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A survey on molecular-scale learning systems with
relevance to DNA computing

Rajiv Teja Nagipogu, *† Daniel Fu *† and John H. Reif

DNA computing has emerged as a promising alternative to achieve programmable behaviors in chemistry

by repurposing the nucleic acid molecules into chemical hardware upon which synthetic chemical pro-

grams can be executed. These chemical programs are capable of simulating diverse behaviors, including

boolean logic computation, oscillations, and nanorobotics. Chemical environments such as the cell are

marked by uncertainty and are prone to random fluctuations. For this reason, potential DNA-based mole-

cular devices that aim to be deployed into such environments should be capable of adapting to the sto-

chasticity inherent in them. In keeping with this goal, a new subfield has emerged within DNA computing,

focusing on developing approaches that embed learning and inference into chemical reaction systems. If

realized in biochemical contexts, such molecular machines can engender novel applications in fields such

as biotechnology, synthetic biology, and medicine. Therefore, it would be beneficial to review how

different ideas were conceived, how the progress has been so far, and what the emerging ideas are in this

nascent field of ‘molecular-scale learning’.

1. Introduction

Learning and adaptation occur naturally in living systems and
help them to survive in ever-changing environments. It is not
necessary for these systems to be complex, as evidence
suggests that simple biochemical circuits evolved by microor-
ganisms allowed them to search for food, avoid predators, and
adapt to the uncertainty inherent in chemical environments.1

For example, Hennessey et al.2 demonstrated that the single-
celled ciliate Paramoecium could be classically conditioned by
training it to expect an electric-shock stimulus whenever it
encountered a vibrational stimulus. During the test phase, the
Paramoecium actively avoided the regions with a vibrational
stimulus, evidence that it expects an electric shock if it enters
that region. Along similar lines, Fernando et al.3 designed a
simplified version of the gene regulatory network that can be
programmed to associate any pair of signals taken from a pre-
defined set. Understanding the principles underlying such
behaviors could enable us to comprehend, repair, and maybe
even build systems at the complexity of life itself.

In this regard, we believe that the field of molecular com-
puting is well-poised to drive innovation in the following ways:
(i) it can be a window through which we can glean the compu-
tational capabilities of naturally occurring biochemical

systems, and (ii) build synthetic chemical networks of increas-
ing complexity to mimic or interact with the biochemical cir-
cuits inside living systems. While the former is a theoretical
pursuit, the latter takes an engineering approach asking the
question - what can we build? We can draw a close parallel to
the field of artificial intelligence, where a faction of research-
ers (e.g., in neuroscience) study the inner processes of the
brain and their role in manifesting intelligence, whereas
another faction (e.g., deep learning) focuses solely on building
models that increasingly approach the function of the brain
without deliberating on its underlying processes.

Historically, there have been various attempts towards mod-
eling learning at the molecular scale. However, to restrict the
scope of this review, we focus only on the works that have
direct relevance to a subfield of molecular computing com-
monly known as DNA computing.

DNA computing, as the name suggests, uses the chemical
reactions between biomolecules such as DNA to simulate com-
putation in chemistry. Compared to tracing the history of tra-
ditional machine learning, the work in molecular-scale learn-
ing still appears scattered, but its breadth of coverage of
machine learning topics is becoming increasingly thorough
(Fig. 1). Several reasons exist as to why DNA computing is well-
poised to drive progress in molecular computing: (i) DNA has
predictable behavior through well-understood Watson–Crick
base pairing rules of nucleotides, (ii) increasingly complex
molecular machinery is being designed and implemented due
to an interdisciplinary interest in the area from biologists, che-
mists, physicists, and computer scientists, and (iii) widely†These authors contributed equally to this work.
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available synthesis and chemical functionalization of custom
DNA oligonucleotides can facilitate their interaction with
natural biological systems.23–28 The properties of DNA that are
simultaneously programmable and biocompatible have
encouraged broad research into biosensing,29 drug delivery,26

and diagnostics,30,31 and the addition of machine learning
would transform how those applications could interact with
their molecular-input data.

However, despite the promise shown by the field, the
number of practical implementations of neural network-like
computation has been noticeably low, owing to the scale and
complexity of implementing such systems. This number
reduces further when we consider implementations that
include learning. For this reason, alongside the works that
include practical implementation of neural network-like learn-
ing and computation, we also include results that are primarily
theoretical and/or simulations but hint at a future DNA com-
puting-based implementation. Table 1 briefly introduces
several works and provides a high-level overview showing the
progress of topics in molecular-scale learning.

The review is structured as follows: in sections 2 and 3, we
provide a brief background into the fields of artificial intelli-
gence, molecular computing, chemical reaction networks, and
their association with DNA computing. In section 4, we survey
the works from the DNA computing community that
implement neural network-like computation and learning at
the molecular level, presented in chronological order. Finally,
in section 5, we discuss the challenges faced by DNA-based
implementations concerning scalability, robustness, and
responsiveness and offer perspectives for future
implementations.

