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The story of machine learning in general, and its application to molecular design in particular, has been a

tale of evolving representations of data. Understanding the implications of the use of a particular

representation – including the existence of so-called ‘activity cliffs’ for cheminformatics models – is the

key to their successful use for molecular discovery. In this work we present a physics-inspired

methodology which exploits analogies between model response surfaces and energy landscapes to richly

describe the relationship between the representation and the model. From these similarities, a metric

emerges which is analogous to the commonly used frustration metric from the chemical physics

community. This new property shows state-of-the-art prediction of model error, whilst belonging to a

novel class of roughness measure that extends beyond the known data allowing the trivial identification of

activity cliffs even in the absence of related training or evaluation data.

1 Introduction

The ability to use chemical information to accelerate
discovery tasks is underpinned by the existence of structure–
property relationships.1–4 These relationships allow
molecular space to be systematically explored to locate novel
molecules with desirable properties. Recent advances in
machine learning have enabled the identification of these
relationships from ever-increasing sources of data through
the construction of data-driven models.

One important quantity for rationalising structure–
property relationship accuracy is roughness. Rougher
surfaces contain a greater number of large property
differences between molecules close in space, which are
known as activity cliffs.5,6 Such activity cliffs are challenging

to replicate in regression models, leading to degradation in
model performance, which can manifest in poor outcomes
when used for discovery tasks. Consequently, the
modellability of molecular datasets, and indeed the utility of
derived representations, can be related to the roughness of a
molecular property landscape.

The roughness of a property landscape depends upon the
dataset, but also crucially on the molecular representation,
which is key to determining the similarity between any given
pair of molecules. Since smooth surfaces place molecules
with similar property values and locally similar
representations close in space, there is a direct link between
the representation and the resulting smoothness. There are
various common representations that have been used in
structure–property relationships such as strings (SMILES7

and SELFIES8), binary fingerprints,9 physico-chemical
descriptors, and recently latent space models based on
variational autoencoders.10 A key aim of molecular
representations is the production of smooth molecular
landscapes, which allow the construction of accurate
structure–property relationships.11–13

Due to its correlation with modellability there have been
various attempts to quantify roughness. Popular metrics
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Design, System, Application

Machine learning has become deeply integrated within molecular design and optimization and a key component of their success has been the richness of
generated molecular representations. When building systems which utilise machine-learning to accelerate molecular discovery, understanding the interplay
between the representation and the model is key to its optimal configuration. Our new methodology allows, for the first time, the quantification of this
interplay, even in regions in which data does not yet exist. Additionally, we are able to effortlessly locate activity cliffs which lie, often hidden, within a
model and are a significant challenge to model-based molecular design. Whilst this paper primarily demonstrates the utility on datasets from the
therapeutic design community, the underlying approach applies broadly to molecular design, and indeed also model-driven optimization approaches.

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
M

ar
t 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

8.
06

.2
02

4 
18

:1
4:

32
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/d3me00189j&domain=pdf&date_stamp=2024-05-03
http://orcid.org/0000-0002-5278-4412
http://orcid.org/0000-0003-1250-3329
http://orcid.org/0000-0001-5148-4437
http://orcid.org/0000-0002-8271-8723
http://orcid.org/0000-0002-8232-8282
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3me00189j
https://pubs.rsc.org/en/journals/journal/ME
https://pubs.rsc.org/en/journals/journal/ME?issueid=ME009005


450 | Mol. Syst. Des. Eng., 2024, 9, 449–455 This journal is © The Royal Society of Chemistry and IChemE 2024

include the structure–activity landscape index (SALI),14

structure–activity relationship index (SARI)15 and the
modellability index (MODI) as applicable to both
classification16 and regression tasks.17 Recently, the
roughness index (ROGI)18,19 was developed to measure
dataset roughness with respect to machine learning
predictive performance. This measure captures the roughness
in a single scalar value that correlates strongly with the
regression model performance for a wide range of molecular
regression tasks.

