

Environmental Science Water Research & Technology

1,3,5-Trimethoxybenzene (TMB) as a new quencher for preserving redox-labile disinfection byproducts and for quantifying free chlorine and free bromine

Journal:	Environmental Science: Water Research & Technology
Manuscript ID	EW-ART-01-2018-000062.R1
Article Type:	Paper
Date Submitted by the Author:	29-Apr-2018
Complete List of Authors:	Lau, Stephanie; Stanford University, Civil and Environmental Engineering Dias, Ryan; Towson University, Chemistry Martin-Culet, Kayla; Towson University, Chemistry Race, Nicholas; College of William and Mary, Chemistry Schammel, Marella; Towson University, Chemistry Reber, Keith; Towson University, Chemistry Roberts, A.; Johns Hopkins University, Department of Geography and Environmental Engineering Sivey, John; Towson University, Chemistry

SCHOLARONE[™] Manuscripts

Water Impact Statement

Using reductants to quench residual halogens in disinfected waters can lead to inaccurate quantitation of redox-labile disinfection byproducts (DBPs). Unlike most traditional quenchers, 1,3,5-trimethoxybenzene can serve as an effective quencher of free chlorine and free bromine without affecting the stabilities of the examined DBPs. In addition, the halogenation products of 1,3,5-trimethoxybenzene can be used to quantify residual chlorine and bromine.

1,3,5-Trimethoxybenzene (TMB) as a new quencher for preserving redoxlabile disinfection byproducts and for quantifying free chlorine and free bromine

Stephanie S. Lau^{a§}, Ryan P. Dias^b, Kayla R. Martin-Culet^b, Nicholas A. Race^{b‡}, Marella H. Schammel^b, Keith P. Reber^b, A. Lynn Roberts^a, John D. Sivey^{*b}

^a Department of Environmental Health and Engineering, Johns Hopkins University, 313 Ames Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States

^b Department of Chemistry, Towson University, 8000 York Road, Towson, Maryland 21252, United States

[§] Current affiliation: Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States

[‡]Current affiliation: Department of Chemistry, College of William and Mary, Integrated Science Center, Williamsburg, VA, 23187

* Corresponding author contact information: phone: (410) 704-6087; e-mail: jsivey@towson.edu

1 Abstract

2 Sodium sulfite, sodium thiosulfate, and ascorbic acid are commonly used to quench free 3 chlorine and free bromine in studies of disinfection byproducts (DBPs) in drinking water, 4 wastewater, and recreational water. The reducing capabilities of these quenchers, however, can 5 lead to the degradation of some redox-labile analytes. Ammonium chloride, another common 6 quencher, converts free chlorine into monochloramine and is therefore inappropriate for analytes 7 susceptible to chloramination. Herein, we demonstrate the utility of 1,3,5-trimethoxybenzene 8 (TMB) as a quencher of free chlorine and free bromine. The reactivity of TMB toward free chlorine was characterized previously. The reactivity of TMB toward free bromine was 9 quantified herein ($k_{\text{HOBr TMB}} = 3.35 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$) using competition kinetics. To explore the 10 feasibility of TMB serving as a free halogen quencher for kinetic experiments, chlorination of 11 12 2.4-dichlorophenol, bromination of anisole, and chlorination and bromination of dimethenamid-P 13 were examined. Although TMB does not react with free chlorine or free bromine as quickly as 14 do some (but not all) traditional quenchers, there was generally no significant difference in the 15 experimental rate constants with TMB (relative to thiosulfate) as the quencher. By monitoring 16 the chlorination and bromination products of TMB, free halogen residuals in quenched samples 17 were quantified. Furthermore, TMB did not affect the stabilities of DBPs (e.g., chloropicrin and 18 bromoacetonitriles) that otherwise degraded in the presence of traditional quenchers. TMB 19 could, therefore, be an appropriate quencher of free chlorine and free bromine in aqueous 20 halogenation experiments involving redox-labile analytes and/or when selective quantification of 21 residual free halogens is desired.

22

23 **1. Introduction**

24 Ouenching residual oxidants is indispensable for identifying and quantifying disinfection 25 byproducts (DBPs), which can be produced when water is treated with a chemical disinfectant 26 (e.g., free chlorine or another oxidant). Various methods exist for quenching free chlorine, which is the most widely used disinfectant for drinking water treatment in the United States.¹ When 27 28 choosing an appropriate quencher, previous researchers usually sought the following 29 characteristics: "(1) rapid and complete reaction with residual oxidants; (2) chemical inertness 30 towards the analytes; (3) negligible effects on quantitation; and (4) undetectable signal (for itself or its reaction products)."² The first three characteristics are especially important for researchers 31 32 who wish to determine the kinetics of DBP (trans)formation. The fourth characteristic is 33 considered desirable because a quencher that cannot be detected by the analytical instrument 34 employed would not be expected to interfere with analyte signals. Reagents that are commonly used to quench free chlorine can be divided into two major 35

36 categories. Quenchers in the first major category reduce free chlorine (Cl(+I) or Cl(0)) to chloride (Cl⁻).³ Examples of such quenchers are sodium thiosulfate (Na₂S₂O₃), sodium sulfite 37 38 (Na₂SO₃), and ascorbic acid. The high redox reactivities of these compounds toward free 39 chlorine result in rapid quenching; the downside is that these compounds can transform analytes 40 that are redox active. Na₂SO₃, for instance, can dehalogenate chloropicrin, trichloroacetonitrile, and dibromoacetonitrile.^{4, 5} Na₂S₂O₃ can reduce *N*-acetyl-*p*-benzoquinone imine and 1.4-41 benzoquinone to acetaminophen and 1.4-hydroquinone, respectively.⁶ Ascorbic acid can convert 42 the chlorination product of the antiretroviral drug nevirapine back into the parent compound.⁷ 43 Moreover, Na₂SO₃, Na₂S₂O₃, and ascorbic acid can reduce N-chloro-2,2-dichloroacetamide to 44

45 2,2-dichloroacetamide, possibly leading to erroneous identification of the latter as a drinking
46 water DBP.⁸

47 Quenchers in the second major category react with free chlorine to form monochloramine (NH₂Cl), which generally reacts with organic compounds more slowly than does free chlorine.³ 48 49 Ammonium chloride (NH₄Cl) is the most commonly encountered quencher in this category; it is 50 considered to be a "soft" quencher since it does not reduce/transform redox-labile N-chlorinated products of organic compounds such as sulfamethoxazole⁹ and tramadol.¹⁰ Nonetheless, some 51 organic compounds (e.g., phenols) can react with NH₂Cl.¹¹ Although chloramination reactions 52 tend to be slower than chlorination reactions.³ using NH₄Cl to quench free chlorine may affect 53 54 the quantitation of analytes if the sample storage time is prolonged. NH₄Cl may be particularly 55 problematic for water samples that contain free bromine (e.g., HOBr) because bromamines are relatively potent brominating agents for organic compounds.^{12, 13} 56

57 An additional (and largely unexplored) category of quenchers comprises organic compounds that are susceptible to electrophilic substitution involving free chlorine and free 58 59 bromine. In addition to quenching, such organic compounds can facilitate quantitation of residual 60 free chlorine and free bromine provided that the products resulting from electrophilic substitution are stable. For example, Shah et al.^{14, 15} employed phenolic compounds (e.g., phenol and 2,6-61 62 dichlorophenol) as quenchers of free halogens. Using phenolic compounds can, however, be 63 complicated by the formation of multiple halogenated products (particularly with phenol) and by precipitation of the added quencher (as observed for 2,6-dichlorophenol¹⁵). 64

We propose that 1,3,5-trimethoxybenzene (TMB) could serve as an effective quencher of free chlorine and free bromine without the limitations of traditional quenchers—namely, the impact of traditional quenchers on DBP stability. TMB reacts with free chlorine to form a

68 chlorinated product (Scheme 1) that can be readily analyzed via gas chromatography-mass 69 spectrometry (GC-MS). As such, when present in sufficient excess, TMB can both quench free 70 chlorine and concurrently generate a single, stable product (2-chloro-1,3,5-trimethoxybenzene, Cl-TMB).¹⁶ When free bromine is present, as in the case of chlorinating waters containing 71 bromide, TMB also reacts with free bromine to form a single, stable product (2-bromo-1,3,5-72 trimethoxybenzene, Br-TMB).¹⁷ Quantifying the monohalogenated products of TMB could, 73 74 therefore, allow researchers to selectively determine the concentrations of free chlorine and free bromine in aqueous solutions. TMB, Cl-TMB, and Br-TMB are all commercially available. 75

Scheme 1. Reactions of free chlorine and free bromine with excess 1,3,5-trimethoxybenzene
 (TMB) form monochlorinated and monobrominated products (X-TMB).

78 The presence of three methoxy groups, which activate aromatic systems toward electrophilic substitution,¹⁸ suggests that TMB will undergo facile reactions with free chlorine 79 80 and free bromine. Whether TMB is sufficiently reactive to serve as a satisfactory quencher can 81 be estimated using the ratio (Q) of the quenching rate to the rate of a reference reaction of 82 interest (e.g., halogenation of a model compound) determined using a traditional quencher: $Q = \frac{\text{rate of quenching}}{\text{rate of reference reaction}} = \frac{k_{\text{app,quench}} \text{ [free halogen] [quencher]}}{k_{\text{app,ref}} \text{ [free halogen] [model]}} = \frac{k_{\text{app,quench}} \text{ [quencher]}}{k_{\text{app,ref}} \text{ [model]}}$ 83 (1) where $k_{app \text{ guench}}$ and $k_{app \text{ ref}}$ are apparent second-order rate constants (M⁻¹ s⁻¹) for free halogen 84 85 quenching and for the reference reaction, respectively; [free halogen] represents the molar

86 concentration of free chlorine or free bromine; [quencher] denotes the molar concentration of the

87	quencher of interest; [model] denotes the molar concentration of the model compound of interest
88	in the reference reaction. When Q is large (i.e., ≥ 100) and the quencher is added in excess of the
89	total free halogen concentration, quenching time (i.e., the time needed for complete consumption
90	of free halogens) is unlikely to appreciably influence measured rates (and the associated rate
91	constants) of reference reactions.
92	Second-order rate constants for reaction of TMB with free chlorine species (HOCl, Cl ₂ ,
93	Cl ₂ O) have been reported ¹⁶ and can be used to estimate $k_{app,quench}$ under hypothetical solution
94	conditions. For example, at pH 7.0 and 20 oC in the presence of free chlorine (28 $\mu M\approx 2$ mg/L
95	as Cl ₂) and chloride (0.3 mM \approx 11 mg/L), $k_{app,quench} \approx 600 \text{ M}^{-1} \text{ s}^{-1}$. Accordingly, if
96	[quencher]/[model] = 5, TMB is anticipated to serve as a satisfactory quencher ($Q = 100$) of free
97	chlorine for reference reactions for which $k_{app,ref} \le 30 \text{ M}^{-1} \text{ s}^{-1}$, which likely applies to
98	chlorination of a range of organic compounds (e.g., various phenols, anisoles, and amides,
99	among others). ¹⁹ Working at [quencher]/[model] > 5 could conceivably expand the utility of
100	TMB-quenching to include reference reactions in even more reactive systems. As rate constants
101	characterizing the inherent reactivity of TMB toward free bromine have not been previously
102	reported, a similar analysis for the use of TMB to quench free bromine is currently not feasible.
103	Thus, we opted to determine rate constants for TMB bromination in this study.
104	The objective of this work was to evaluate TMB as a quencher of free chlorine and free
105	bromine in aqueous halogenation experiments. The stoichiometry was determined for reactions

involving TMB and free chlorine/bromine. The inherent reactivity of TMB toward free bromine
was also quantified. Rate constants for the chlorination and/or bromination of three model

108 compounds (2,4-dichlorophenol, anisole, and the herbicide dimethenamid-P) were determined

109 with TMB as the free halogen quencher and compared to values obtained using $Na_2S_2O_3$ as the

quencher. We chose to examine these halogenation reactions because their rate constants have previously been reported in the literature.²⁰⁻²³ Unreacted TMB and its monohalogenated products were also analyzed in selected samples to quantify residual free chlorine and free bromine at the time of quenching.