2. Background
2.1 A brief historical overview of artificial intelligence

The field of artificial intelligence (AI) is concerned with build-
ing agents that embody capabilities to learn, make intelligent
decisions, and survive in uncertain conditions. Although the
field started as an endeavor to understand and replicate the

Fig. 1 Summary of milestone concepts in artificial intelligence and its adaptations into molecular computing. It is straightforward, in hindsight, to
trace the development of ANNs and notice the presence of past contributions in modern technologies. Applications have followed as a consequence
of the maturation of theory. On the other hand, no such direct path can be traced or forecasted for the same developments in molecular computing.
Practical demonstrations and theoretical constructions often do not overlap but proceed simultaneously. Moreover, each subsequent study intro-
duces different perspectives on the development of the field. It may have the advantage of adapting techniques that are already very established,
but molecular computing itself has a diverse toolbox. Whether the existing technologies will consolidate in operation or application remains to be
discovered. This figure has been adapted from: Hjelmfelt et al.4 with permission from National Academy of Sciences, copyright 1991; Cherry et al.5

with permission from Springer Nature, copyright 2018; Xiong et al.6 with permission from Springer Nature, copyright 2022; Lopez et al.7 with per-
mission from Springer Nature, copyright 2018; Banda et al.8 with permission from MIT Press, copyright 2013; Vasic et al.9 with permission from
arXiv,9 copyright 2020; Poole et al.10 with permission from Springer, copyright 2017.
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function of the human brain as well as an inquiry into the
philosophy of mind, in the past few decades, it has been stea-
dily moving away from being a philosophical inquiry to being
an engineering pursuit, significantly towards engineering sim-
plified abstractions of brain function known as neural net-
works. Further, the advent of specialized hardware with mas-
sively parallel processing capabilities (e.g., GPU, TPU) enabled
researchers to build increasingly large neural networks, a
subject of study commonly known today as “deep learning”.
The capacity of these networks to learn and perform a huge
variety of tasks has resulted in their widespread deployment
into every corner of science, technology, and industry.32–37 We
refer the reader to other surveys38–43 for a more detailed dis-
cussion on the history and applications of deep learning.

2.2 Perceptron

A traditional neuron can exist in one of the two states: (i)
firing, when the magnitude of its input is greater than a

threshold, and (ii) silent, otherwise. A perceptron (Fig. 2b) is
an abstract mathematical model of the neuron. It is a network
of nodes arranged into two layers with weighted edges running
from the first layer to the second layer with no connections
between nodes of the same layer. The modus operandi of a per-
ceptron can be divided into two phases: (i) the forward phase
and (ii) the learning phase. In the forward phases, the percep-
tron reads its inputs, calculates a weighted sum, and if the
sum is greater than a threshold, it fires and stays silent
otherwise.

A perceptron is different from an algebraic network in that
it can learn. This learning happens through a simplified
analog of an algorithm based on gradient descent known as
backpropagation.44 In the learning phase, the model is pro-
vided with a set of input-target pairs (x1, d1),…,(xn, dn) a.k.a.
the training set. It then iterates over these pairs and calculates
the weighted sum of the input yi. The error ei, i.e., the discre-
pancy in the output predicted by the model and the desired

Table 1 Chronological summary of the works detailed in this review. The first column provides a short description of the work. The second column
is the year in which the work was published. The third column represents how the results of the work were generated, i.e., through simulations,
in vitro experiments, etc. The fourth column shows whether the work tries to accomplish learning in chemistry. The fifth column is a list of notable
facts regarding each work

Work Year Mode Learning? Results/miscellaneous

CRNs for McCulloch–Pitts neuron and
linear boolean logic gates4

1991 ODE simulators No Computation of AND, OR functions
in chemistry

RNase & RNAP-based DNA transcriptional
switches11

2004 Simulations of enzymatic
in vitro DNA computing

No Feedforward circuits, Hopfield
memory, and WTA circuits

Neural network-like computation with
seesaw gates12

2011 In vitro implementation
w/DNA computing

No 4-Bit Hopfield associative memories

Enzymatic winner-take-all circuit13 2013 In vitro implementation
w/enzymatic DNA
computing

No 4-Bit inputs evaluated by 23 strand
DNA-based WTA implementation via
PEN toolbox

Two designs for a boolean chemical
perceptron8

2013 Artificial chemistry Yes 21 species, 34 reactions 13 species, 16
reactions

Analog asymmetric signal perceptron14 2014 Artificial chemistry Yes 17 species, 18 reactions
Perceptron learning algorithm using
DNAzymes15

2014 Simulations w/DNA
computing

Yes Positive weights only, unstable when
weights closer to zero

Perceptron learning algorithm using
DNAzymes16

2016 Simulations w/DNA
computing

Yes 278 different kinds of gates

Feedforward chemical neural network, a
network of AAS perceptrons17

2017 ODE simulators Yes Linearly inseparable functions, with a
hidden layer

Boltzmann machines, expectation–
maximization algorithm, and Baum–
Welch algorithm implemented using
stochastic CRNs10,18,19

2017–2019 Simulations No More suited to microscopic
environments

Multi-gene linear classifier7 2018 In vitro implementation
w/DNA computing

No Measuring gene expression from RNA
for early cancer diagnostics and
differentiating viral and bacterial
infections

Pattern recognition using winner-take-all
computation5

2018 In vitro implementation
w/DNA computing

No Extendable design, no learning
required, 100-bit pattern recognition

Binary-weight ReLU network9 2020 Simulations No Implementation of ReLU activation
function using rate-independent
CRNs