Whilst current methods utilise information which is derived
from surface topography, to date the topography itself has not
been directly accessed. Direct exploration and analysis of
topography, however, is routinely performed in the chemical
physics community, in particular for the characterization of
potential energy landscapes.20 Recently, this methodology has
been extended by some of the authors to selected tasks in
machine learning such as clustering,21 and hyperparameter
tuning in Gaussian processes,22 for which we point interested
readers to a recent tutorial review.23

In this contribution, we develop a novel roughness
measure inspired by the similarities between model response
surfaces and energy landscapes. We describe a method for
representing discrete molecular datasets as a continuous
surface and encoding the surface topography as a weighted
graph. From the resulting graph we propose an adapted
frustration metric as a roughness measure for structure–
property relationships. Such a frustration metric directly
accesses the topography across the full molecular space,
unlike previous methods which are limited to the discrete
data point evaluations. We illustrate its strong correlation
with modellability for a wide range of structure–property
relationships, and highlight that the metric can be
decomposed to report on local roughness even outside of
known data.

2 Methods
2.1 Topographical mapping

Surface topography was analysed using the energy landscape
framework.24 This framework decomposes surfaces into their
stationary points, which are separated into minima (only
positive eigenvalues of the Hessian matrix) and transition
states (a single negative eigenvalue of the Hessian matrix).
Each transition state connects the two minima obtained by
steepest-descent paths along the eigenvector corresponding
to the negative eigenvalue, and is the maximum on the
lowest-valued path between them.25 Therefore, transition
states provide important information about intermediate
regions of a surface between its local minima.

All minima were enumerated using random initialisation
and minimisation. Transition states were located between all
known local minima using the nudged elastic band
algorithm26 paired with hybrid-eigenvector following.27 We
represent the resultant set of transition states and their
connected minima as a weighted graph, where each

minimum is a node and edges exist between any pair of
minima directly connected by a transition state.28 Encoding
of topography as a graph allows application of a suite of
analysis tools to understand spatial properties, even for
abstract cost function surfaces.29

Application of the energy landscape framework requires a
continuous surface. Therefore, we cannot estimate
topography based only on the discrete property values
associated with molecular datasets. We construct a
continuous representation of the dataset via radial basis
function interpolation30 with a thin-plate kernel. We specify
the smoothness as 10−5 throughout to ensure a faithful
description of the dataset. This choice of smoothness
parameter forces an almost exact fit of the interpolating
function to all known data, whilst alleviating fitting issues in
datasets with severe activity cliffs. Interpolation produces a
continuous smooth function, which can be queried at any
point in molecular space. We construct the convex hull
around the data via Deluanay triangulation and remove any
minima outside this polygon to retain only the region of
space in which we interpolate the dataset. We provide an
illustration of the topographical encoding in Fig. 1.

2.2 Roughness measure

From the weighted graph we can compute many possible
measures that probe different topographical features. Here, we
compute the frustration metric,31 which is designed to capture
topographical roughness in chemical physics applications, and
adapt it to report on molecular property surface roughness.
The modified metric has the functional form

Fj ¼
XM
i

pij f †i − f j
� �

; (1)

which requires specification of a reference minimum, j, relative
to which frustration is measured. fj denotes the function value
at this reference minimum. f †i denotes the energy at a
connected transition state, i, and the sum proceeds over all M
edges connected to node j in the network.

In chemical physics pij denotes the equilibrium
population of a specified minimum i, which is related to
both the energy and width of the minimum.32 The
population simply provides an appropriate reweighting of the
frustration contributions, and we replace it with a distance-
based measure that reflects the proximity of local minima.
The closer two separate minima are the more relevance they
have for roughness so we specify the weighting by a radial
basis function kernel

pij ¼ exp − d xi; xj
� �2
2l2

 !
: (2)

d(xi, xj) is the Euclidean distance between specified
minima and l is the lengthscale that determines the range of
influence of local minima. The lengthscale was specified as
0.8 in this work through calibration on representative
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functions, as described in the Results. An absolute value of
the distance can be specified here due to normalisation of
the feature space to lie in the range (0, 1).

