviside function specifying the cutoff. Bond
stretching is controlled by a FENE potential [45]

Us(r) = −1/2kbR
2
0 ln

(
1− (r/R0)

2
)

(4)
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FIG. 3. Effective persistence length lp estimated from the
spectrum of filament tangent fluctuations in bulk active ne-
matics (large open symbols), and isolated chains (small solid
symbols). The dashed line shows the expected scaling for
an isolated equilibrium polymer (fa = 0), lp = 2bκeff/kBT ,
and the legend shows the value of fa for all systems, and κ
for the bulk simulations. Other parameters are τ1 = τ and
kb = 30kBTref/σ

2.

with bond strength kb and maximum bond length R0.
The angle potential is given by

Uangle(θ) = κ (θ − π)
2

(5)

where κ is the filament bending modulus.
Finally, activity is modeled as a propulsive force on

every bead directed along the filament tangent toward
its head. To render the activity nematic, the head and
tail of each filament are switched at stochastic intervals
so that the force direction on each bead rotates by 180
degrees. In particular, the active force has the form,
fa
α,i(t) = ηα(t)fatα,i, where fa parameterizes the activ-

ity strength, and ηα(t) is a stochastic variable associated
with filament α that changes its values between 1 and −1
on Poisson distributed intervals with mean τ1, so that τ1
controls the reversal frequency.

Simulations and parameter values: Since we are mo-
tivated by systems sufficiently large that boundary ef-
fects are negligible (e.g. Ref. [2]), we performed simu-
lations in a A = 840 × 840σ2 periodic simulation box,
with N = 19404 filaments, each with M = 20 beads, so
that the packing fraction φ = MNσ2/A ≈ 0.55. Fix-
ing all other model parameters, we varied the filament
stiffness, κ ∈ [102, 104]kBTref and the magnitude of the
active force, fa ∈ [5, 30]kBTref/σ, where the units are
set by the thermal energy at a reference state kBTref,
and the filament diameter σ. Time is measured in units
of τ =

√
mσ2/kBTref. We set mass of the each bead to

m = 1, the damping coefficient to γ = 2, and the temper-
ature to T = 3.0kBTref. With these parameters inertia is
non-negligible. In the future, we plan to systematically
investigate the effect of damping. We set the repulsion
parameter ε = kBTref (the results are insensitive to the
value of ε provided it is sufficiently high to avoid filament
overlap), and used a time step of δt = 10−3τ .

In the FENE bond potential, R0 is set to 1.5σ and
kb = 300kBTref/σ

2 for the simulations reported in the
main text (except in Fig. 3). These parameters lead to
a mean bond length of b ≈ 0.84σ, which ensures that
filaments are non-penetrable for the parameter space ex-
plored in this work. We have fixed the filament length
at M = 20 beads, so L = (M − 1)b is the mean fila-
ment length. Varying M does not change the scaling of
observables, although it shifts properties such as the de-
fect density since the total active force per filament goes
as faM . Also, the maximum persistence length above
which scaling laws fail is also proportional to M (see Re-
sults). In the semiflexible limit, the stiffness κ in the
discrete model is related to the continuum bending mod-
ulus κ̃ as κ ≈ κ̃/2b, and thus the persistence length is
given by lp = 2bκ/kBT .

We performed two sets of simulations. Initially, we set
the FENE bond strength kb = 30kBTref/σ

2 and τ1 = τ .
However, for these parameters we discovered that inter-
penetration of filaments becomes possible at large propul-
sion velocities, thus limiting the simulations to fa ≤ 10.
To enable investigating higher activity values, we there-
fore performed a second set of simulations (those re-
ported in Figs. 4-7 of the main text) with higher FENE
bond strength, kb = 300kBTref/σ

2 and shorter reversal
timescale τ1 = 0.2, with κ ∈ [100, 10000]kBTref. This
enables simulating activity values up to fa ≤ 30.

The shorter reversal timescale was needed to keep the
system in the nematic regime at large fa. When the
product faτ exceeds a characteristic collision length scale
the self-propulsion becomes polar in nature and model is
no longer a good description of an active nematic. In par-
ticular, the filaments behave as polar self-propelled rods,
as evidenced by the formation of polar clusters [46–50].
Interestingly, increasing kb increases the rate of defect
formation and decreases the threshold value of faτ above
which phase separation occurs. We monitored the exis-
tence of phase separation by measuring local densities
within simulation boxes (see [41]). We found no signifi-
cant phase separation (except on short scales, see below)
or formation of polar clusters for any of the simulations
described here, indicating the systems were in the ne-
matic regime. Within the nematic regime, increasing kb

does not qualitatively change results or scaling relations,
although it does quantitatively shift properties such as
the defect density. Additional plots for the simulation
set with kb = 30 are shown in the SI [41].