Theoretical foundations for CRN
implementations of neural networks20

2021 Simulations No (but hints at
an extension in
the future work)

Neural network with a hidden layer
using a smoothed version of ReLU

Pattern recognition using nucleation
kinetics of self-assembly21

2022 In vitro implementations
w/DNA computing

No 917 different tile species

CRN and DNA-based architectures for a
spiking neuron22

2022 VisualDSD simulator Yes Associative memory between 5
stimuli, memory decay

DNA switching gate ConvNet6 2022 In vitro implementation
w/DNA computing

No 144-Bit pattern recognition, two-layer
implementation
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output (di), are compared. The model weights are then
adjusted using the perceptron weight update rule: wi = wi + α(d
− y)xi, where α represents the learning rate which signifies the
adaptation strength of the network. The weights are initialized
randomly, and the updates will be performed over the entire
training set until all the weights stabilize. The resultant
network can then be used to generate outputs for the unseen
inputs. Several models of a perceptron exist in the literature,
among which the ones by McCulloch–Pitts45 and Rosenblatt46

are prominent, and the large networks assembled from these
perceptrons as nodes are today referred to as artificial neural
networks (ANNs).

3 DNA computing

DNA computing is a computational paradigm that aims to
perform computation at a molecular scale by utilizing the reac-
tions between biomolecules such as DNA. Ontologically, it is a
subfield of molecular computing which refers broadly to the
techniques that utilize molecules, such as enzymes, proteins,
etc., as substrates for computation. The field traces its origins
back to the infamous experiment conducted by Leonard
Adleman81 in 1994, where he demonstrated that it is possible
to solve the Hamiltonian path problem, a well-documented
NP-hard problem in computer science, using the parallelism
inherent in chemical reactions, particularly DNA hybridization

reactions. He devised a way to encode the nodes and edges in
the original graph into DNA molecules so that in a well-mixed
solution, these molecules will form linear chains of valid
paths owing to the selective hybridization properties of DNA
molecules. The initial result attracted the interest of the
research community, and this new paradigm was heralded to
solve hard combinatorial problems in computer science.
However, it was soon realized that this mode of computing
scales poorly, as the circuit size would be exponential in the
problem size. While this could have objectively been the end
of the field, researchers realized that this paradigm could
perform computation in biological contexts such as the cell
where traditional hardware is currently ineffective. As the field
progressed, it was shown that a class of DNA reactions com-
monly known as DNA strand displacement (DSD) is capable of
universal computation,49 which revitalized the position of the
field as an alternative form of computing. A more detailed
survey on the evolution of DNA computing, techniques, meth-
odologies, and promising areas of application can be found
here.50,51 We provide a graphical summary of popular DNA
computing techniques in Fig. 3.

When we look towards the chemical medium for imple-
menting models of learning (Fig. 2), we must be cognizant of
the limitations that may arise due to several factors, such as
the physical properties of the materials involved (e.g., DNA in
DNA computing), possible slower reaction times, erroneous
reactions and results, etc. However, seeking alternative models

Fig. 2 The neural network paradigm of learning as it follows a transition from digital representations into a DNA-based medium via chemical reac-
tion networks. (a) A simple ANN has an input layer, an output layer, and often multiple hidden processing layers between the terminal layers. (b) The
longstanding model of a single node is a perceptron with inputs xi and corresponding weights wi, integration function ∑, thresholding function f,
and output y. (c) The signal propagation between two neurons translated into a chemical reaction network representation. This figure has been
adapted from Hjelmfelt et al.4 with permission from National Academy of Sciences, copyright 1991. (d) A DNA-based neuron constructed based
upon the seesaw gate motif. This figure has been adapted from permission from Qian et al.12 with permission from Springer Nature, copyright 2011.
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of computation has always been an eager pursuit. As we con-
tinue our discussion in this review, we should keep in
mind that the aim of these devices isn’t to replace
conventional silicon-based hardware. Rather, it is to embed
computation where silicon-based systems cannot currently go
(e.g., a cell).

3.1 Chemical reaction networks

A chemical reaction network (CRN) is a mathematical formal-
ism to abstract and study the dynamics of a system of chemical
reactions. It consists of a finite set of chemical reactions of the
form shown in eqn (1), where Xi and Yj represent the reactant
and product species, respectively, while αi and βj represent
their stoichiometric coefficients. Nr and Np represent the
number of distinct reactant and product species.

XNr

i¼1

αiXi �!kr
XNp

j¼1

βjYj ð1Þ

A constituent reaction of a CRN. Xi represents the reactant
species and Yj represents the product species. αi and βj rep-
resent the stoichiometric coefficients of the reactants and
products.

The temporal dynamics of the system can be estimated
using the rules of mass action kinetics, resulting in a system
of ordinary differential equations (ODEs). CRNs can be
designed to exhibit complex behaviors, such as controllers,
oscillators, and chaotic systems. As a CRN maps directly onto a
system of ODEs, its temporal dynamics can be modeled using
traditional ODE simulators52 in a straightforward manner.
DNA has become a popular substrate for designing CRNs as it
offers ways to synthesize orthogonal species that result in
rigidly defined reaction pathways with modulable reaction
rates.

4. Survey of molecular computing
approaches to learning
4.1 Neural network-like computation to simulate logic
functions

One of the earliest attempts at neural network-like compu-
tation in a chemical medium is by Hjelmfelt et al.4 Here, the
authors devise a reversible enzyme reaction system to simulate
the dynamics of a McCulloch–Pitts neuron.45 This neuron has
two modes of operation: (i) firing and (ii) quiescent, depending
on the concentration of its output relative to a threshold. The
neuron fires if the output concentration is greater than a
threshold and stays quiescent otherwise.