In molecular science the reference minimum is almost
always the global minimum, but in this application the
roughness at high function values is equally as important for
model error. Therefore, we compute the average frustration
metric with each minimum in the network used as the
reference

F ¼ 1
N

XN
j

Fj; (3)

where N is the number of minima in the network.
To estimate roughness for high-dimensional spaces we

compute the frustration metric for each combination of
feature pairs by extracting the data in the two specified
dimensions, with the associated response values. Low-

dimensional representations allow for more accurate
interpolation models and limit the effect of monotonic
dimensions. A single such dimension poses a significant
challenge to this methodology by removing minima in all
positions apart from the bounds, which leads to loss of
information in higher dimensions. Therefore, the final
roughness measure is the average over all feature pairs

~F ¼ 2
n n − 1ð Þ

Xn − 1
a

Xn
b>a

Fab; (4)

where n is the total number of features.
The frustration metric is one example of many such

measures that can be derived from the weighted graph
encoding of surface topography. All methods derived from
these weighted graphs capture different information from
existing roughness metrics. Current roughness measures
depend only upon the dataset values, but these landscape-
based methods report on the varying curvature of the
function across all feature space.

2.3 Structure–property relationships

To demonstrate how this method can impact molecular
design, we apply it to the analysis of machine learning
models for therapeutic discovery. These models are built
from molecular datasets extracted from the Guacamol33 and
Therapeutics Data Commons (TDC)34 property databases.
Datasets were generated by randomly sampling 500, 1000 or
2000 molecules from each database. The specific tasks
chosen from these datasets are shown in Table 1. Both the
property values and the training data were normalised
throughout, and to avoid numerical problems associated with

Fig. 1 Example topographical representation of a discrete dataset. In
this example, the underlying function is aripiprazole similarity
computed for x as logP and y as fraction of SP3 carbons. Top – The
initial dataset, with each data point coloured by the corresponding
property value. Bottom – The interpolating function with the same
range of property values. The minima and transition states of this
interpolation are given by the green and red circles, respectively. The
connectivity between minima and transition states is denoted by solid
black lines.

Table 1 Tasks selected for method validation. The source of the tasks
is either from the Guacamol benchmark set (GM) and Therapeutic Data
Commons (TDC). The task short name used by the relevant
benchmarking case is given, allowing the reader to link the task directly
to the source. Tasks with the suffix ‘MPO’ designate tasks where the
score is derived for a multi-parameter optimization task. Both GM and
TDC are commonly used for method validation for molecular
therapeutic data

Task short name Task source

Aripiprazole_Similarity GM
CaCO2_Wang TDC
Celecoxib_Rediscovery GM
Clearance_Hepatocyte_AZ TDC
Clearance_Microsome_AZ TDC
Fexofenadine_MPO GM
Half_Life_Obach TDC
HydrationFreeEnergy_FreeSolv TDC
LD50_Zhu TDC
Lipophilicity_AstraZeneca TDC
Median 1 GM
Osimertinib_MPO GM
PPBR_AZ TDC
Ranolazine_MPO GM
Scaffold hop GM
Solubility_AqSolDB TDC
VDss_Lombardo TDC

MSDE Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
M

ar
t 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

8.
06

.2
02

4 
18

:1
4:

32
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3me00189j


452 | Mol. Syst. Des. Eng., 2024, 9, 449–455 This journal is © The Royal Society of Chemistry and IChemE 2024

the interpolation we removed any data points within 10−4 of
each other in feature space.