To determine whether TMB would be a useful quencher in studies involving DBPs, the stabilities of chloropicrin, chloral hydrate, tribromoacetaldehyde, and four haloacetonitriles in the presence of TMB were assessed in batch reactors over 7 days. Furthermore, the rate at which TMB quenches chlorine relative to four traditional quenchers was determined in a series of competitive quenching experiments. The reactivity of TMB with monochloramine was also assessed in a batch reactor. Findings from this work could expand the choice of free halogen quenchers for future DBP studies and related experiments involving redox-labile analytes.

121 **2. Experimental**

122 All aqueous solutions were prepared using deionized water further purified with a 123 Nanopure Analytical UV system (Thermo Scientific) or distilled water purified with a Milli-Q 124 Advantage A10 system (EMD Millipore) to a resistivity $\geq 18 \text{ M}\Omega$ cm. Laboratory-grade sodium hypochlorite (NaOCl, ~6% w/w, Fisher Scientific) served as the source of free chlorine and was 125 standardized via iodometric titration.²⁴ Working solutions of free chlorine were prepared daily by 126 127 diluting the NaOCl stock solution with water and were standardized via UV-vis spectrophotometry.²⁵ Additional reagents are described in Table S1 of the Electronic 128 129 Supplementary Information (ESI). Procedures for synthesizing 2,4-dichloro-1,3,5-130 trimethoxybenzene and 2,4-dibromo-1,3,5-trimethoxybenzene are provided in the ESI. Procedures for synthesizing 2-bromo-4-chloro-1,3,5-trimethoxybenzene, chloro-dimethenamid-131

P, and bromo-dimethenamid-P, as well as the NMR spectra associated with these compounds
(Fig. S1 – S6), are in the ESI. The NMR data for dimethenamid-P are also included in the ESI
(Fig. S7 – S8).

135 2.1 Stoichiometry of TMB reactions with free chlorine and free bromine. The ability of 136 TMB to react stoichiometrically with free chlorine and free bromine to give halogenated 137 products was investigated via halogenation reactions performed at room temperature $(21 \pm 1 \text{ °C})$ 138 and at varying [HOC1]_{tot,0} and [HOBr]_{tot,0}, respectively. For the chlorination of TMB, reaction 139 solution (total volume = 25 mL) containing borate buffer (20 mM, adjusted to pH 8.00 using 140 HNO₃) and NaNO₃ (0.1 M) was placed in 40-mL amber glass vials. NaOCl was then added to 141 the reaction solution ([NaOCl]_o in reactor = $5.0-46 \mu$ M), and the vials were capped and shaken 142 vigorously for 10 s. For the bromination of TMB, reaction solution (total volume = 25 mL) 143 containing borate buffer (20 mM, adjusted to pH 8.00 using HNO₃), NaNO₃ (0.1 M), and NaBr 144 $(5.0-60 \mu M)$ was placed in 40-mL amber glass vials. NaOCl was then added to the reaction 145 solution ($[NaOCI]_0$ in reactor = 65 μ M). Following NaOCI addition, reactors were capped, 146 shaken vigorously for 10 s, and allowed to stand for 5 min to permit bromide oxidation by excess 147 free chlorine.

For all experiments, three aliquots (1.00 mL each) of the reaction solution were obtained from each reactor and transferred to individual 4-mL amber glass vials pre-amended with TMB (0.150 mL at 2.76 mM, dissolved in methanol). Chlorination and bromination of primary alcohols are generally slow,^{19, 26} so the presence of methanol is not anticipated to interfere with the reaction of TMB with free halogens. Molar ratios of [TMB]-to-[free chlorine] ranged from 8:1 to 72:1; molar ratios of [TMB]-to-[free bromine] ranged from 6:1 to 72:1. The 4-mL vials were capped and shaken manually for 10 s and allowed to stand for 5 min. After all samples

155 were quenched with TMB, toluene (1.00 mL, containing 2-chlorobenzonitrile at 10.2 μ M as the 156 internal standard) was added to each 4-mL vial as the extraction solvent. Vials were capped and 157 shaken manually for 30 s. An aliquot of the toluene phase (0.20 mL) was transferred to a 0.3-mL 158 glass insert seated inside an amber glass 2-mL autosampler vial. These vials were capped with a 159 screw-top plastic cap fitted with a PTFE-lined septum. The concentrations of TMB, Cl-TMB, 160 and Br-TMB in the toluene samples were determined using GC-MS (see ESI, Table S2, for 161 method details for analysis of TMB and its monohalogenated products; **Table S2** also contains 162 method details for analysis of anisole and its bromination products, which will be discussed 163 further in Section 2.3). 164 2.2 TMB as a quencher of free chlorine: Chlorination of 2,4-dichlorophenol. The 165 effectiveness of TMB in quenching free chlorine was assessed by determining rate constants for 166 the chlorination of 2,4-dichlorophenol (2,4-DCP) at pH 7.08 and 9.14 using either TMB or 167 sodium thiosulfate as the quencher. At each pH, two identical reactors (40-mL amber glass vials) 168 were set up with 31 mL of reaction solution in each. The reaction solution consisted of phosphate 169 buffer (10 mM, adjusted to pH 7.08 using NaOH) or carbonate buffer (10 mM, adjusted to pH 170 9.14 using NaOH), NaCl (5 mM), NaNO₃ (95 mM), and NaOCl (128 µM). The reactors were 171 kept in the dark inside a stainless-steel constant-temperature water bath set at 25.00 ± 0.01 °C for 172 \sim 8 min to permit temperature equilibration. Previous work in our laboratory showed that free chlorine decay in the absence of 2,4-DCP was negligible at this timescale.²⁰ To initiate reactions, 173

each vial was spiked with 0.30 mL of 2,4-DCP solution (219 μM in water) using a glass syringe

to yield an initial concentration of $2.1 \,\mu$ M. The vial was then capped, shaken vigorously for 5 s,

and returned to the water bath. At each sampling time, 2.0 mL of the reaction solution was

177 transferred to a 4-mL amber glass vial pre-amended with 0.20 mL of either TMB (2.77 mM in 50

178 vol% water and 50 vol% methanol) or Na₂S₂O₃ (2.77 mM in water). Sampling times were 179 chosen such that the disappearance of 2,4-DCP was monitored over 3 half-lives. For the 180 experiment conducted at pH 9.14, the TMB spiking solution contained 0.1 M HNO₃ so as to 181 lower the solution pH to \leq 7 once reactor aliquots were added to the vials (because the chlorination rate of TMB decreases as the pH increases¹⁶). In all guenched samples, 182 183 $[quencher]_0/[NaOCI]_0 \ge 2.2.$ 184 Liquid-liquid extractions were carried out after all samples were quenched. Toluene (0.80 185 mL with 2-chlorobenzonitrile at 97.6 μ M as the internal standard) served as the extraction 186 solvent and was added to each quenched sample. The 4-mL vials were then capped and shaken

manually for 10 s. After waiting \geq 3 min for phase separation to re-establish, a portion of the toluene phase (~ 0.5 mL) was transferred to a 2-mL amber glass autosampler vial and analyzed using GC-MS. Details of the analytical method for 2,4-DCP, TMB, and their chlorinated products are in the ESI (**Table S3**).

191 **2.3 TMB as a quencher of free bromine: Bromination of anisole.** The performance of TMB 192 as a quencher for kinetic experiments involving bromination of anisole was examined via batch 193 reactors. In order to facilitate a comparison of quenchers, the experimental setup was the same as that described in a previous study²² in which $Na_2S_2O_3$ was used to quench free halogens. Briefly, 194 195 reaction solutions (total volume = 25 mL) were prepared in 40-mL amber glass vials and 196 contained NaBr (130 μ M), carbonate buffer (20 mM, adjusted to pH 7.48 using HNO₃) or borate 197 buffer (20 mM, adjusted to pH 8.02, 8.50, or 9.02 using HNO₃), NaNO₃ (90 mM), NaCl (10 198 mM), and anisole (6.0 μ M). Reactors were incubated in a circulating water bath at 20.00 \pm 0.01 199 ^oC for 4 min prior to dosing with NaOCl (305 μ M) at t = 0. Following addition of NaOCl, vials 200 were capped, shaken manually for 10 s, and returned to the water bath. Aliquots from the

201 reactors (0.90 mL) were obtained periodically and transferred to 4-mL amber glass vials pre-202 amended with TMB. To minimize the extent to which monobrominated products of anisole 203 underwent subsequent bromination, sampling times were chosen such that the loss of anisole was 204 monitored over at least 1 but no more than 2 half-lives. For the reaction at pH 7.5, 1.00 mL of 205 TMB solution (938 µM dissolved in 80 vol% water and 20 vol% methanol) was added to each 4-206 mL glass vial. For reactions at $pH \ge 8.0$, 0.210 mL of TMB solution (2.62 mM in methanol) was 207 added to each 4-mL glass vial. The 4-mL vials were capped and shaken manually for 10 s after 208 aliquots from the reactors were added. 209 Once all samples were quenched, toluene (0.45 mL, containing 2-chlorobenzonitrile at

10.2 μM as the internal standard) was added to each 4-mL vial as the extraction solvent. Vials were capped and shaken manually for 10 s. After phase separation was re-established, a portion of the toluene phase (0.2 mL) from each sample was transferred to a 0.3-mL glass insert seated inside an amber glass 2-mL autosampler vial. Autosampler vials were secured with a screw-top plastic cap fitted with a PTFE-lined septum. Anisole, TMB, as well as their halogenated products were analyzed concurrently via GC-MS. Details of the GC-MS analytical method are provided in the ESI (Table S2).

217 **2.4 TMB** as a quencher of free chlorine/bromine: Halogenation of dimethenamid-P.