Initialization: We initialized the system by first plac-
ing the filaments in completely extended configurations
(all bonds parallel and all bond lengths set to b), on a
rectangular lattice with filaments oriented along one of
the lattice vectors. We then relaxed the initial configura-
tion for 104τ , where τ =

√
mσ2/kBTref, before perform-

ing production runs of ∼ 4×104τ . The equilibration time
of 104τ was chosen based on the fact that in all simulated
systems the defect density had reached steady state by
this time. We also confirmed that other observables of in-
terest have reached steady state at this time. In the limit
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of high stiffness or low activity, the unphysical crystalline
initial condition did not relax on computationally acces-
sible timescales. In these cases, we used an alternative
initial configuration, with filaments arranged into four
rectangular lattices, each placed in one quadrant of the
simulation box such that adjacent (non-diagonal) lattices
were orthogonal.

III. RESULTS AND DISCUSSION.

To understand how the interplay between filament flex-
ibility and activity determines the texture of an active
nematic, we analyzed our simulation results using multi-
ple metrics for the deformations in nematic order.

Before reporting these results, let us first consider the
basic physics governing the emergent phenomenology in
our system. Deforming a nematogen causes an elastic
stress that scales ∼ κ, the filament bending modulus.
This elastic stress must be balanced by stresses arising
from interparticle collisions. These collisional stresses
have two contributions. First there are the passive colli-
sional stresses, which are O(1) in our units (as we have
chosen the thermal energy and the particle size σ as the
energy and length scales). Then there are active colli-
sional stresses that arise due to the self-replenishing ac-
tive force of magnitude fa acting on each monomer. The
active collisional stress will scale as νcoll∆pcoll, i.e., the
collision frequency times the momentum transfer at each
collision. Both the collision frequency and momentum
transfer will scale with the self-propulsion velocity [51],
which in our model is set by fa. Thus, the collisional
stresses will scale ∼ (1 + (fa)2). So, the system proper-
ties will be controlled by a parameter which measures the
ratio of elastic to collisional stresses, κeff ≡ κ/(1+(fa)2).

Persistence length: To test this scaling, we measured
the tangent fluctuations of individual filaments within
our computational active nematic. We then determined
the effective persistence length from the Fourier spectrum
of these fluctuations (see [41] section S4 and Fig. S2).
Fig. 3 shows estimated persistence lengths over a range
of filament bending modulus values κ ∈ (200, 2500), and
activity parameter values fa ∈ (5, 10) from two sets of
simulations: isolated chains (small solid symbols) and
chains from the bulk active nematic (large open sym-
bols). Note that the result for an isolated equilibrium
polymer (fa = 0, symbols) perfectly matches the ex-
pected relationship lp = 2bκeff/kBT . For the bulk active
chains we observe data collapse over all of these parame-
ters when the persistence length is plotted as a function
of κeff, with persistence length scaling as lp ∼ κeff. In
contrast, the effective persistence length for isolated ac-
tive chains does not exhibit data collapse; the persistence
length scales linearly with κ but exhibits a different de-
pendence on activity. This result supports the proposal
that the apparent softening of filaments in bulk active
nematics arises due to inter-chain collisions.

Note that we restrict the analysis to fa ≥ 5 because

2.0
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FIG. 4. Analysis of splay and bend deformations at steady
state: (A) The ratio of splay and bend deformations, R =
〈
∫
d2rDsplay(r)〉/〈

∫
d2rDbend(r)〉 as a function of the effective

bending rigidity, κeff = κ/
(
1 + (fa)2

)
. (B) The wavenum-

bers corresponding to peaks kpeak in bend (� symbols) and
splay (• symbols) power spectra, and the inverse defect spac-

ing,
√
〈ndefect〉 (• symbols) as functions of κeff. The predom-

inant scale of splay deformations transitions from the indi-
vidual filament scale (kfilament, dashed line) at low κeff to the
defect spacing scale at high κeff. Bend spectra exhibit two
peaks, corresponding to filament and defect-spacing scales,
for high κeff. (C) The maximum magnitude of the power
spectra, showing that splay is insensitive to κeff while bend
deformations decrease in magnitude until the effective rigidity
exceeds the filament length. Other parameters are τ1 = 0.2τ
and kb = 300kBTref/σ

2.

the system loses nematic order for smaller activity values
(see Fig. S5C [41] and ‘Comparison with Equilibrium’
below). The results in Fig. 3 were performed on our
initial data set with τ1 = τ and kb = 30kBTref/σ

2 and
thus are limited to fa ≤ 10 (see Methods).