The molecular representation used throughout was the 14
physico-chemical descriptors selected in Aldeghi et al.18

These descriptors are molecular weight, fraction of sp3

centres, number of hydrogen bond donors and acceptors,
number of NHOH and NO groups, number of aliphatic rings,
number of aliphatic heterocycles, number of aromatic
heterocycles, number of aromatic rings, number of rotatable
bonds, polar surface area, quantitative estimate of
druglikeness and log P, all of which were computed given the
SMILES string by RDKit.35 Several of the descriptors are
discrete (e.g. fraction of sp3 centres), but we allow them to
vary continuously within the interpolation model. The
molecular description will exhibit varying modellability
across the properties and is not intended to be a good
representation for all given properties.

We produced datasets for 17 different molecular
properties with varying dataset size and dimensionality.
Datasets with lower dimensionality were generated by
randomly selecting subsets of the 14 original descriptors. For
the complete 14 descriptors we extracted datasets composed
of 1000 and 2000 molecules. For the feature subsets (6 or 10
descriptors) we sampled datasets of both 500 and 1000 data
points. The dataset generation resulted in 102 distinct
structure–property relationships, which we use to validate the
roughness measure.

To maintain consistency with the current state of the art
methods,18,19 we assess the strength of the structure–property
relationships via a neural network regression model, as
implemented in sklearn.36 The prediction error was
computed as the average root mean squared error from five-
fold cross validation, further averaged over four models
generated by different random seeds. The model error can be
considered a good surrogate for modellability in these
applications, and the performance of one regression model
can be largely correlated with the performance of others.18

3 Results

First, we analyse a wide range of two-dimensional surfaces to
highlight the key features of the frustration metric. We
calibrate the population lengthscale within the frustration
computation for these range of topologies. After showing its
utility across a range of low-dimensional examples we apply
the methodology to a range of structure–property
relationships and correlate the frustration metric with the
regression model error to validate its use as a surrogate for
dataset modellability.

3.1 Two-dimensional surfaces

We initially computed the frustration metric for a diverse set
of smooth two-dimensional functions. Application of the
methodology to low-dimensional examples with a variety of
topologies allows us to parameterise the frustration metric
and evaluate its correlation with model error. Random

functions were generated through summation of multiple
individual Gaussians as

f xð Þ ¼ −
Xn
i

ci·exp − d x; xið Þ2
li
2

� �
: (5)

n is the number of Gaussians, each of which is given a
random centre, xi, in the range (0, 1). Their width and depth are
controlled by li and ci, respectively. Different combinations of
these parameters can significantly modify the surface
roughness, and we produced a range of datasets with all
combinations of parameters: n ∈ (10, 20, 30, 40), l ∈ (0.05, 0.10,
0.15, 0.25) and c ∈ (0.25, 0.50, 75). Each individual ci and li took
a random number distributed between 0 and c or l, respectively.
We generated two datasets for each of these parameter sets with
500 or 1000 data points within the normalised feature space x, y
∈ (0, 1). We subsequently normalised the response to f ∈ (0, 1).

For all datasets we computed both the frustration metric
and the neural network model error. An appropriate
lengthscale for the population, pij, is not known so we
computed the frustration at varying lengthscales, allowing
the computation to consider progressively larger regions of
feature space. We evaluated the quality of a linear fit between
frustration and model error at each of these parameter
choices in Fig. 2 to determine an appropriate lengthscale for
use in structure–property relationships.

We observe that the correlation sharply increases with
lengthscale before largely plateauing. The lengthscale that
produces the strongest correlation between frustration and
model error is 0.8, and after this value there is a small
reduction in correlation. However, longer lengthscales do not
significantly degrade correlation, indicating that additional
curvature information from further across the feature space
ceases to add relevant information for predicting model error.
The optimal lengthscale itself is quite large relative to the
normalised feature space xi ∈ (0, 1), which illustrates that large
regions of curvature change remain relevant for model fitting.
Given a normalised feature range and response, f ∈ (0, 1), we
can specify the same lengthscale (l = 0.8) for all other
normalised functions, such as structure–property relationships.