Similar approaches as described above in Section 2.3 were used to evaluate the efficacy of TMB as a quencher for reactions of dimethenamid-P with free chlorine and free bromine. Reactors with solutions containing NaBr (4.5 μ M in chlorination experiments or 130 μ M in bromination experiments), borate buffer (10 mM, adjusted to pH 8.00 using HNO₃), NaNO₃ (98.6 mM), NaCl (1.3 mM), and dimethenamid-P (10 μ M) were incubated in a circulating water bath kept at 20.00 ± 0.01 °C. NaOCl (305 μ M) was added to the reactors at t = 0. A prior chlorination study²³

224 demonstrated the ability of trace bromide present in ostensibly bromide-free salts (e.g., NaCl) to 225 affect transformation rates of dimethenamid. The low level of added NaBr in the dimethenamid-226 P chlorination experiments herein attenuated the uncertainty in the bromide concentrations 227 without interfering with quantitation of dimethenamid-P chlorination rates. Aliquots from batch 228 reactors were quenched using TMB or Na₂S₂O₃ ([TMB]₀ = 500 μ M and [Na₂S₂O₃] = 450 μ M at 229 the time of quenching). Quenched aliquots were extracted into toluene. Toluene extracts were 230 analyzed via GC-MS for dimethenamid-P, TMB, and their halogenated products. Additional 231 methodological details for experiments involving dimethenamid-P are available in the ESI 232 (Table S4).

The experimental designs described in Sections 2.2 - 2.4 (chlorination of 2,4-DCP, bromination of anisole, and halogenation of dimethenamid-P, respectively) are consistent with the general approach of several previous kinetics studies of organic compound halogenation,^{16, 20-^{23, 27} except that these prior studies employed Na₂S₂O₃ rather than TMB as a quencher. Solution conditions (e.g., temperature, pH range, and ionic strength) employed herein were selected to permit comparisons to prior studies.²⁰⁻²³}

239 2.5 Competitive quenching of free chlorine. The rate at which TMB reacts with free chlorine 240 relative to four traditional quenchers (Na₂SO₃, Na₂S₂O₃, ascorbic acid, and NH₄Cl) was assessed 241 via competitive quenching experiments. Each reactor (60-mL clear glass vials wrapped in 242 aluminum foil) contained 50 mL of reaction solution, which consisted of phosphate buffer (10 243 mM, adjusted to pH 7.10 with NaOH), NaNO₃ (0.1 M), and NaOCI (52 µM). The reactors were 244 kept in the dark inside a stainless-steel constant-temperature water bath set at 25.00 ± 0.01 °C. 245 After waiting ~8 min for the reaction solution to achieve temperature equilibration, each reactor was spiked with 0.50 mL of a solution that contained equimolar concentrations of TMB and a 246

247 non-TMB quencher (nominally 52 μ M of each in 50 vol% water and 50 vol% methanol). The 248 reactor was then capped, shaken vigorously, and returned to the water bath. After 5 min, 3.0 mL 249 of the reaction solution from each reactor was transferred to a clear glass 15-mL centrifuge tube 250 containing 1 mL of toluene (with 2-chlorobenzonitrile at 40.6 uM as the internal standard). The 251 contents of the centrifuge tubes were mixed vigorously using a vortex mixer for 2 minutes. An 252 aliquot of the toluene phase (0.5 mL) was transferred to a 2-mL amber glass autosampler vial. 253 The concentrations of TMB and its monochlorinated product in the toluene extract were 254 analyzed using GC-MS (see ESI for method details, Table S3).

255 **2.6 Determining the reactivity of TMB toward free bromine.** The inherent reactivity of TMB 256 toward free bromine was assessed via competitive halogenation experiments employing dimethenamid-P as a reference compound. Dimethenamid-P was selected as the reference 257 compound because the rate constants associated with its aqueous bromination are known.²¹ 258 259 Reaction solutions (total volume = 25 mL) were prepared in 40-mL amber glass vials and 260 contained borate buffer (20 mM), NaBr (typically 10 µM), NaNO₃ (typically 90 mM), NaCl 261 (typically 10 mM), and NaOCI (typically 20 µM). The pH of reaction solutions was adjusted 262 using HNO₃ and/or NaOH. The effects of added NaCl (14 – 37 mM, at pH 7.1), NaBr (15 – 31 263 μ M, at pH = 7.0), and NaOCl (20 – 34 μ M, at pH 7.0) on bromination rates of TMB (relative to 264 those of dimethenamid-P) were examined. [NaCl], [NaBr], and [NaOCl] were investigated as independent variables due to their ability to influence bromine speciation and thereby affect 265 bromination rates.^{21, 22, 27} To control ionic strength, the amount of added NaNO₃ was adjusted 266 267 such that [NaNO₃] + [NaCl] was uniform (typically at 0.1 M) during experiments examining 268 each aforementioned independent variable. Following addition of NaOCl, vials were capped, shaken manually for 10 s, and incubated in a circulating water bath at 20.00 ± 0.01 °C for at least 269

5 min to permit oxidation of bromide. At t = 0, a methanolic spiking solution (130 μ L) containing TMB (2.1 mM) and dimethenamid-P (21 mM) was added to each 40-mL glass vial. The glass vials were subsequently capped, shaken manually for 10 s, and returned to the water bath. After 1.0 min of reaction time, three aliquots (1.00 mL each) from each reactor were obtained and transferred to individual 4-mL amber glass vials pre-amended with sodium thiosulfate (75 μ L at 10 mM) to quench residual chlorine. The 4-mL vials were capped and shaken manually for 10 s.

277 After samples were quenched, toluene (0.50 mL, containing 2-chlorobenzonitrile at 10.2 278 µM as the internal standard) was added to each 4-mL vial as the extraction solvent. Vials were 279 capped and shaken manually for 30 s. After phase separation was re-established, a portion of the 280 toluene phase (0.2 mL) from each sample was transferred to a 0.3-mL glass insert seated inside 281 an amber glass 2-mL autosampler vial. Autosampler vials were secured with a screw-top plastic 282 cap fitted with a PTFE-lined septum. Dimethenamid-P, TMB, as well as their halogenated 283 products were analyzed concurrently via GC-MS. Details of the GC-MS analytical method are 284 provided in the ESI (Tables S4 and S5). Apparent second-order rate constants for reactions of 285 TMB with free bromine were calculated from the initial and final measured concentrations of 286 TMB and dimethenamid-P based on equations developed in the ESI.

287 **2.7 Influence of quenchers on the stabilities of DBPs.** The stabilities of eight DBPs

288 (chloropicrin, chloral hydrate, chloroacetonitrile, dichloroacetonitrile, trichloroacetonitrile,

bromoacetonitrile, dibromoacetonitrile, and tribromoacetaldehyde) were assessed individually in

the presence of TMB, Na₂SO₃, Na₂S₂O₃, ascorbic acid, and NH₄Cl. These DBPs were chosen

291 because authentic standards are commercially available, and their stabilities in the presence of

292 various traditional quenchers have been examined by previous researchers, thus permitting

293 comparisons with results from this study. Na₂SO₃ solutions were made fresh daily as the sulfite 294 oxidized rapidly when headspace was present. Spiking solutions of DBPs were prepared in either 295 methanol (chloropicrin) or acetonitrile (all other DBPs). Each reactor (clear glass bottle with 296 ground-glass stopper, actual volume ≈ 315 mL) contained 300 mL of phosphate buffer (10 mM, 297 adjusted to pH 7.0 using NaOH) and one quencher at an initial concentration of 60 μ M. The 298 reactor was then spiked with a DBP to give an initial concentration of 6.0 µM and shaken 299 vigorously. A control reactor, to which no quencher was added, was set up for each DBP to 300 determine whether processes such as volatilization and hydrolysis could affect the stability of the 301 DBP. All reactors were kept in a constant-temperature incubator set at 25 ± 1 °C and were 302 sampled once a day for 7 days. At each sampling time, 4.0 mL of the reaction solution were 303 transferred to a clear glass 15-mL centrifuge tube containing 1.5 mL of methyl tert-butyl ether 304 (MTBE, with 1,2-dibromopropane at 10 µM as the internal standard). Although the volume of 305 headspace in the reactor increased over the course of the experiment, the percentage of each DBP 306 in the aqueous solution (calculated using Henry's Law constants obtained from the program HENRYWIN²⁸) never dropped below 98%. The introduction of headspace can result in the 307 308 dissolution of molecular oxygen into reaction solutions. The extent to which sulfite might have reacted with molecular oxygen²⁹ was not quantified herein. The centrifuge tube was then 309 310 vortexed for 2 min, and ~1 mL of the MTBE phase was subsequently transferred to a 2-mL 311 amber glass autosampler vial. The concentrations of DBPs in the MTBE extracts were analyzed 312 using GC with micro-electron capture detection (μ -ECD). Additional details of the analytical 313 methods are in the ESI (Tables S6 – S8).

2.8 Chloramination of TMB. To assess whether the presence of monochloramine couldinterfere with the quantification of free chlorine using TMB, a batch reactor was set up to

316	examine the chloramination kinetics of TMB. The reactor (60-mL clear glass vial) contained 50
317	mL of reaction solution that consisted of phosphate buffer (10 mM, adjusted to pH 7.03 with
318	NaOH) and ammonium chloride (NH ₄ Cl; 385 μ M). The reactor was placed inside a stainless-
319	steel constant-temperature water bath set at 25.00 ± 0.01 °C. After several minutes of temperature
320	equilibration, 1 mL of NaOCl (7.86 mM) was added to the reactor, yielding an initial
321	concentration of 154 μ M ([NH ₄ Cl] ₀ /[NaOCl] ₀ = 2.5). The reactor was capped, shaken
322	vigorously, and returned to the water bath. After waiting \sim 7 min to permit formation of
323	monochloramine, the reactor was spiked with 0.10 mL of a TMB solution (5.50 mM in
324	methanol) such that $[TMB]_0 = 10.8 \ \mu$ M. The reactor was again capped, shaken vigorously, and
325	returned to the water bath. At each sampling time, 3.0 mL of the reaction solution were
326	transferred to a clear glass 15-mL centrifuge tube containing 1.0 mL of toluene (with 2-
327	chlorobenzonitrile at 40.0 μ M as the internal standard). The centrifuge tube was vortexed for 2
328	min, and ~0.5 mL of the toluene layer was transferred to a 2-mL amber glass autosampler vial.
329	The concentrations of TMB and Cl-TMB in the toluene extracts were quantified using GC-MS.
330	Details of the GC-MS method are in the ESI (Table S3).

331 **3. Results and Discussion**

Commonly used quenchers of free chlorine and free bromine can potentially reduce/transform analytes of interest in aqueous samples, leading to inaccurate quantitation of the analytes. This sparked our desire to develop an alternative method for quenching free halogens using TMB. In addition, by measuring the concentrations of the monochlorinated and monobrominated products of TMB in quenched samples, residual concentrations of free chlorine

and free bromine can be determined. The effectiveness and limitations of using TMB to quench

and quantify free halogens are demonstrated and discussed in the following sections.