I1i* þ Ci Ð X1i þ Ci

X1i þ Bi Ð X2i
* þ Ai

X3i þ Ai Ð X4i
* þ Bi

X3i Ð I2i*

ð2Þ

A CRN that represents a chemical implementation of a
single McCulloch–Pitts neuron by Hjelmfelt et al.4 The chemi-
cal species Ci represents the total input to the neuron, and the
chemical species Ai represents its output. Bi is a species comp-
lementary to Ai in that their sum adds up to 1. Further, the
concentrations of the species marked using an asterisk are
kept constant throughout the operation of the circuit.

The CRN in eqn (2) simulates the dynamics of a single
McCulloch–Pitts neuron. Computation is enabled through the
dynamics of chemical reactions. The chemical species Ci and
Ai represent the input and output of the neuron. Bi is a comp-
lementary species to Ai such that their concentrations have a
constant sum. Further, the species marked with an * are main-
tained at a constant concentration throughout. The CRN oper-
ates in such a way that when the concentration of Ci grows
above a predefined threshold, a steep rise in the concentration

Fig. 3 Common mechanisms for DNA computing. (a) Toehold-mediated strand displacement is a fundamental technique that belies most DNA
computing. (b) Hairpins are a secondary structure of DNA strands. They contain a “stem” and a “loop”. Domains within the loop are often less reactive
until the stem is opened via toehold-mediated strand displacement. (c) DNAzymes are artificially discovered secondary structures of DNA strands
that can cleave a complementary nucleic acid strand. The example shown is an 8–17 DNAzyme.47 (d) Strand-displacing polymerase is a subclass of
polymerase that simultaneously displaces the incumbent strand. (e) The PEN toolbox48 contains polymerase, exonuclease, and nickase enzymes to
facilitate the production and annihilation of DNA strands.
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of Ai is observed, indicating that the neuron has fired. In
addition, communication between different neurons is
enabled by allowing the output species of the jth neuron (Aj) to
act as an input to the ith neuron (Cij). Using this framework,
they prototyped networks that compute two-input linearly
separable boolean logic functions such as AND and OR.

4.2 Neural network computation by in vitro transcriptional
circuits

Kim et al.11 explored the equivalence between neural network
computation and genetic regulatory networks. They proposed
a simplified biochemical analog of a gene regulatory network
using the actions of the enzymes RNA polymerase (RNAP) and
ribonuclease (RNase) as reaction primitives. The basic unit of
their circuit is a DNA transcriptional switch, a device that
takes in an input and releases an output. The switch embodies
three important characteristics: (i) the presence of input and
output domains, (ii) transcribing efficiently when in an acti-
vated state, and (iii) transcribing poorly when in a deactivated
state. The switch remains deactivated when it is in its native
state and becomes active when an activator molecule is bound
to it, similar to the functioning of a gene.

The reactions at a switch are shown in Fig. 4a. D is the de-
activated (native) state of the switch, referred to as the OFF
state, and DA is the activated state, referred to as the ON state.
A (red) represents the activator strand (RNA) that can convert
the switch from OFF state to ON state by binding to it, and I
(green) represents the inhibitor strand (complementary to A)
that can bring back the switch to OFF state. The enzymes
RNAP and RNase drive changes in the circuit by modulating
the concentrations of the RNA signal strands A and I.

First, they established that the ODE system of their
model is equivalent to the ODE system dynamics of the
Hopfield neural network model.53 Further, by developing a
communication protocol among the switches (much similar to
that in Hjelmfelt et al.,4 they provided designs for implement-
ing larger circuits such as a boolean feedforward
network, associative memories, and a winner-take-all network
(Fig. 4(b–d)).

4.3 Neural network computation using DNA seesaw gates

So far, the chemical systems proposed are primarily theoretical
due to the lack of a programmable substrate. DNA computing
alleviates this deficit to some extent. Qian et al.12 implemented
a linear threshold gate using DSD reactions (Fig. 3) at a special
kind of auxiliarly gate complexes known as seesaw gates. A
gate refers to a partial DNA duplex with nucleation centers that
facilitate strand displacement. The resultant DNA circuit is
comprised of two components: (i) seesaw gates and (ii) signal
strands. A seesaw gate54 is a partially hybridized double-
stranded DNA with the longer base strand hybridized to a
shorter incumbent strand. The base strand contains a longer
domain flanked on either side by toeholds that hybridize to
single-stranded substrates (signals or fuel) in an XOR manner
– one toehold stays free when the other is bound. A signal
strand is a single-stranded DNA molecule that consists of a

short toehold domain flanked on either side by two domains
named the left recognition domain (LRD) and the right reco-
gnition domain (RRD), each representing the upstream gate
the strand was released from and the downstream gate the
strand is incident upon. In the basic operation of a seesaw
gate, an input signal strand impinges on the free toehold, dis-
placing the incumbent strand and freeing the previously
bound toehold. A fuel strand then binds to this toehold to dis-
place the input signal. In this way, the input signal effectively
catalyzes the formation of the output.