The relation between frustration and model error at l = 0.8
is shown in Fig. 2. There is a strong positive relationship
between the frustration and the model error as evidenced by
the Pearson correlation coefficient, r = 0.69. There remain
significant fluctuations about the line of best fit, which is
expected for such a wide range of surface topologies and
dataset sizes. However, the presence of a strong correlation
highlights this simple geometric representation of roughness
contains much of the information needed to describe model
error, and is applicable for datasets with a wide range of sizes
and properties simultaneously.

3.2 Structure–property relationships

We apply the same methodology to a wide selection of
structure–property relationships, the selection of which is
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described in sec. 2.3. We compute the averaged frustration
metric, F̃, for all molecular regression tasks and compare
with the root mean squared error for the neural network
model. The regression model performance is a key property
for structure–property relationships, reflecting the accuracy
with which the model makes predictions across the complete
molecular space. We present the correlation of frustration
with model performance in Fig. 3.

We observe that there is a very strong linear correlation
(Pearson r = 0.89) between model performance and the
frustration metric across this wide selection of structure–
property relationships. Such a strong correlation shows that
the modellability of datasets can be accurately decomposed in
terms of the surface topography through the frustration
metric. Furthermore, we observe that the correlation is
significantly stronger than the simple two-dimensional
example surfaces analysed in the previous section. The range
of surface topographies exhibited by the structure–property
relationships is likely less varied than those generated in the
previous section, and averaging over two-dimensional cuts
may better capture the roughness of a single surface.

We provide a direct comparison of common roughness
measures for these selected structure–property relationships
in Table 2. The frustration metric produces modellability
predictions comparable with ROGI, and significantly better
than MODI. Both the frustration metric and ROGI give very
strong correlations for the datasets taken from the TDC
database. The modellability of datasets taken from GuacaMol
is more challenging to capture and both frustration and
ROGI show a weaker correlation. However, both still show a
strong positive linear correlation, with ROGI showing slightly
better performance for these examples. It is worth noting that
the outliers for the frustration metric are largely localised to
two particular structure–property relationships
(Osimertinib_MPO and PPBR). In the absence of these SPRs
the Pearson correlation coefficient grows significantly to r =
0.95, and future work aims to identify the dataset features
that pose a challenge to this methodology.

Both ROGI and MODI, like all common roughness
measures, explicitly use only known data points in the

roughness computation. Instead, the frustration metric, after
construction of the interpolated surfaces, does not explicitly

Fig. 2 Left – The Pearson correlation coefficient between frustration and model error for varying population lengthscale for the synthetically
generated 2D tasks. Right – The correlation between frustration and model error for the optimal lengthscale l = 0.8. The line of best fit is given in
blue, along with the associated Pearson correlation coefficient.

Fig. 3 Top – Correlation between frustration and model error for a
variety of structure–property relationships. The line of best fit is given in
black, with the associated Pearson correlation coefficient. Data points are
color coded to indicate the source of the tasks, blue represents
Therapeutic Data Commons, and red GuacaMol. Bottom – The same
data, but with different dataset sizes and dimensionalities highlighted.
The line of best fit is given for each subset of the data separately. For
clarity, in this plot data points are not separated by task source.
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use the known data in the roughness computation. The
roughness is computed only from stationary points, across
the full feature space, that will be unlikely to lie at any known
data points (and may lie significantly outside). It is worth
noting that, for this novel class of method, performance
comparable with ROGI is even more impressive given the test
data is only implicitly considered. Therefore, the frustration
metric provides an alternative and complementary approach
to estimating the modellability of a given molecular
representation, and there are several reasons such a
topographical metric provides additional advantages.

The global frustration metric can be decomposed into
local contributions to the sum, from which we can easily
locate features such as activity cliffs. Large barriers, ( f †i − fj),
over small distances correspond to activity cliffs, and this
method directly identifies these features through large
individual contributions to the frustration, pij( f

†
i − fj).