339 **3.1 TMB as a dual-purpose quencher for kinetic experiments.** Solutions of free chlorine or

- 340 free bromine were quenched with excess TMB ($[TMB]_o/[HOX]_{tot,o} \ge 6$, X = Cl or Br) to evaluate
- 341 the conversion efficiency of free chlorine and free bromine into Cl-TMB and Br-TMB,
- respectively. A plot of [Cl-TMB] as a function of total free chlorine dose (Fig. 1A) is linear with
- 343 a slope not significantly different from 1.00 (at the 95% confidence level). An analogous plot of
- 344 [Br-TMB] as a function of total free bromine concentration (Fig. 1B) is also linear with a slope

Fig. 1. (A) Yields of 2-chloro-1,3,5-trimethoxybenzene (Cl-TMB) as a function of chlorine dose. Reaction conditions: $[TMB]_0 = 360 \ \mu\text{M}$, $[NaOCl]_0 = 5.0-46 \ \mu\text{M}$, $[NaNO_3] = 0.1 \ \text{M}$, pH = 8.00, $[borate]_{tot} = 20 \ \text{mM}$, $T = 21 \pm 1 \ ^{\circ}$ C. **(B)** Yields of 2-bromo-1,3,5-trimethoxybenzene (Br-TMB) as a function of free bromine concentration; free bromine was generated via oxidation of bromide by excess free chlorine. Conditions: $[TMB]_0 = 360 \ \mu\text{M}$, $[NaOCl]_0 = 65 \ \mu\text{M}$, $[Br^-] = 5.0-60 \ \mu\text{M}$, $[NaNO_3] = 0.1 \ \text{M}$, pH = 8.00, $[borate]_{tot} = 20 \ \text{mM}$, $T = 21 \pm 1 \ ^{\circ}$ C. Cl-TMB was also detected, but for clarity, concentrations of Cl-TMB are not shown. Data points denote average values of experiments performed in triplicate; error estimates denote 95% confidence intervals.

- not significantly different from 1.00 (at the 95% confidence level). These results indicate that,
- 346 under the examined conditions, TMB reacts stoichiometrically with free chlorine and with free
- 347 bromine to form the respective monochlorinated and monobrominated products.
- 348 **3.2 Chlorination of 2,4-dichlorophenol.** Chlorination of 2,4-dichlorophenol (2,4-DCP) was
- 349 carried out at pH 7.08 under pseudo-first-order conditions ([HOCl]_{tot} \approx [HOCl]_{tot,o} \gg [2,4-
- 350 DCP]_{tot,o}) with TMB as the free chlorine quencher. The overall rate of 2,4-DCP chlorination in
- 351 our experiments can be described by:

352
$$\frac{d[2,4-\text{DCP}]_{\text{tot}}}{dt} = -k_{\text{obs}}[2,4-\text{DCP}]_{\text{tot}}$$
(2)

353 where k_{obs} represents the pseudo-first-order rate constant and [2,4-DCP]_{tot} denotes the sum of the 354 concentrations of the acid and conjugate base forms of 2,4-DCP ($pK_a = 7.85$; ref 30). The 355 disappearance of 2,4-DCP was accompanied by the formation of 2,4,6-trichlorophenol (TCP) 356 (Fig. 2A; concentrations corrected for the dilution that resulted from adding aliquots of the 357 reaction solution to autosampler vials pre-amended with solutions of TMB). The decrease in the 358 carbon mass balance, calculated as [2,4-DCP]_{tot} + [TCP]_{tot}, can be attributed to the reaction of TCP with free chlorine.²⁰ The value of k_{obs} was computed from the linear regression of 359 ln[2,4-DCP]_{tot} versus time data (**Fig. S9A**). With TMB as the quencher, $k_{obs} = 8.5 (\pm 0.4) \times 10^{-3}$ 360 s^{-1} (all uncertainties herein indicate 95% confidence intervals). In a parallel 2.4-DCP 361 chlorination experiment in which sodium thiosulfate was used to quench free chlorine, $k_{obs} = 8.0$ 362 $(\pm 0.3) \times 10^{-3}$ s⁻¹ (Fig. S9B). The difference between the two k_{obs} values is not significant at the 363 364 95% confidence level, showing that under our experimental conditions TMB and sodium 365 thiosulfate are equally effective in quenching free chlorine.

366	When TMB was used as the quencher, the concentrations of unreacted TMB and Cl-TMB
367	in the quenched samples were also monitored (Fig. 2B; concentrations not corrected for
368	dilution). Recoveries of free chlorine, computed as ([Cl-TMB] + [TCP])/[HOCl] _{tot,o} , remained
369	constant at 96% to 102% with an average of 99% \pm 2% (Fig. 2C), as expected if pseudo-first-
370	order conditions were maintained throughout the experiment. The amount of free chlorine that
371	was incorporated into TMB-quantified as [Cl-TMB]-was within 5% of [HOCl]tot,o ([HOCl]tot,o
372	= 116 μ M at the time of quenching). Additional products besides TCP likely formed from the
373	chlorination of 2,4-DCP; however, under our reaction conditions in which $[HOC1]_{tot,o} \gg [2,4-$
374	DCP] _o , other reactions that contribute to the loss of 2,4-DCP or its daughter products are not
375	anticipated to consume appreciable amounts of free chlorine.
376	Recoveries of TMB, computed as ([TMB] + [Cl-TMB])/[TMB] _o , ranged from 100% to
377	102% with an average of $101\% \pm 1\%$ (Fig. 2D). Approximately all of the TMB mass can be
378	accounted for by considering TMB and Cl-TMB, indicating that the formation of additional
379	chlorinated products of TMB (e.g., dichlorinated and trichlorinated TMB) was negligible.
380	Monitoring 2,4-dichloro-1,3,5-trimethoxybenzene in the quenched samples confirmed that
381	dichlorinated TMB accounted for $< 0.1\%$ of the total [TMB] (data not shown).

Fig. 2. Reaction of 2,4-DCP with excess free chlorine, quenched using 1,3,5-trimethoxybenzene (TMB). Reaction conditions: pH 7.08, $[2,4-DCP]_o = 2.1 \ \mu\text{M}$, $[\text{NaOCI}]_o = 128 \ \mu\text{M}$, $[\text{phosphate buffer}] = 10 \ \text{mM}$, $[\text{NaCI}]_{\text{added}} = 5 \ \text{mM}$, ionic strength (i.e., $[\text{NaCI}] + [\text{NaNO}_3]) = 0.1 \ \text{M}$, $T = 25.0 \ ^\circ\text{C}$. (A) The concentrations of the parent compound (2,4-DCP) and its chlorination product (TCP) over the course of the experiments. The mass balance was calculated as $[2,4-DCP]_{\text{tot}} + [\text{TCP}]_{\text{tot}}$ at each time point. (B) Measured concentrations of TMB and its major chlorination product, Cl-TMB, over the course of the experiments. The mass balance was calculated as [TMB] + [Cl-TMB] at each time point. (C) The recovery of chlorine at each sampling time; % recovery of Cl = ([Cl-TMB] + [TCP])/[HOCl]_{\text{tot},o}, where $[\text{HOCl}]_{\text{tot},o} = 116 \ \mu\text{M}$ at the time of quenching. (D) The recovery of TMB at each sampling time; % recovery of TMB = ([TMB] + [Cl-TMB])/[TMB]_o, where $[\text{TMB}]_o = 252 \ \mu\text{M}$ at the time of quenching.

383 We also assessed the ability of TMB to quench free chlorine in a 2.4-DCP chlorination 384 experiment conducted at pH 9.14. The quenching was carried out using a TMB solution that 385 contained 0.1 M HNO₃, and the pH of the reactor aliquots after thorough mixing with the TMB solution was between 6 and 7. With TMB as the quencher, $k_{obs} = 6.4 (\pm 0.2) \times 10^{-4} \text{ s}^{-1}$. In a 386 parallel experiment with sodium thiosulfate as the quencher, $k_{obs} = 6.1 (\pm 0.3) \times 10^{-4} \text{ s}^{-1}$. The 387 close agreement between the k_{obs} values indicates that TMB can be an effective quencher of free 388 389 chlorine in high pH solutions when steps are taken to lower the solution pH to $\leq 7.6-7$ at the time of quenching, noting that TMB chlorination rates increase with decreasing pH.¹⁶ Accordingly, 390 391 TMB is anticipated to be effective in guenching free chlorine as long as the sample pH at the 392 time of quenching is modestly acidic.

393 **3.3 Bromination of anisole.** TMB was employed as a quencher in kinetic experiments 394 involving bromination of anisole by free bromine (generated via NaBr + excess NaOCl) at pH 395 7.48. As the bromination of anisole is much more rapid than the analogous chlorination reaction, 396 only brominated products were observed under the time scales of our experiments (Fig. 3A). 397 Concentrations of TMB, Cl-TMB, and Br-TMB were measured in the toluene extract obtained at 398 each sampling time (Fig. 3B). Recoveries of free chlorine and free bromine ranged from 97 – 399 104% with averages of $100\% \pm 3\%$ and $103\% \pm 2\%$, respectively (Fig. 3C). These results 400 suggest that TMB was converted quantitatively into Cl-TMB and Br-TMB upon reaction with 401 residual free chlorine and free bromine, respectively. Recoveries of TMB ranged from 97% to 402 100% (average = $99\% \pm 1\%$; Fig. 3D), which suggests that formation of additional products 403 (e.g., dihalogenated forms of TMB) was negligible. 404 Under pseudo-first-order conditions in which $[HOBr]_{tot} \approx [HOBr]_{tot,o} \gg [anisole]_{o}$, the

405 overall rate of anisole bromination can be expressed as:

406
$$\frac{d[\text{anisole}]}{dt} = -k_{\text{obs}}[\text{anisole}] = -(k_{\text{I,obs}} + k_{\text{II,obs}})[\text{anisole}]$$
(3)

407 where k_{obs} , $k_{I,obs}$, and $k_{II,obs}$ are the pseudo-first-order rate constants for the disappearance of 408 anisole, the formation of 4-bromoanisole, and the formation of 2-bromoanisole, respectively. In 409 **Table S9**, values of $k_{I,obs}$ and $k_{II,obs}$ determined using TMB as a quencher (at pH 7.48, 8.02, 410 8.50, and 9.02) are compared to the corresponding values estimated from a previously-reported 411 reactivity model²² (**eqn 4**) developed from kinetic experiments employing thiosulfate as the 412 quencher:

413
$$k_{obs} = k_{BrCl}[BrCl] + k_{BrOCl}[BrOCl] + k_{Br_2O}[Br_2O] + k_{HOBr}[HOBr]$$
(4)

414 where k_{BrCl} , k_{BrOCl} , $k_{\text{Br}_2\text{O}}$, and k_{HOBr} denote second-order rate constants (M⁻¹ s⁻¹) for

415 bromination by BrCl, BrOCl, Br₂O, and HOBr. Molar concentrations of various brominating

Fig. 3. Reaction of anisole with solutions amended with bromide + excess NaOCl, periodically quenched using 1,3,5-trimethoxybenzene (TMB). Conditions: $[anisole]_o = 6.0 \ \mu\text{M}$, $[NaBr]_o = 130 \ \mu\text{M}$, $[NaOCl]_o = 305 \ \mu\text{M}$, pH = 7.48, [carbonate buffer] = 20 mM, $[NaNO_3] = 90 \text{ mM}$, [NaCl] = 10 mM, T = 20.0 °C. **(A)** Time course depicting anisole transformation into brominated products; carbon mass balance = [anisole] + [4-bromoanisole] + [2-bromoanisole]; chlorination of anisole was sufficiently slow as to preclude detection of chlorinated products. Slight decreases observed for the carbon mass balance may be due to formation of dibrominated products, which were not quantified. Concentrations were corrected for the dilution that occurred when adding aliquots of the reaction solution to autosampler vials pre-amended with TMB.**(B)**Measured concentrations (not corrected for dilution) of the quencher (TMB) and its monochlorinated (Cl-TMB) and monobrominated (Br-TMB) products; carbon mass balance = <math>[TMB] + [Cl-TMB] + [Br-TMB]. **(C)** Recovery of free chlorine and free bromine for each sampling time; recovery of chlorine = $[Cl-TMB]/[HOC1]_{tot,o}$, where $[HOC1]_{tot,o} = 83 \ \mu\text{M}$ at the time of quenching; recovery of TMB = ([TMB] + [Cl-TMB] + [Cl-TMB] + [Br-TMB])/ $[Br-]_o$, where $[HOBT]_{tot,o} = 62 \ \mu\text{M}$. **(D)** Recovery of TMB = ([TMB] + [Cl-TMB] + [Cl-TMB] + [Br-TMB] + [Br-TMB])/ $[TMB]_o$, where $[TMB]_o = 494 \ \mu\text{M}$ at the time of quenching.