The binary linear threshold gate implemented by Qian
et al.12 involves three primary operations: (i) weight multipli-
cation (wixi), (ii) integration (∑wixi), and (iii) thresholding
(∑wixi ≥ th), simulated through custom-designed seesaw
gates. At the multiplication gate, the presence of input triggers
a release of output strands stoichiometrically equivalent to the
number of gates, simulating “binary weight multiplication”.
Two reactions occur at this seesaw gate: (i) the input strand
impinges onto the free toehold and displaces the output
strand, and (ii) the fuel strand impinges on the other (now
free) toehold and displaces the input strand. In this way, all
the multiplication gates would be exhausted, and outputs
strands equivalent to the weight would be released. Integration

Fig. 4 An enzyme-based neural network-like circuit. (a) Binding reac-
tions that implement a DNA-based transcriptional switch. (b) A feedfor-
ward construction that computes f (x, y, z) = x̄yz + ȳz + x. The graph
shows an instance run where x = true, y = false, z = true. (c) A Hopfield
associative memory for 16-bit patterns. The graph shows an example of
the network categorizing the black or white columns of the third
pattern, with red lines representing even-numbered columns and blue
lines representing odd-numbered columns. (d) A 3-bit WTA network.
The left diagram shows the intended relationships between each bit. The
middle diagram shows its implementation, which defines the inhibitory
conditions implicitly as the competitive consumption of RNAP, which
catalyzes each independent reaction. The graph shows an example of a
10-bit input, where only k = 1 winners are desired. This figure has been
reproduced from Kim et al.11 with permission from MIT Press, copyright
2004.
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gates take in the outputs from the multiplication gate and
release a common output strand simulating the sum oper-
ation. The thresholding gates then absorb a stoichiometrically
equal amount of these common output strands, resulting in
the thresholding operation. The output strands that remain
after thresholding act as the final output of the linear
threshold gate.

Using this framework, the authors demonstrated a 4-bit
Hopfield memory that was able to classify among four 4-bit

patterns (Fig. 5c & d). The authors opined that despite its sim-
plicity, the binary linear threshold gate could find applications
in medical diagnostics in tasks such as classifying cancer cells
using mRNA signals.

This work signifies a significant leap in the demonstrations
of neural network-like computation in chemistry using DNA
molecules. As we continue our survey, we will review additional
works in the literature that demonstrate improvements in size,
complexity, and utility.

Fig. 5 Brief overview of neural networks based on the DNA seesaw mechanism. (a) Operation of a seesaw gate circuit is based on seesawing and
thresholding operations implemented as shown. This figure has been adapted from Qian et al.55 with permission from AAAS, copyright 2011. (b) The
presence of strands and their concentrations can be expressed in a graphical abstraction as a single node. This figure has been adapted from Qian
et al.55 with permission from AAAS, copyright 2011. (c) Example network showing the node connection configuration to implement a 4-bit Hopfield
associative memory using DNA seesaw gates. (d) The neural network was trained in silico to recognize four different scientists, each assigned a 4-bit
label, even when given incomplete information. This figure has been adapted from Qian et al.12 with permission from Springer Nature, copyright
2011.
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4.4 Online learning in a chemical perceptron

It can be noticed that the DNA circuit devised by Qian et al.12

to simulate a binary threshold gate is a one-shot device,
evident from the fact that all the multiplication gates are used
up in one forward pass of the input. Future DNA systems that
intend to be deployed in chemical environments should
embody the capacity to be active for extended durations, learn
from their surroundings, and make decisions autonomously.
Banda et al.8 tackled this problem by designing a CRN that
emulates perceptron-like behavior using the artificial chem-
istry (AC) framework.56 AC represents boolean values using two
categorical chemical species, S0 and S1 (representing 0 and 1,
respectively), whereas the real values are represented using the
concentrations of the corresponding chemical species. Using
this framework, they put forward designs for two qualitatively
distinct implementations of a formal perceptron: (i) the
weight-loop perceptron and (ii) the weight-race perceptron.

The operation of the weight-loop perceptron adheres closely
to that of a formal perceptron. First, the input-weight multipli-
cation is achieved by allowing the input species Xi to catalyze
the transformation of the weight species Wi

p into the output
species Yp (p: = parity ∈ 1, 0). Then, the output species Y1 and
Y0 resulting from different input-weight integrations annihil-
ate each other in a fast reaction until one is exhausted
(eqn (3)). The learning phase begins with the introduction of
the target species Dp. The target species then releases the
weight-changer species if its parity differs from the output
species and stays dormant otherwise. These weight-changer
species react with the weight species adjusting their magni-
tude according to the perceptron weight update rule.

One of the drawbacks of the weight-loop perceptron is that
it translates the digital computations directly into chemistry,
leading to cumbersome implementations. The weight-race per-
ceptron (Fig. 6b) aims to simplify this design to pave the way
for an easier chemical implementation. Here, the roles of the
input and weight species are switched, i.e., the weight species
now catalyzes the transformation of the input species (if
present) into the output species. For example, the species W1

⊕

and W1
⊖ could convert the positive species X1

1 into Y1 or Y0,
respectively, while being unreactive on the negative species
X1

0. However, the bias species W0 can act on both the inputs
X1 and X2, creating a weight race, i.e., the weights will have a
disproportionate impact on the output formed as multiple
weights can now result in the same output. To ensure that the
weight race is fair, they adjust the rate constants and introduce
new decay reactions into the system. We direct the reader to
the original work8 for a more detailed discussion of the dis-
cussed weight race and the reactions involved.