Therefore, because the method directly maps topography,
such features become trivial to locate and, importantly, these
features can be predicted even in the absence of associated
data. The ability to make predictions of activity cliffs within
unexplored regions of feature space provides significant
utility over existing methods. Moreover, we can associate
roughness with a particular minimum, which reports on the
model error within a given basin of attraction, or particular
features, which can highlight how to improve molecular
representations for a given task.

Furthermore, we observe that using this frustration
measure all the varied datasets exhibit a single relationship
with the model error. We do not need to distinguish the
dimensionality, number of data points or data source, as
shown in Fig. 3. The linear relationship is strongly conserved
for the six different dataset properties, along with their
individual Pearson correlation coefficients. Therefore, this
method can faithfully compare datasets of different size and
dimensionality, which provides significant utility in real-
world examples where these properties can vary widely.

4 Conclusions

In this work we presented a novel method for computing the
roughness of molecular property landscapes. This physics-
inspired approach reduces the topography of the structure–
property surface into a weighted graph. The graph
representation reports on topographical information that was

previously inaccessible and we propose a roughness measure
that incorporates all this information. We exploited similarities
between the energy landscape concept from chemical physics
and response surfaces from machine learning to develop an
analogous frustration metric, which we applied to this novel
application by changing the functional form to report on
modellability. We also present a parameterisation that allows
application of this methodology to any other normalised surface.

We demonstrated that this metric accurately captures the
modellability of structure–property relationships through a
strong correlation with regression performance; r = 0.89 with
over 100 different regression tasks. The prediction of model
error using the frustration metric is comparable to state-of-
the-art methods, such as ROGI, allowing the appropriateness
of a molecular representation to be evaluated before training
a machine learning model. Our graph-based methodology,
despite showing similar predictive ability, approaches
roughness from a different perspective to existing methods
by analysing the full feature space beyond the known data
points. Whilst the inclusion of the full feature space results
in a higher computational cost than methods such as ROGI
and MODI, the computational cost is by no means
prohibitive. We believe that the benefits of this approach -
namely its unique ability to be applied beyond the original
training data – justify the expense.

Such strong predictive ability shown by the frustration
metric is very promising, especially as graph-based methods
provide additional advantages. These methods can attribute
roughness to particular features and local regions of feature
space, allowing straightforward determination of activity cliffs
from the frustration metric. Each edge in the graph represents
a direction in which the surface increases to the specified
transition state value, which are activity cliffs if they have a
large barrier size and small distance. The ability to locate
activity cliffs, even outside of the known data is very valuable
for understanding modellability and has broad impact within
the chemical informatics communities – especially materials
and drug discovery. Furthermore, the frustration metric allows
comparison between datasets of varying size and
dimensionality, which further extends its applicability.

We propose that this novel class of topographical roughness
metric can provide a valuable tool for analysing molecular
dataset modellability. It provides comparable predictive ability
to current state-of-the-art, whilst making its predictions from
regions outside the known data. This topographical
information was previously inaccessible and we highlight how
it can be used to easily locate activity cliffs, even in the absence
of data. There are many alternative roughness metrics that can
be derived from the proposed topographical description and
we believe that this work forms an enlightening route for
further modellability research.

Data availability

The code used to generate the results presented in this work
is freely available at https://github.com/IBM/topography-

Table 2 Comparison of correlation, as measured by the Pearson
correlation coefficient, between roughness measure and model error for
the frustration metric and two other prominent roughness measures. We
distinguish the data source (Therapeutics Data Commons or GuacaMol)
in the analysis

Roughness measure TDC GuacaMol Combined

Frustration 0.95 0.64 0.89
ROGI 0.99 0.76 0.95
RMODI 0.69 0.34 0.58
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searcher. Illustrative examples for the roughness applications
are given within the same repository. The molecular datasets
analysed in this publication were generated from the publicly
available notebook https://github.com/coleygroup/rogi-
results/blob/main/regression.ipynb.
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