416 agents were determined using the solution conditions reported in **Table S9** and the equilibrium

417 constants compiled in ref 22. Of the eight rate constants obtained using TMB as the quencher,

418 seven were not significantly different (at the 95% confidence level) from those calculated via

419 eqn 4 (based on data obtained using sodium thiosulfate as the quencher). In all cases, rate

420 constants obtained using TMB as a quencher differ by $\leq 23\%$ relative to values calculated via

421 eqn 4 (Table S9).

422 **3.4 Chlorination and bromination of dimethenamid-P.** To further evaluate the performance

- 423 of TMB as a quencher relative to sodium thiosulfate, time course experiments involving
- 424 chlorination and bromination of dimethenamid-P were performed in triplicate at pH 8.00 (Table

425 1). The average pseudo-first-order chlorination rate constant calculated from experiments

426 quenched with TMB differed from that obtained using sodium thiosulfate by 0.4%. The average

427 pseudo-first-order bromination rate constant determined from experiments quenched with TMB

428 differed by -1.6% relative to that obtained using sodium thiosulfate. The aforementioned

Table 1. Pseudo-First-Order Rate Constants for the Formation of Chloro-Dimethenamid-P andBromo-Dimethenamid-P in Solutions of Free Chlorine + Bromide Measured Using TMB orSodium Thiosulfate as Quenchers a

	Pseudo-first-or	der rate constant (s ⁻¹)	Percent	Significantly
Product	Quencher = TMB Quencher = Thiosulfate		Difference ^b	Different at 95% CI?
chloro- dimethenamid-P	$(6.6 \pm 0.7) \times 10^{-5}$	$(6.6 \pm 0.5) \times 10^{-5}$	0.4%	No
bromo- dimethenamid-P	$(3.2 \pm 0.2) \times 10^{-2}$	$(3.3 \pm 0.2) \times 10^{-2}$	-1.6%	No

^{*a*} Rate constants denote averages of triplicate experiments. Uncertainties represent 95% confidence intervals. Reaction conditions: pH = 8.00, [borate buffer] = 10 mM, [dimethenamid-P]_o = 10 μ M, [NaOCl]_o = 305 μ M, [NaCl] = 1.3 mM, [NaNO₃] = 98.6 mM, [NaBr]_o = 4.5 μ M (chlorination experiments) or 130 μ M (bromination experiments), T = 20.00 ± 0.01 °C. Quenchers included TMB or sodium thiosulfate with concentrations of 500 μ M and 450 μ M, respectively, at the time of quenching (i.e., after reaction aliquots were combined with the solution containing a quencher).

^b % difference =
$$\left(\frac{k_{obs,TMB} - k_{obs,thiosulfate}}{k_{obs,thiosulfate}}\right) \times 100\%$$

429 chlorination and bromination rate constants associated with TMB as a quencher were not 430 significantly different (at the 95% confidence level) from those associated with sodium 431 thiosulfate as a guencher. Furthermore, for dimethenamid chlorination experiments, average recoveries (\pm 95% confidence intervals) of free chlorine and TMB were 100.2% (\pm 0.7%) and 432 433 101.2% (± 0.6%), respectively. For dimethenamid bromination experiments, average recoveries 434 of free chlorine, free bromine, and TMB were 100.4% ($\pm 0.9\%$), 94.5% ($\pm 1.5\%$), and 106.2% (\pm 435 (0.8%), respectively. For all experiments involving chlorination or bromination of dimethenamid, 436 monitored dihalogenated products of TMB (i.e., 2,4-dichloro-1,3,5-trimethoxybenzene, 2,4-437 dibromo-1,3,5-trimethoxybenzene, and 2-bromo-4-chloro-1,3,5-trimethoxybenzene) accounted 438 for < 0.3% of total the total initial TMB concentration. Together with the data reported for 439 chlorination of 2,4-DCP and bromination of anisole, these findings demonstrate the ability of 440 TMB to facilitate quenching and, when Cl-TMB and Br-TMB are monitored, halogen-specific 441 quantification of free chlorine and free bromine residuals in batch reactors simulating water 442 disinfection conditions.

443 3.5 Competitive quenching of free chlorine. To assess the rate at which TMB reacts with free 444 chlorine relative to four traditional quenchers, competitive quenching experiments were 445 conducted at pH 7.10 in batch reactors that initially contained approximately equimolar 446 concentrations (~52 μ M each) of free chlorine, TMB, and one non-TMB quencher (Na₂SO₃, 447 Na₂S₂O₃, ascorbic acid, or NH₄Cl). A reactor containing equimolar concentrations (\sim 52 μ M 448 each) of free chlorine and TMB only served as the control. The concentrations of unreacted TMB 449 and Cl-TMB in each reactor after quenching are reported in Table 2. In the control reactor, most 450 of the initial TMB was converted into Cl-TMB via reaction with free chlorine ([Cl-TMB]/([Cl-451 TMB] + [TMB]) = 89%). When a non-TMB quencher was present, however, only a small

452	percentage of the initial TMB was converted into Cl-TMB. Values of [Cl-TMB]/([Cl-TMB] +
453	[TMB]) were $\leq 0.70\%$ for Na ₂ SO ₃ , Na ₂ S ₂ O ₃ , and ascorbic acid, while that for NH ₄ Cl was 13%.
454	We note that the value of [Cl-TMB]/([Cl-TMB] + [TMB]) in the control reactor was less than
455	100%, and the TMB mass balances (computed as [TMB] + [Cl-TMB]) in these experiments
456	somewhat exceeded the nominal [TMB] $_{o}$ (52 μ M). These discrepancies reflect the difficulty in
457	ensuring that $[HOC1]_{tot,o} = [TMB]_o = [non-TMB quencher]_o$. The higher-than-expected TMB
458	mass balances suggest that formation of the dichlorinated form of TMB did not occur to any
459	appreciable extent, consistent with the anticipated lower nucleophilicity of Cl-TMB relative to
460	TMB due to the ability of Cl to deactivate aromatic moieties toward electrophilic substitution. ¹⁸
461	(For experiments reported herein involving bromination, substituting an H atom with Br is also
462	anticipated to attenuate the nucleophilicity of the halogenated product relative to the parent
463	compound, as has been previously observed for bromination of anisole. ²²) The lower-than-
464	expected value of [Cl-TMB]/([Cl-TMB] + [TMB]) in the control reactor and variations in TMB
465	mass balances in different reactors should not, however, affect interpretation of the trends in [Cl-
466	TMB]/([Cl-TMB] + [TMB]) values.

4	6	7
	v	

 Table 2. Results from Competitive Quenching Experiments^a

Non TMB	С	oncentratior	[CLTMR]	
quencher	ТМВ	CI-TMB	Mass balance ^b	$\frac{[CI-TMB]}{[CI-TMB] + [TMB]}$
Sodium sulfite	59.38	0.36	59.74	0.61%
Sodium thiosulfate	52.49	0.23	52.71	0.43%
Ascorbic acid	55.32	0.37	55.69	0.67%
Ammonium chloride	49.52	7.15	56.67	13%
Control	6.03	48.11	54.14	89%

^{*a*} Reaction conditions: pH 7.10, [HOCl]_{tot,o} \approx [TMB]_o \approx [non-TMB quencher]_o \approx 52 µM, [phosphate buffer] = 10 mM, ionic strength = 0.1 M

^b TMB mass balance was calculated as the sum of [TMB] and [Cl-TMB]

468	The value of [Cl-TMB]/([Cl-TMB] + [TMB]) is indicative of the relative competitiveness
469	of TMB for free chlorine. If TMB were to react with free chlorine more quickly than did a non-
470	TMB quencher, the value of [Cl-TMB]/([Cl-TMB] + [TMB]) should approach 89% (the value of
471	[Cl-TMB]/([Cl-TMB] + [TMB]) in the control reactor in which TMB was the only quencher
472	present). In our experiments, the values of [Cl-TMB]/([Cl-TMB] + [TMB]) were close to zero
473	when Na ₂ SO ₃ , Na ₂ S ₂ O ₃ , or ascorbic acid was present, indicating that these quenchers reacted
474	with free chlorine much more rapidly than did TMB. The value of [Cl-TMB]/([Cl-TMB] +
475	[TMB]) with NH ₄ Cl was higher (13%), but NH ₄ Cl still reacted with free chlorine more quickly
476	than did TMB. These findings are consistent with the reactivity trend anticipated based on
477	reported second-order rate constants for reactions of quenchers with free chlorine (Table 3):
478	TMB < ammonia < ascorbate < sulfite < thiosulfate. For reactions with free bromine, TMB is
479	predicted to be more competitive, noting that the reactivity of TMB toward free bromine (at pH
480	7) exceeds that of ammonia and ascorbate.