This work marked the first-ever attempt at “online learning”
in a chemical medium by introducing two classes of chemical
perceptrons. The operation of the weight-loop perceptron uses
21 species and 34 reactions and involves shoehorning digital
computations into chemical reaction cascades, leading to a
cumbersome implementation. In contrast, the weight-race per-
ceptron adopts a more chemistry-friendly approach by allowing

the weights to catalyze the transformation of inputs to outputs
reducing the network size to 14 species and 30 reactions. Both
the perceptrons were trained to recognize the patterns in the
NAND function.

4.5 Online learning in analog asymmetric signal perceptron
(AASP)

The chemical perceptrons introduced by Banda et al.8 could
only learn linearly separable boolean functions. On the other
hand, many naturally occurring processes have nonlinear
dependencies between their inputs and outputs. Banda et al.14

extended the design of weight-race perceptron to form a new
model named the analog asymmetric signal perceptron (AASP)
that can simulate nonlinear functions of the form y = φ(w1x1 +
w2x2 + w0), where φ is a nonlinear activation function such as
the sigmoid. The values of the inputs and weights are rep-
resented using the concentrations of the corresponding input
and weight species Xi & Wi. Nonlinear input-weight integration
was achieved through a system of two competing reactions: (i)
weight Wi catalyzes the transformation of the input species Xi

into output species Y and (ii) input Xi reacts annihilatively
with the output species Y to form a nonreactive waste Xi + Y →
λ. Learning in the circuit is triggered by the addition of the
target species Ŷ and follows the perceptron weight update rule:
Δwi = α(ŷ − y)xi. First, the output and target species annihila-
tively, simulating the subtraction (ŷ − y) where the excess of
one results in the formation of the weight changer species W⊕

or W⊖ according to the weight update rule. These weight-
changer species then react with the weight species and
updates their values.

The AASP, the weight-loop perceptron, and the weight-race
perceptron described above established explicit models
capable of online learning chemistry. The corresponding
works also hint at future DNA implementations. They estimate
that the weight-race perceptron might require 40–50 unique
strands, a quantity within the demonstrated state-of-the-art
circuit size (between 100–200 strands) at the time.

Wi �!Xi¼S1
W̄i þ Y1

Wi �!Xi¼S0
W̄i þ Y0

W̄i þ E ! Wi

Y1 þ Y0 ! ϕ

ð3Þ

CRNs for the weight-loop perceptron introduced by Banda
et al.8 The first two reactions show that the inputs S1 and S0

catalyze the transformation of the weight species into appro-
priate output species to represent multiplication.

4.6 Online learning of linear functions using DNAzymes

Lakin et al.15 presented the design for a learning circuit
similar to Banda et al.,8 that can approximate real-valued
linear functions of the form f = wTx using DNAzymes (deoxyri-
bozymes) (Fig. 3c). DNAzymes are a special class of DNA mole-
cules that catalytically cleave specific nucleotide patterns in
single-stranded RNA. A typical DNAzyme cleaving reaction con-
tains a substrate S and a DNAzyme (Dz) where Dz cleaves S to
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form a product P ðS �!Dz Pþ wasteÞ.57,58 The operation of their
circuit could be seen as a combination of two distinct interact-
ing sub-modules (although, in practice, both of them would be
present in the same solution simultaneously): (i) the predictor
subcircuit and (ii) the feedback subcircuit. These subcircuits
can be seen as analogs to the forward and backpropagation
stages of neural network learning. Both use a multiplier
module implemented using DNAzymes as the basic compu-
tational element of their circuit.

They implemented the multiplier module as follows:
first, the DNAzyme, initially in its inactive state (Dz.Iz), will be
activated by the introduction of the activator species (ADz).
This transforms the DNAzyme into its active state Dz. Dz has
two distinct reaction pathways: (i) it can react with a
substrate SDz.Z catalytically to release Z or (ii) it can react with
a self-inhibitory substrate SDz.Iz, releasing Iz, converting itself

back to its inactive state. The associated CRN is depicted in
eqn (4).

ADz þ Dz:Iz ! Dzþ ADz:Iz

Dzþ SDz:Z �!k Dzþ Zþ waste

Dzþ SDz:Iz �!k Dzþ Iz �!fast Dz:Iz

ð4Þ

A multiplier module implemented using DNAzymes.15 The
first reaction shows the activator species ADz flipping the state
of the DNAzyme from the inactive (Dz.Iz) to the active state
(Dz). The second and third reactions represent two different
pathways for the DNAzyme. In the second reaction, the
DNAzyme catalytically cleaves an input substrate molecule SDz
into an output species Z. In the third reaction, the DNAzyme
deactivates itself by cleaving a substrate that releases its de-
activating species Iz.

Fig. 6 (a) Reactions of the weight-loop perceptron. (b) Reactions of the weight-race perceptron. Both perceptrons are trained on the NAND func-
tion with weights beginning at [W0

⊖] = 3, [W1
⊖] = 4, [W2

⊖] = 5. (c) Training of the weight-loop perceptron. (d) Training of the weight-race perceptron.
(e) Output of the weight-loop perceptron. (f ) Output of the weight-race perceptron. This figure has been adapted from Banda et al.8 with permission
from MIT Press, copyright 2013.
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At steady state, the concentrations of the corresponding
species are related to each other as follows:

½Z�ss ¼ ½ADz�0
½SDz:Z�0
½SDz:Iz�0

:

Considering the steady-state concentration of Z as the
output, the above equation could be seen as a multiplication
between the concentration of the activator species (input) and
the concentration of the two substrate species (weight).