We now test whether the arguments proposed above
can describe the collective behaviors of an active nematic,
using several metrics for deformations in the nematic or-
der: the distribution of energy in splay and bend defor-
mations, defect shape, defect density, and number fluc-
tuations. As shown in Figs. 4-7, all of these quantities
depend on bending rigidity and activity only through the
combination κeff. We performed the analysis of active ne-
matics textures (described next) on the second parameter
set with τ1 = 0.2τ and kb = 300kBTref/σ

2, which allowed
fa ≤ 30.

Splay and Bend deformations: We first determine
whether it is possible to define quantities analogous to
splay and bend moduli in an active nematic. We em-
phasize that moduli cannot be rigorously defined in a
non-equilibrium system, but we will see that the relative
amounts of energy in bend and splay deformations, and
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FIG. 5. Defect shape depends on the effective bending rigid-
ity. (A) Schematic showing the defect-centered coordinate
system defined in the text, with azimuthal angle φ and di-
rector angle θ(r, φ). Note that the x-axis is chosen along the
orientation vector of the +1/2 defect given by the angle θ′0
defined in the SI [41]. (B) Mode of defect shape parame-
ter b1 for + 1

2
defects as a function of κeff for fa ∈ [7, 30]

and κ ∈ [100, 10000], with b1(r) values evaluated at a ra-
dial distance r = 12.6σ from the defect core. The dashed
line and blue asterisk symbols show values of b1 calculated
for isolated defects from equilibrium continuum elastic the-
ory, with the ratio of bend and splay moduli k33/k11 for each
κeff set according to the measured ratio R of bend and splay
deformations in Fig. 4. Images of defects at two indicated
parameter sets are shown. Other parameters are τ1 = 0.2τ
and kb = 300kBTref/σ

2.

all other steady-state properties of an active nematic, can
be described by ‘effective moduli’ if the effect of activity
is accounted for.

In a 2D nematic, any arbitrary deformation of the
director field can be decomposed into a bend deforma-
tion dbend = (n̂(r)× (∇× n̂(r))) and a splay deforma-
tion dsplay = (∇ · n̂(r)). We define associated strain
energy densities Dbend = ρS2|dbend|2 and Dsplay =
ρS2d2

splay, which measure how the system’s elastic energy
distributes into the two linearly independent deformation
modes. The prefactors of density ρ and order S allow the
definitions to be valid in regions such as defect cores and
voids that occur in the particle simulations.

To compare the splay and bend deformations to their

 10

 100

 1000

 1  10  100

1/κeff

lp(κeff)=lpolymer

n d
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FIG. 6. The average number of defects ndefect observed
in steady states as a function of κeff, for activity parameter
values fa ∈ [5, 30] and κ ∈ [100, 3000]. Other parameters are
τ1 = 0.2τ and kb = 300kBTref/σ

2.

form in an equilibrium nematic, let us consider the ratio
of total strain energy in splay deformations to those in
bend, R = 〈

∫
d2rDsplay(r)〉/〈

∫
d2rDbend(r)〉. In equilib-

rium, equipartition requires that this ratio satisfy Req =
k33/k11. In our simulations, we observe that R depends
strongly on activity; however, the data for all parameter
sets collapses when plotted as a function of the effective
filament bend modulus κeff. This result is consistent with
the concept of effective moduli, but shows that their val-
ues depend on activity.

To understand why the apparent modulus values de-
pend on activity, we analyzed the power spectra associ-
ated with these strain energies (Fig. S4 in [41]). The
power spectra exhibit two features: 1) Fig. 4b shows
that for the smallest simulated effective rigidity, κeff = 2,
the peak of the power spectrum kpeak is on the filament
scale, indicating that most deformation energy arises due
to bending of individual filaments. But for all higher val-
ues of κeff, a peak arises at the defect spacing scale, in-
dicating that the defect density controls the texture in
this active nematic. 2) Fig. 4c shows the magnitude of
the power spectrum at the characteristic scale kpeak. The
splay energy density is nearly independent of the effective
filament stiffness, while the amount of bend decreases lin-
early with κeff for κeff . κmax

eff , where κmax
eff ≈ 30 is the

point at which the effective persistence length of the fila-
ments is equal to their contour length. This observation
demonstrates that energy injected into the system at the
microscale due to activity preferentially dissipates into
bend modes.