	Free Chlorine			Free Bromine		
Quencher	$\boldsymbol{k_{app}} \left(\mathbf{M}^{-1} \mathbf{s}^{-1} \right)$	Т (°С)	Comments	$\boldsymbol{k_{app}} \left(\mathbf{M}^{-1} \mathbf{s}^{-1} \right)$	T (°C)	Comments
ТМВ	563 ± 14	20	calculated from data in ref 16	$(3.28 \pm 0.14) \times 10^{6}$	20	current work ^b
ammonia	1.3×10^4	25	calculated in ref 19 from data in ref 31	4.1×10^{5}	20	calculated in ref 26 from data in ref 32
ascorbate	6×10^6	22	calculated from data in ref 33	$(1.7 \pm 0.2) \times 10^{6}$	22	pH 7.4; calculated in ref 26 from data in ref 34
sulfite	2.3×10^{8}	25	calculated in ref 19 from data in ref 35	1.9×10^{9}	25	calculated in ref 26 from data in ref 36
thiosulfate	1.8×10^{9}	25	calculated from data in ref 37	not reported	_	_

Table 3. Apparent Second-Order Rate Constants (k_{app}) for Reactions of Quenchers withFree Chlorine and Free Bromine a

^a Unless otherwise noted, all k_{app} values correspond to pH 7.0. Uncertainties represent 95% confidence intervals; uncertainties are not available for all k_{app} values calculated from the cited sources of data.
 ^b k_{app} calculated as k_{obs}/[HOBr]_{tot} from experiments performed at pH 7.1 (Figure S10A).

482 Despite the lesser reactivity of TMB toward free chlorine relative to traditional 483 quenchers, results from the kinetic experiments reported above for chlorination of 2,4-DCP, 484 bromination of anisole, chlorination of dimethenamid-P, and bromination of dimethenamid-P 485 indicate that TMB can serve as an effective guencher of free chlorine and free bromine for 486 reactions with half-times ≥ 0.5 min. Based on previously reported second-order rate constants for reactions of TMB with Cl₂, Cl₂O, and HOCl, ¹⁶ k_{obs} for TMB chlorination is calculated as 7.2 × 487 10^{-2} s⁻¹ under the conditions employed for chlorination of 2,4-DCP. This predicted k_{obs} for TMB 488 chlorination is close to an order of magnitude larger than the experimentally determined k_{obs} for 489 2,4-DCP chlorination (8.5 (\pm 0.4) × 10⁻³ s⁻¹). These results suggest that TMB will serve as a 490 491 satisfactory quencher (i.e., $Q \ge 100$, eqn 1, where $k_{obs} = k_{app}$ [free halogen]) when [TMB] exceeds [2,4-DCP] by a factor \geq 12. Accordingly, satisfactory quenching of the 2,4-DCP 492

493	chlorination experiments (Fig. 1 , for which $[TMB]_0/[2,4-DCP]_0 = 120$) could have theoretically
494	been achieved using less TMB (so long as $[TMB]_o/[HOCl]_{tot,o} > 1.0$). When quantitation of
495	residual free chlorine is also desired, somewhat larger excesses of TMB (e.g., [TMB] ₀ /[HOCl] _{tot,o}
496	> 3) will facilitate these measurements by minimizing the formation of dichlorinated TMB.
497	For the net bromination of anisole at pH 7.48, $k_{obs,anisole} = k_{obs,I} + k_{obs,II} = 8.33 \times 10^{-4} \text{ s}^{-1}$
498	(see eqn 3 and Table S9) and therefore $k_{app,anisole} = k_{obs} / [HOBr]_{tot} = 6.4 \text{ M}^{-1} \text{ s}^{-1}$. Based on results
499	that will be discussed in Section 3.6, $k_{app,TMB} = 3.16 (\pm 0.13) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ at pH 7.48. Entering
500	these k_{app} values for anisole and TMB into eqn 1 indicates that TMB will serve as a satisfactory
501	quencher (Q \ge 100) when [TMB]/[anisole] \ge 2.0 \times 10 ⁻⁴ (so long as [TMB] _o > [HOBr] _{tot,o} +
502	[HOC1] _{tot,o}).
503	For bromination of dimethenamid-P at pH 8.00 (Table 1), $k_{app,dimethenamid-P} = 250$
504	M^{-1} s ⁻¹ . At pH 8.00, $k_{app,TMB} = 2.79 (\pm 0.12) \times 10^6 M^{-1}$ s ⁻¹ (see Section 3.6 below). These
505	findings suggest that TMB will be sufficiently reactive as a quencher (i.e., $Q \ge 100$, eqn 1) when
506	$[TMB]_{o}/[dimethenamid-P]_{o} \ge 0.01$. In practice, $[TMB]_{o}/[HOBr]_{tot,o}$ must, however, exceed 1.0 to
507	permit stoichiometric quenching of free bromine and to minimize formation of dibrominated and
508	tribrominated TMB. For the experimental results shown in Table 1 , $[TMB]_o/[dimethenamid-P]_o$
509	\approx 50, once again indicating that satisfactory quenching could have been achieved using less
510	TMB.

511 **3.6 Reactivity of TMB toward free bromine.** Rate constants corresponding to reactions of 512 TMB with free bromine ($k_{obs,TMB}$, s^{-1}) were determined using competition kinetic experiments 513 with dimethenamid-P serving as the reference compound. HOBr, with $pK_a = 8.70 (20 \text{ °C})$,³⁸ is 514 anticipated to be the most abundant constituent of free bromine in solutions at near-neutral pH. 515 In addition to HOBr, several other electrophilic bromine species (e.g., BrCl, Br₂, BrOCl) can

516	conceivably influence overall bromination rates of TMB, as has been observed for bromination
517	of anisole, ²² dimethenamid-P, ²¹ and salicylic acid. ²⁷ To explore the possible influence of the
518	aforementioned bromine species on bromination kinetics of TMB, competition kinetics
519	experiments were performed as a function of added NaCl, NaBr, and NaOCl (all at pH \approx 7). The
520	concentration of added NaCl (from $14 - 37$ mM) did not appreciably influence $k_{obs,TMB}$ (Fig.
521	S10A). This finding suggests that BrCl, whose concentration is proportional to [Cl ⁻] (eqn 5), is
522	not influencing overall bromination rates of TMB under the examined conditions.
523	$HOBr(aq) + Cl^{-} + H^{+} \rightleftharpoons BrCl(aq) + H_{2}O log K_{3} = 4.09 (20 °C)^{39} $ (5)
524	As the concentration of NaBr (added in excess of NaOCl) increased from $15 - 31 \mu M$,
525	$k_{obs,TMB}$ values did not increase (Fig. S10B). These results indicate that Br ₂ , whose
526	concentration is proportional to the concentration of unoxidized Br ⁻ (eqn 6), is unimportant as a
527	brominating agent of TMB in our reactors under the experimental conditions described in
528	Section 2.6.
529	$HOBr(aq) + Br^{-} + H^{+} \rightleftharpoons Br_{2}(aq) + H_{2}O$ $\log K_{4} = 8.40 (20 \text{ °C})^{40} $ (6)
530	Changes in the concentration of NaOCl (from $20 - 34 \ \mu\text{M}$, added in excess of NaBr) also did not
531	appear to increase the values of $k_{obs,TMB}$, thereby suggesting that BrOCl (whose concentration is
532	proportional to [HOCl], eqn 7) does not substantially contribute to bromination rates of TMB.
533	$HOBr(aq) + HOCl(aq) \rightleftharpoons BrOCl(aq) + H_2O log K_5 = -0.46 (25 °C)^{21} $ (7)
534	Br ₂ O is an additional free bromine species that can conceivably influence bromination
535	rates of organic compounds. For reactions of anisole, ²² salicylic acid, ²⁷ dimethenamid-P, ²¹ and p -
536	xylene, ⁴¹ Br ₂ O was shown to be a minor (or imperceptible) contributor to overall bromination
537	rates under most examined solution conditions. Compared to the previously examined organic

538 compounds, TMB is more nucleophilic and should therefore react preferentially with more 539 abundant, but less electrophilic, brominating agents such as HOBr (vis-à-vis the reactivityselectivity principle¹⁸). Collectively, these findings suggest that Br₂O is unlikely to influence 540 541 overall bromination rates of TMB in solutions of free bromine. 542 Second-order rate constants for reactions of dimethenamid-P with BrCl, Br₂, BrOCl, Br₂O, and HOBr have been reported²¹ and permit calculations of how these brominating agents 543 544 affect bromination rates of dimethenamid-P under a variety of solution conditions. Such 545 calculations are important for the competition kinetics method employed herein (see ESI for 546 additional details).

547 Given the putative unimportance of free bromine species such as BrCl, Br₂, BrOCl, and 548 Br₂O in reactions with TMB in our systems, a second-order rate constant for the reaction of 549 TMB with HOBr ($k_{HOBr,TMB}$, M⁻¹ s⁻¹) can be approximated via:

550
$$k_{\text{HOBr,TMB}} = \frac{k_{\text{obs,TMB}}}{[\text{HOBr]}}$$
(8)

where the average $k_{obs,TMB}$ value obtained from the variable [NaCl] experiments (Fig. S10A) was used to calculate $k_{HOBr,TMB}$ as 3.35 (± 0.14) × 10⁶ M⁻¹ s⁻¹. Relying on the variable [NaCl] experiments afforded the most precise estimate of $k_{HOBr,TMB}$ of the data sets shown in Fig. S10.

3.7 Influence of quenchers on DBP stability. While high reactivity with free chlorine and free bromine is a defining trait of an effective quencher, inertness toward the analytes of interest is equally important. To assess the stabilities of eight DBPs in the presence of TMB, week-long experiments were conducted in batch reactors at pH 7.0 with $[TMB]_o \ge 10 \times [DBP]_o$. The stabilities of the DBPs were also evaluated in the presence of Na₂SO₃, Na₂S₂O₃, ascorbic acid, and NH₄Cl under similar conditions. These eight DBPs were selected for study because the

- 560 influence of various quenchers on their stabilities has been examined in the literature,^{2, 4, 5} thus
- allowing comparisons to the results of previous investigations. The results are summarized in
- 562 **Table 4**, with check marks denoting negligible differences in DBP concentrations from those in
- the control reactors (which did not contain quenchers) after 7 days.

DBP	ТМВ	Ammonium chloride	Sodium thiosulfate	Ascorbic acid	Sodium sulfite
Chloropicrin	✓	~			
Chloral hydrate	\checkmark	~	~	\checkmark	✓
Chloroacetonitrile (MCAN)	\checkmark	~	~	\checkmark	✓
Dichloroacetonitrile (DCAN)	\checkmark	~	~	✓	✓
Trichloroacetonitrile (TCAN)	Inherently unstable in water, so quenchers make little difference				
Bromoacetonitrile (MBAN)	\checkmark	~		\checkmark	\checkmark
Dibromoacetonitrile (DBAN)	✓	~	~	✓	
Tribromoacetaldehyde (TBAL)	Inherently	unstable in wate	er, so quenche	ers make little	e difference

Table 4. Influence of Quenchers on the Stabilities of DBPs a

^{*a*} Check marks indicate that changes in DBP concentrations are not appreciably different from those in the control reactor without any quencher.

564 Chloropicrin was stable in the presence of TMB, in the presence of ammonium chloride,

- and when no quencher was present (Fig. 4A). On the other hand, the concentration of
- 566 chloropicrin decreased substantially in the presence of Na_2SO_3 , ascorbic acid, and $Na_2S_2O_3$.
- 567 Na₂SO₃ and ascorbic acid led to no detectable chloropicrin after 1 day and 3 days, respectively.
- 568 Na₂S₂O₃ led to a more gradual degradation of chloropicrin, with 42% of the initial chloropicrin
- 569 concentration remaining after 7 days. Previous researchers found that dichloronitromethane was
- 570 the major transformation product of chloropicrin in the presence of Na_2SO_3 .⁴ The degradation of

- 571 chloropicrin in the presence of ascorbic acid has also been documented,⁵ but to our knowledge
- 572 the adverse impact of $Na_2S_2O_3$ on chloropicrin stability has not been previously reported.