The predictor subcircuit carries out the forward step in the
perceptron learning process by computing the function f =
∑wixi to obtain the output y. It uses the multiplier module
described above to perform the multiplication operation. The
feedback subcircuit updates the weights of the network analo-
gous to the perceptron weight update algorithm. Since the
weights in the circuit are represented by the ratio of the con-
centrations of the substrate species, they modify their concen-
trations accordingly to obtain the required weight change.
This subcircuit is triggered by adding the target species Ẑ,
which reacts annihilatively with the output species Z. The
excess of either Z or Ẑ triggers the production of the weight-
changer species, which would then adjust the weights.

This work utilizes the cleaving properties of DNAzymes to
implement an online learning algorithm in chemistry using
reactions that are easily reproducible in a laboratory setting.
Since each input goes through a disjoint reaction pathway, the
network can easily accommodate additional inputs. However,
because the weights and inputs were represented using con-
centrations of the chemical species, the circuit was not able to
handle negative values, a drawback fixed in their later work
discussed below. Further, as the weights were represented as a
ratio of concentrations, the circuit elicited uncertain behavior
when the value of weight was closer to zero.

4.7 Supervised learning using buffered DNA-strand
displacement gates

Most of the drawbacks in Lakin et al.15 were a by-product of
the design choices involved in the representation of circuit
variables. These issues were addressed in their follow-up
work,16 in which they use a purely DSD-based circuit forgoing
DNAzymes. They introduce a new gate motif called the
buffered DSD gate. In this setup, the gates are initially kept in
an inactive form and could be activated conditionally upon the
addition of an unbuffering strand. Further, the circuit could
be cascaded by programming the upstream gate to contain the
‘unbuffering strand’ for a downstream gate. They utilized this
motif to learn two-input linear functions of the form: f (x1, x2)
= w1x1 + w2x2. The basic building block of this circuit is a mul-
tiplier module implemented as an amplifier circuit.

The implementation of the amplifier circuit involves two
sets of reactions: (i) the input species X reacts with the acti-
vated gates to produce the output species Y; and (ii) input X is
irreversibly consumed by a sink gate. Thus, amplification was
achieved through competition with a gain factor equal to the
ratio of the competing rates. Similar to their previous work,

their network could also be divided into predictor and feedback
subcircuits (Fig. 7a & b), both of which utilize the buffered ampli-
fier as the building block. Further, to account for negative values,
they represented the variables using the dual-rail format where
values are modeled as a difference between two complementary
species: x = [X+] − [X−]. The predictor subcircuit calculates the
output function of the network y = w1x1 + w2x2 and the feedback
subcircuit generates the gradient updates for the weights using
the formula: wi = wi + α(d − y)xi. Notably, both the subcircuits
require multiplication, addition, and subtraction operations
which could be implemented using the amplifier circuit, and
simple tricks such as output tying (different parts of the circuit
producing the same output) and annihilation reactions. They
further showed the construction of a three-way multiplier used by
the feedback subcircuit (for calculating α(d − y)xi) using the
buffered amplifier circuit.

A combination of VisualDSD59 and MATLAB simulations
were used to evaluate the DNA-based construction of the learn-
ing circuits. These results were compared to ODE simulations
based on the mathematical process of weight updating speci-
fied in Fig. 7c. Simulations showed that the weight update tra-
jectories of the DNA-based implementation and the corres-
ponding ODE implementation matched closely, proving the
validity of their network architecture.

4.8 A chemical feedforward neural network

Blount et al.17 extended the work done by Banda et al.14 on
AASP to create the first-ever feedforward neural network in
chemistry named feedforward chemical neural network
(FCNN). The network has the same topology as the first classi-
cal neural network that simulates the XOR function with a
two-node hidden layer and an output layer and can learn non-
linearly separable binary functions such as XOR, XNOR, etc.
The basic building blocks of the network are modified versions
of AASP-style neurons embedded into cell-like compartments,
which communicate by the permeation of the chemical
species through the walls of the compartments.

Blount et al.17 modified the design of the AASP model to
introduce two new kinds of neurons: (i) the hidden chemical
neuron (HCN) and (ii) the output chemical neuron (OCN) to
support the feedforward and the backpropagation stages,
respectively. FCNN represents its inputs and weights in a
hybrid manner, i.e., inputs being binary are represented by the
existence (or absence) of the input species Xi, whereas the
weights being real-valued are represented using the concen-
trations of the corresponding weight species Wi. The FCNN,
similar to a neural network, operates in two phases, namely (i)
the forward phase, where the inputs are propagated forward in
the network through weight multiplication and integration to
obtain the output, and (ii) the learning phase, where the error is
calculated and the weights adjusted according to the backpropa-
gation algorithm. The input-weight integration (y = w1x1 + w2x2)
in the forward phase is achieved through competition between
two reactions, where one reaction produces the output, and the
other consumes it (eqn (5)). In the first reaction, the weight
species Wi catalyzes the transformation of the input species Xi to
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form the output Y and a feedback species XiY. In the second reac-
tion, the input Xi and the output Y annihilate with each other.
The learning phase is triggered by the addition of target species
Ŷ. First, the target and output species annihilate each other,
simulating the error calculation. Then, the feedback species
formed during the forward phase catalyzes the transformation of
the remaining target/output (whichever is larger) species into the
weight changer species W⊕ or W⊖ which in turn will adjust the
neuron weights according to a variant of the perceptron learning
algorithm (eqn (6)). Fig. 8 embellishes more details concerning
the simulation arrangements and the two phases involved in the
FCNN operation. The authors reported that their FCNN was able
to learn the XOR function, reminiscent of the first classical
implementation of learning the XOR function using backpropa-
gation by Rumelhart.60