Defect Shape: Let us now consider a striking feature
of the texture of an active nematic, the shape of a +1

2
defect. A quantitative descriptor of defect shape can be
developed as follows. We choose a coordinate system
with its origin at the center of the defect core, with the
x−axis pointing along the defect orientation (see Fig. 5a).

Page 5 of 8 Soft Matter



6

FIG. 7. Giant number fluctuations (GNFs) depend on the
effective bending rigidity. The fluctuation scaling exponent
g is plotted as a function of κeff, where we determined g by
fitting the dependence of fluctuations on subsystem size for
each parameter set to the form ∆N/

√
N = aNg over the

range N ≤ 104. Note that a value of g = 0 corresponds to
equilibrium-like fluctuations, while g = 0.5 would correspond
to ∆N ∼ N . The color of each point indicates the value of
fa according to the color bar on the right. Other parameters
are τ1 = 0.2τ and kb = 300kBTref/σ

2.

We work in polar coordinates, with r the radial distance
from the defect core and φ as the azimuthal angle with
respect to the x−axis. We define θ as the angle of the
director field with respect to the x−axis. At any position,
we can then express θ(r, φ) as a Fourier expansion in
φ ∈ {−π : π}.

θ(r, φ) =
1

2
φ+

∑
n

an cos(nφ) + bn sin(nφ). (6)

However, in practice truncating the expansion after the
first sin term approximates the shape of a +1

2 defect

well, so the descriptor simplifies to θ+ 1
2
(r, φ) ≈ 1

2φ +

b1(r) sin(φ), and the result is insensitive to r provided
the measurement is performed outside of the defect core
(see Fig. S10 [41]). Thus, the parameter b1 uniquely de-
scribes the defect shape; in particular, larger values of b1
correspond to pointier defects. Note that Zhang et al.
[12] and Cortese et al. [22] recently proposed similar ap-
proaches to characterizing defect shapes. An advantage
of our approach is that the shape can be described by a
single number, b1.

Fig. 5B shows the mode of b1 calculated from defects
within our simulations depends only on κeff, thus demon-
strating that defect shape is controlled by the apparent
bending rigidity. Moreover, b1 increases logarithmically
with κeff; i.e., defects become more pointed as the bend-
ing rigidity increases, consistent with the previous obser-
vations of highly pointed defects in rigid rod simulations
[2, 35, 52].

Defect Density: We next consider a well-studied prop-
erty of an active nematic, the steady-state defect den-
sity [19, 24, 28, 53]. Fig. 6 shows defect density col-
lapses onto a single curve when plotted as a function of
κeff, and scales roughly as 1/κeff under parameter val-
ues for which the apparent persistence length lies be-
tween the monomer scale and filament contour length,

1.5 . κeff . κmax
eff . We observe the same scaling for our

other data set (Fig. S1 [41]). Hydrodynamic theories
such as [19, 24, 28, 53] predict that the defect density
scales as α/K, where α is the measure of active stress
in the hydrodynamic theories and K is a Frank elastic
constant. The scaling collapse observed in our simula-
tions indicates that these hydrodynamic parameters are
directly related to their microscopic analogs, namely the
filament elastic constant κ and the collisional active stress
∼ (1 + (fa)2). Note that we could not measure defect
densities in systems with both extremely high activity
and high bare bending rigidity (fa ≥ 20 and κ & 5000)
because our defect detection algorithm breaks down (see
section S8 of [41]).

Number fluctuations: Finally, previous work has shown
that active nematics are susceptible to phase separa-
tion [36, 54–56] and giant number fluctuations (GNFs)
[5, 54, 57–59]. We find that flexibility suppresses phase
separation except at molecular scales (Fig. S8 [41]), but
that number fluctuations are governed by the apparent
modulus. We monitored number fluctuations by measur-
ing the number of pseudoatoms within square subsystems
with side lengths ranging from 20σ to 840σ. At equilib-
rium, in a region containing on average N particles the
standard deviation of the number of particles ∆N scales
as ∆N ∼

√
N , while previous studies of active nemat-

ics have identified higher scaling, as large as ∆N ∼ N .
Fig. S9 [41] shows measured number fluctuations for dif-
ferent values of the effective bending modulus. We see
that for small κeff = 2 the result is constant with subsys-
tem size, indicating equilibrium-like fluctuations, but the
slope increases larger effective modulus values, indicating
a progression toward GNFs. At all κeff the fluctuations
are eventually suppressed on scales comparable to the
defect spacing (N & 104), at which scale the system is
essentially isotropic, consistent with Narayan et al. [5].