Fig. 4. The stability of **(A)** chloropicrin, **(B)** chloroacetonitrile (MCAN), **(C)** dichloroacetonitrile (DCAN), and **(D)** trichloroacetonitrile (TCAN) in the presence of various quenchers at pH 7.0. Reaction conditions: $[DBP]_0 = 6 \mu M$, [quencher]_0 = 60 μM , [phosphate buffer]_0 = 10 mM.

573	TMB did not have any discernible effect on the stabilities of chloroacetonitriles, although
574	the effect of other quenchers depended on the identity of the DBP. Chloroacetonitrile (MCAN)
575	was stable at pH 7.0 regardless of which quencher was present (Fig. 4B). Dichloroacetonitrile
576	(DCAN) concentrations decreased by ~23% over 7 days in all reactors (Fig. 4C), ostensibly due
577	to base-catalyzed hydrolysis to form dichloroacetamide. ⁴² The presence of quenchers did not
578	have any appreciable effect on the rate of DCAN hydrolysis. Trichloroacetonitrile (TCAN) is
579	inherently unstable at pH 7.0, as evidenced by its disappearance from the control reactor within 4
580	days (Fig. 4D). Previous researchers found that TCAN undergoes base-catalyzed hydrolysis to
581	form trichloroacetamide and trichloroacetic acid. ⁴³ We observed that Na ₂ SO ₃ and ascorbic acid
582	enhanced the rate of TCAN disappearance, causing TCAN to become undetectable after 1 day
583	and 2 days, respectively. The disappearance of TCAN in the reactor containing Na_2SO_3 was
584	accompanied by the generation of DCAN (data not shown), which agrees with previous research
585	showing that TCAN is converted into DCAN in the presence of Na ₂ SO ₃ . ⁴ DCAN formation was
586	not observed when ascorbic acid was present; accordingly, the product of reaction between
587	TCAN and ascorbic acid merits further investigation.
588	TMB did not affect the stabilities of the bromoacetonitriles examined herein but certain

other quenchers did affect their stabilities. Bromoacetonitrile (MBAN) was stable in the absence of quenchers as well as in the presence of TMB, NH_4Cl , ascorbic acid, or Na_2SO_3 (**Fig. 5A**).

591 Na₂S₂O₃, however, led to a 67% decrease in [MBAN] over 7 days. No degradation products of

592 MBAN were detected using our analytical method. Dibromo-acetonitrile (DBAN) concentrations

decreased by ~15% over 7 days in the absence of quenchers (Fig. 5B), most likely due to the

594 hydrolysis of DBAN to form dibromoacetamide.⁴² TMB,

Fig. 5. The stability of **(A)** bromoacetonitrile (MBAN), **(B)** dibromoacetonitrile (DBAN), **(C)** chloral hydrate, and **(D)** tribromoacetaldehyde (TBAL) in the presence of various quenchers at pH 7.0. Reaction conditions: $[DBP]_0 = 6 \mu M$, [quencher]_0 = 60 μM , [phosphate buffer]_0 = 10 mM.

595 NH_4Cl , ascorbic acid, and $Na_2S_2O_3$ did not enhance DBAN hydrolysis. Na_2SO_3 , on the other 596 hand, caused DBAN to become undetectable within 1 day. The major degradation product was 597 previously reported to be MBAN;⁴ we observed the conversion of DBAN into MBAN in our

experiment, and mass balances (computed as [MBAN] + [DBAN]) did not vary appreciably over
7 days (data not shown).

The stability of chloral hydrate was not affected by TMB or by any of the other quenchers tested (**Fig. 5C**). Our results are in contrast with previous work showing that when ascorbic acid was present, the concentration of chloral hydrate decreased by 11% in 1 day and then decreased further by 6% after 18 days.² Low recoveries of chloral hydrate in the presence of NH₄Cl have also been reported.⁴⁴ The discrepancy between our findings and those in previous studies may be explained by differences in experimental conditions, although further investigation is warranted.

607 Tribromoacetaldehyde (TBAL), like TCAN, was inherently unstable in aqueous solutions 608 at pH 7.0 (Fig. 5D). TBAL became undetectable after 2 days in the absence of any quencher, and 609 the presence of TMB, ammonium chloride, and ascorbic acid did not affect its degradation rate 610 appreciably. In the presence of $Na_2S_2O_3$, TBAL disappeared more quickly than in the presence of 611 non-sulfur-based quenchers. When Na₂SO₃ was present, the concentration of TBAL fell below 612 the detection limit after only 10 min of reaction time. Previous researchers identified bromoform 613 as the major product of TBAL hydrolysis, although the incomplete mass balance indicated that additional products were formed.45 614

As shown in **Table 4**, $Na_2S_2O_3$, ascorbic acid, and Na_2SO_3 would not be appropriate quenchers for chloropicrin. In addition, Na_2SO_3 should not be used when analyzing DBAN, while $Na_2S_2O_3$ should be avoided for MBAN. TCAN and TBAL are inherently unstable in water at pH 7.0, so the presence of quenchers has little influence on their stabilities. TMB and NH₄Cl did not adversely affect the stabilities of any of the DBPs tested since they do not serve as facile reducing agents for organic compounds. Thus, both TMB and NH₄Cl could serve as quenchers

for free chlorine, with the caveat that NH_4Cl should only be used if the analytes of interest do not react with monochloramine (formed via free chlorine + excess NH_4Cl). When free bromine is present, using NH_4Cl to quench free halogens is not recommended due to the formation of bromamines, which are more reactive toward organic compounds than are chloramines.^{12, 13}

3.8 Chloramination of TMB. To assess whether monochloramine could interfere with the 625 626 effectiveness of TMB as a selective quencher of free chlorine, we added TMB to an aqueous 627 solution containing free chlorine and a molar excess of ammonium chloride (NH₄Cl) at pH 7.03. 628 Monochloramine formation from free chlorine + NH_4Cl should be rapid under our experimental conditions.⁴⁶ Our results show that [TMB] decreased by ~7% over 7 hours, accompanied by an 629 630 approximately stoichiometric increase in [Cl-TMB] over the same period (Fig. S11). In a control 631 reactor to which NH₄Cl-but not free chlorine-was added, no Cl-TMB was detected after 7 632 hours (data not shown). These results suggest that TMB is insufficiently nucleophilic to serve as 633 a quencher of monochloramine. If water samples are quenched with TMB and then stored for 634 more than \sim 7 hours before analysis, however, the presence of monochloramine could lead to 635 overestimation of free chlorine concentrations due to the formation of Cl-TMB from 636 chloramination of TMB. Bromamines are anticipated to react more rapidly with TMB relative to 637 chloramines; the potential utility of TMB as quencher of bromamines merits further investigation.12,13 638

639 4. Conclusions

A novel method was developed for using TMB to quench free chlorine and free bromine.
TMB proved effective as a quencher for chlorination and bromination kinetic experiments for a
diverse set of organic compounds. TMB did not affect the stabilities of eight examined DBPs.

643	TMB is quantitatively converted into Cl-TMB and Br-TMB when present in sufficient (\geq 2-fold
644	molar) excess relative to free chlorine and free bromine, respectively. For the chlorination of 2,4-
645	dichlorophenol (2,4-DCP), there was no significant difference in the experimental pseudo-first-
646	order rate constants (k_{obs}) for reactions quenched with TMB versus those quenched with
647	$Na_2S_2O_3$. For the bromination of anisole, experimental k_{obs} values with TMB as the quencher
648	agreed with values predicted for reactions quenched with $Na_2S_2O_3$. Good agreement between k_{obs}
649	values obtained with TMB versus thiosulfate as a quencher were also obtained for chlorination
650	and bromination kinetic experiments involving dimethenamid-P. Therefore, although TMB does
651	not react with free chlorine as quickly as do traditional quenchers, TMB is able to serve as an
652	effective quencher for halogenation reactions with half-times ≥ 0.5 min.
653	TMB did not degrade DBPs that were otherwise unstable in the presence of traditional
654	quenchers. Ammonium chloride similarly did not destabilize the examined DBPs, but its utility
655	as a quencher is limited to analytes that would not react with monochloramine. Using TMB as a
656	quencher offers the additional benefit of being able to quantify residual free chlorine and free
657	bromine via measurements of [Cl-TMB] and [Br-TMB], respectively, in quenched samples.
658	Because Cl-TMB and Br-TMB can contribute to the total organic halogen (TOX) content of
659	quenched samples, TMB would not be a suitable free halogen quencher in samples subjected to
660	subsequent TOX analysis. Although chloramination of TMB is much slower than are reactions of
661	TMB with free chlorine, the presence of chloramines in water samples could interfere with the
662	use of Cl-TMB as surrogate for residual free chlorine if the quenched samples were not analyzed
663	within a few hours of quenching. The applicability of TMB as a quencher in reactions aimed at

664 quantifying classes of DBPs not examined herein (e.g., iodinated DBPs⁴⁷) merits future

665 examination.

666 Acknowledgements

- 667 The authors gratefully acknowledge the efforts of the anonymous peer reviewers; their comments
- substantially strengthened this manuscript. Funding to A. L. R. and S. S. L. was received from
- the U.S. National Science Foundation (CBET-1067391) with additional support to S. S. L. from
- 670 the Whiting School of Engineering at Johns Hopkins University. Funding to J. D. S. was
- 671 received from the ACS Petroleum Research Fund (54560-UNI4) and the U.S. National Science
- 672 Foundation (CBET-1651536). Funding to J. D. S. and K. P. R. was received from Jess and
- 673 Mildred Fisher Endowed Professorships. Funding to R. P. D., K. R. M., and M. H. S. was
- 674 received from the Fisher College of Science and Mathematics and the Office of Undergraduate
- 675 Research and Creative Inquiry at Towson University. Any views reported herein are those of the
- authors and do not necessary reflect the views of the U.S. National Science Foundation or the
- 677 ACS Petroleum Research Fund.

678 **References**

- J. C. Crittenden, R. R. Trussell, D. W. Hand, K. J. Howe and G. Tchobanoglous, *MWH's Water Treatment: Principles and Design* John Wiley & Sons, Hoboken, New Jersey, 3rd
 edn., 2012.
- E. T. Urbansky, Ascorbic acid treatment to reduce residual halogen-based oxidants prior
 to the determination of halogenated disinfection byproducts in potable water, *J. Environ. Monit.*, 1999, 1, 471-476.
- Black & Veatch Corporation. White's Handbook of Chlorination and Alternative
 Disinfectants, Wiley, Hoboken, NJ, 5th edn., 2010.
- 4. J.-P. Croue and D. A. Reckhow, Destruction of chlorination byproducts with sulfite, *Environ. Sci. Technol.*, 1989, 23, 1412-1419.
- 5. I. Kristiana, A. Lethorn, C. Joll and A. Heitz, To add or not to add: The use of quenching agents for the analysis of disinfection by-products in water samples, *Water Res.*, 2014,
 59, 90-98.