To determine the dependence on κeff, we fit the data
for each simulation in the range N ≤ 104 to the form
aNg, so that g = 0 indicates equilibrium-like fluctua-
tions and g = 0.5 would indicate linear scaling of fluctu-
ations with system size. As shown in Fig. 7, g increases
with κeff, with g = 0 for small κeff and g ≈ 0.3 for the
largest effective bending rigidity values investigated; i.e.
∆N ∼ N0.8. The fact that g < 0.5 for the parameters we
consider may reflect suppression of fluctuations even for
N < 104. Importantly, estimated values of g at different
fa and κ collapse onto a single function of κeff, consis-
tent with the observations of the other characteristics of
an active nematic shown above.

Comparison with equilibrium: For small values of κeff,
the bend/splay ratio roughly in our model active nematic

scales as R ∼ κ
1/2
eff (Fig. 4). This differs from the scal-

ing of an equilibrium nematic, where the moduli scale
as k33 ∼ κ and k11 ∼ κ1/3 [60, 61], giving Req ∼ κ2/3.
We confirmed this scaling by calculating the equilibrium
moduli for our system (Fig. S5 [41]) using the free en-
ergy perturbation technique of [62]. Analysis of simu-
lation trajectories suggests that the difference in scal-
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ing arises because the active systems have much higher
nematic order than the equilibrium systems (when com-
pared at the same values of effective bending rigidity). In
an equilibrium system, increasing the filament flexibility
decreases order, resulting in a transition from the nematic
to isotropic phase as κ decreases below 5 at the density
used in our simulations [63]. In contrast, the active sys-
tems remain deep within the nematic phase (S & 0.8)
for all parameter sets (Fig. S5c in [41]). We empirically
found that normalizing the bend-splay ratio by the de-
gree of order, using the form R/S2, roughly collapses the
equilibrium and active results onto a single curve (Fig.
S5b [41]). Although we cannot rationalize the form of the
normalization, this result implies that the differences in
scaling between active and equilibrium cases arise from
the increased nematic order in the active simulations.

Returning to the defect shape measurements, the
dashed line in Fig. 5B shows the defect shape parameter
values b1 calculated by minimizing the continuum Frank
free energy for an equilibrium system containing a sepa-
rated pair of + 1

2 and − 1
2 defects. Here we have fixed the

continuum modulus k11 and varied k33 so that Req = k33
k11

matches the value obtained from our microscopic simu-
lations at the corresponding value of effective stiffness:
Req(k33) = R(κeff). Although the equilibrium b1 values
are shifted above the simulation results, consistent with
the discrepancy in R between the active and passive sys-
tems described above, we observe the same scaling with
bending rigidity in the continuum and simulation results.
Thus, the defect shape measurement provides a straight-
forward means to estimate effective moduli in simulations
or experiments on active nematics.

IV. CONCLUSIONS.

In active materials, energy injected at the particle scale
undergoes an inverse cascade, manifesting in collective
spatiotemporal dynamics at larger scales. The nature of
this emergent behavior depends crucially on which modes

the active energy dissipates into. Our simulations show
that activity within a dry active nematic preferentially
dissipates into bend modes, thus softening the apparent
bend modulus. Consequently, the value of the apparent
bend modulus depends strongly on activity. However, we
show that once this dependence on activity is accounted
for, this effective modulus dictates all collective behav-
iors that we investigated — the relative amounts of bend
and splay, defect density, defect shape, and giant number
fluctuations. The dependence of multiple characteristics
on this single parameter suggests that material properties
such as apparent moduli can be meaningfully assessed in
an active nematic and related to their values at equilib-
rium, provided their dependence on activity is accounted
for. Finally, our technique to parameterize defect shapes
allows estimating the relative magnitudes of these effec-
tive moduli in any experimental or computational system
that exhibits defects.

Experimental confirmation of the predicted dependence
of effective bend and splay moduli on activity: After a
preprint of our manuscript first appeared, Ref. [64] pre-
sented elegant experimental results confirming that the
ratio of apparent bend and splay moduli depend on ac-
tivity as predicted here.
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