692	6.	M. Bedner and W. A. MacCrehan, Transformation of acetaminophen by chlorination
693		produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine, <i>Environ</i> .
694		Sci. Technol., 2006, 40, 516-522.
695	7.	T. P. Wood, A. E. Basson, C. Duvenage and E. R. Rohwer, The chlorination behaviour
696		and environmental fate of the antiretroviral drug nevirapine in South African surface
697		water, <i>Water Res.</i> , 2016, 104 , 349-360.
698	8.	Y. Yu and D. A. Reckhow, Formation and occurrence of <i>N</i> -chloro-2,2-
699		dichloroacetamide, a previously overlooked nitrogenous disinfection byproduct in
700		chlorinated drinking waters, Environ. Sci. Technol., 2017, 51, 1488-1497.
701	9.	M. C. Dodd and C. H. Huang, Transformation of the antibacterial agent sulfamethoxazole
702		in reactions with chlorine: Kinetics, mechanisms, and pathways, <i>Environ. Sci. Technol.</i> ,
703		2004. 38, 5607-5615.
704	10.	H. Cheng, D. Song, Y. Chang, H. Liu and J. Ou, Chlorination of tramadol: reaction
705		kinetics, mechanism and genotoxicity evaluation. <i>Chemosphere</i> , 2015, 141 , 282-289.
706	11.	V. L. Heasley, A. M. Fisher, E. E. Herman, F. E. Jacobsen, E. W. Miller, A. M. Ramirez,
707		N. R. Rover, J. M. Whisenand, D. L. Zoetewev and D. F. Shellhamer, Investigations of
708		the reactions of monochloramine and dichloramine with selected phenols: Examination of
709		humic acid models and water contaminants. <i>Environ. Sci. Technol.</i> , 2004, 38 , 5022-5029.
710	12.	S. E. Duirk and R. L. Valentine. Bromide oxidation and formation of dihaloacetic acids
711		in chloraminated water. Environ. Sci. Technol., 2007, 41, 7047-7053.
712	13.	M. B. Heeb, I. Kristiana, D. Trogolo, J. S. Arev and U. Von Gunten, Formation and
713		reactivity of inorganic and organic chloramines and bromamines during oxidative water
714		treatment, <i>Water Res.</i> , 2017, 110 , 91-101.
715	14.	A. D. Shah, ZQ. Liu, E. Salhi, T. Höfer and U. von Gunten, Peracetic acid oxidation of
716		saline waters in the absence and presence of H_2O_2 : Secondary oxidant and disinfection
717		byproduct formation, Environ. Sci. Technol., 2015, 49, 1698-1705.
718	15.	A. D. Shah, ZO. Liu, E. Salhi, T. Höfer, B. Werschkun and U. von Gunten, Formation
719		of disinfection by-products during ballast water treatment with ozone, chlorine, and
720		peracetic acid: influence of water quality parameters, Environ. Sci. Water Res. Technol.,
721		2015, 1, 465-480.
722	16.	J. D. Sivey and A. L. Roberts, Assessing the reactivity of free chlorine constituents Cl ₂ ,
723		Cl ₂ O, and HOCl toward aromatic ethers, <i>Environ. Sci. Technol.</i> , 2012, 46 , 2141-2147.
724	17.	A. N. Mayeno, A. J. Curran, R. L. Roberts and C. S. Foote, Eosinophils preferentially use
725		bromide to generate halogenating agents, J. Biol. Chem., 1989, 264, 5660-5668.
726	18.	E. V. Anslyn and D. A. Dougherty, Modern Physical Organic Chemistry, University
727		Science, Sausalito, CA, 2005.
728	19.	M. Deborde and U. von Gunten, Reactions of chlorine with inorganic and organic
729		compounds during water treatment - Kinetics and mechanisms: A critical review, Water
730		<i>Res.</i> , 2008, 42 , 13-51.
731	20.	S. S. Lau, S. M. Abraham and A. L. Roberts, Chlorination Revisited: Does Cl ⁻ Serve as a
732		Catalyst in the Chlorination of Phenols?, Environ. Sci. Technol, 2016, 50, 13291-13298.
733	21.	J. D. Sivey, J. S. Arey, P. R. Tentscher and A. L. Roberts, Reactivity of BrCl. Br ₂ .
734		BrOCl, Br ₂ O, and HOBr toward dimethenamid in solutions of bromide + aqueous free
735		chlorine, Environ. Sci. Technol., 2013, 47, 1330-1338.

736 737 738	22.	J. D. Sivey, M. A. Bickley and D. A. Victor, Contributions of BrCl, Br ₂ , BrOCl, Br ₂ O, and HOBr to regiospecific bromination rates of anisole and bromoanisoles in aqueous solution, <i>Environ</i> , <i>Sci. Technol.</i> , 2015, 49 , 4937-4945.
739 740 741	23.	J. D. Sivey, C. E. McCullough and A. L. Roberts, Chlorine monoxide (Cl ₂ O) and molecular chlorine (Cl ₂) as active chlorinating agents in reaction of dimethenamid with aqueous free chlorine. <i>Environ Sci. Technol.</i> 2010, 44, 3357-3362
742 743 744	24.	 E. W. Rice, R. B. Baird, L. S. Clesceri and A. D. Eaton, <i>Standard Methods for the Examination of Water and Wastewater</i>, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., 22nd edn.,
745		2012.
746	25.	S. H. Joo and W. A. Mitch, Nitrile, aldehyde, and halonitroalkane formation during
747 748		chlorination/chloramination of primary amines, <i>Environ. Sci. Technol.</i> , 2007, 41 , 1288-
740	26	M P. Hash I. Criquet S. Zimmermann Staffons and U. von Cunton Promine
750	20.	production during oxidative water treatment of bromide-containing waters and its
751		reactions with inorganic and organic compounds – A critical review, <i>Water Res.</i> , 2014,
752		48 , 15-42.
753	27.	M. A. Broadwater, T. L. Swanson and J. D. Sivey, Emerging investigators series:
754		comparing the inherent reactivity of often-overlooked aqueous chlorinating and
755		brominating agents toward salicylic acid, Environ. Sci.: Water Res. Technol., 2018, 4,
756		369-384.
757	28.	US EPA, Estimation Programs Interface Suite TM for Microsoft [®] Windows, v 4.11, U.S.
758		Environmental Protection Agency, Washington, DC, 2014.
759	29.	JZ. Zhang and F. J. Millero, The rate of sulfite oxidation in seawater, <i>Geochim</i> .
760		Cosmochim. Acta, 1991, 55 , 677-685.
761	30.	H. Gallard and U. Von Gunten, Chlorination of phenols: Kinetics and formation of
762		chloroform, Environ. Sci. Technol., 2002, 36, 884-890.
763	31.	Z. Qiang and C. D. Adams, Determination of monochloramine formation rate constants
764		with stopped-flow spectrophotometry, <i>Environ. Sci. Technol.</i> , 2004, 38 , 1435-1444.
765	32.	J. E. Wajon and J. C. Morris, Rates of formation of N-bromo amines in aqueous solution,
766		Inorg. Chem., 1982, 21 , 4258-4263.
767	33.	D. I. Pattison, C. L. Hawkins and M. J. Davies, What are the plasma targets of the
768		oxidant hypochlorous acid? A kinetic modeling approach, <i>Chem. Res. Toxicol.</i> , 2009, 22,
769	2.4	807-817.
770	34.	O. Skaff, D. I. Pattison and M. J. Davies, Kinetics of hypobromous acid-mediated
771		oxidation of lipid components and antioxidants, <i>Chem. Res. Toxicol.</i> , 2007, 20, 1980-
772	25	
113	35.	K. D. Fogelman, D. M. Walker and D. W. Margerum, Nonmetal redox kinetics:
774 775		nypochlorite and hypochlorous acid reactions with sulfite, <i>Inorg. Chem.</i> , 1989, 28, 986- 993.
776	36.	R. C. Troy and D. W. Margerum, Non-metal redox kinetics: hypobromite and
777		hypobromous acid reactions with iodide and with sulfite and the hydrolysis of
778		bromosulfate, Inorg. Chem., 1991, 30, 3538-3543.
779	37.	Y. Hu, G. Xie and D. M. Stanbury, Oxidations at sulfur centers by aqueous hypochlorous
780		acid and hypochlorite: Cl ⁺ versus O atom transfer, <i>Inorg. Chem.</i> , 2017, 56 , 4047-4056.

38.	M. Eigen and K. Kustin, The kinetics of halogen hydrolysis, J. Am. Chem. Soc., 1962, 84,
	1355-1361.
39.	Q. Liu and D. W. Margerum, Equilibrium and kinetics of bromine chloride hydrolysis,
	Environ. Sci. Technol., 2001, 35 , 1127-1133.
40.	H. A. Liebhafsky, The equilibrium constant of the bromine hydrolysis and its variation
	with temperature, J. Am. Chem. Soc., 1934, 56, 1500-1505.
41.	E. A. Voudrias and M. Reinhard, Reactivities of hypochlorous and hypobromous acid,
	chlorine monoxide, hypobromous acidium ion, chlorine, bromine, and bromine chloride
	in electrophilic aromatic substitution reactions with <i>p</i> -xylene in water, <i>Environ. Sci.</i>
	<i>Technol.</i> , 1988, 22 , 1049-1056.
42.	S. W. Krasner, H. S. Weinberg, S. D. Richardson, S. J. Pastor, R. Chinn, M. J. Sclimenti,
	G. D. Onstad and A. D. Thruston, Occurrence of a new generation of disinfection
	byproducts, Environ. Sci. Technol., 2006, 40, 7175-7185.
43.	Y. Yu and D. A. Reckhow, Kinetic analysis of haloacetonitrile stability in drinking
	waters, Environ. Sci. Technol., 2015, 49, 11028-11036.
44.	U. S. EPA, Method 551.1: Determination of Chlorination Disinfection Byproducts,
	Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by
	Liquid-Liquid Extraction and Gas Chromatography With Electron-Capture Detection,
	1995, Revision 1.0.
45.	B. K. Koudjonou and G. L. LeBel, Halogenated acetaldehydes: Analysis, stability and
	fate in drinking water, Chemosphere, 2006, 64, 795-802.
46.	Z. Qiang and C. D. Adams, Determination of monochloramine formation rate constants
	with stopped-flow spectrophotometry, Environ. Sci. Technol., 2004, 38, 1435-1444.
47.	T. Gong, Y. Tao and Q. Xian, Selection and applicability of quenching agents for the
	analysis of polar iodinated disinfection byproducts, Chemosphere, 2016, 163, 359-365.
	 38. 39. 40. 41. 42. 43. 44. 45. 46. 47.

Graphical Abstract

1,3,5-Trimethoxybenzene can be used to quench residual chlorine and bromine without altering disinfection byproducts that are reactive toward traditional quenchers.