Xi �!Wi Yþ XiY
Xi þ Y ! λ

ð5Þ

CRN showing feedforward step of the FCNN network by
Blount et al.17 at the ith node. In the first reaction, the weight

species Wi catalyzes the transformation of the input species
into the output species Y and a feedback species XiY, which
would be used during the backpropagation step. In the second
reaction, the input species Xi and the output species Y
combine with each other to form an unreactive waste (λ),
otherwise known as a decay reaction. The combination of
these two reactions simulates multiplication in the circuit
through competition.

W� �!XiY Wi

W� �!XiY Wi
�

Wi
� þWi ! λ

ð6Þ

Weight adjustment step in Blount et al.17 In the first reac-
tion, the feedback species catalyzes the transformation of the
positive weight adjuster species W⊕ into weight species Wi. In
the second and third reactions, the negative weight changer
species converts into a negative weight species for Wi, i.e., Wi

⊖,
which then reacts annihilatively with the existing positive
weight species Wi. Note that since we are dealing with binary
functions, it isn’t required to use negative weights.

Fig. 7 Models and results of the “buffered DSD” DNA learning circuit architecture. (a) The predictor subcircuit. (b) The feedback subcircuit. (c) The
operational scheme of the learning circuit. (d) Examples of training traces demonstrating learning in a DNA-based implementation. Red solid lines
show the weight training results of the DNA learning circuit based on simulations of their ODEs, while the black dotted lines show the results of the
operational scheme following the general process outlined in (c), which is without a DNA implementation. This figure has been reproduced from
Lakin et al.16 with permission from ACS, copyright 2016.
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4.9 Stochastic network simulation using stochastic CRNs

So far, the networks we encountered were simulated using
deterministic CRNs whose dynamics follow the laws of mass
action kinetics which require the reacting species to be present
in large concentrations. However, microscopic environments
such as the cell have a limited volume, restricting the use of
deterministic kinetics. Poole et al.10 uses stochastic CRNs for
modeling learning in microscopic environments. In particular,
they define two chemical versions of the Boltzmann machine
(BM)61 by utilizing the dynamics of stochastic CRNs to model
its inference phase. Each node in a BM can exist in one of the
two states ON or OFF. Reactions in the CBM are modeled as
continuous time analogs of various sub-procedures of a BM
implementation. For example, a single step of the Gibbs
sampling procedure where a node is flipped (from 0 to 1)
when all the neighboring nodes are 1 is modeled as a reaction
where the species corresponding to the neighboring nodes of
ith node collectively catalyze the transformation of the species
Xi

OFF to Xi
ON. To test if the implemented CBM is equivalent to

its digital counterpart, they instantiated a CBM with weights
trained in silico on the MNIST dataset62 and demonstrated that
CBM could generate images from a required distribution
during inference.

In a similar vein, Singh et al.19 proposed a stochastic CRN
scheme for the Baum–Welch algorithm used to learn the para-
meters of a Hidden Markov model (HMM). It is a variant of
the expectation–maximization (EM) algorithm, an iterative pro-
cedure that optimizes a given cost function L by first calculat-
ing the expected cost with the current parameters (expectation
step) and then by updating the parameters to optimize the

cost function until convergence. This work builds upon the
reaction network schemes that can implement the EM algor-
ithm that already exists in the literature, and we direct the
reader to Virinchi et al.18 for a detailed discussion.

4.10 Pattern recognition in the chemical medium through
winner-take-all networks

Winner-take-all (WTA) refers to a reaction system where only
one among all the input variables prevails at the steady state.
Kim et al.11 had previously proposed a WTA construction
based on the competitive consumption of the enzyme by the
involved reacting species.

Genot et al.13 later elaborated upon this idea using both a
DNA-only circuit as well as an enzymatic circuit. The authors
focused on the principle that WTA relies on the competitive
consumption of an amplifier and is a natural decision-making
paradigm. In enzymatic circuits, this is often the polymerase,
while in DNA-only circuits, this can be the fuel that operates
an autocatalytic circuit. Their WTA network was demonstrated
on the same 4-bit decision game as Qian et al.12 using the
VisualDSD simulator but additionally incorporated how the
WTA paradigm could repair corrupted data. Notably, they
remarked that the enzymatic variation of their circuit could
run with just 16 strands, compared to the 23 strands required
by a DNA-only implementation.

Cherry and Qian5 demonstrated the design of a much
larger DNA-only WTA network to perform pattern recognition
in the chemical medium. The WTA network was first designed
to recognize 3 × 3 patterns of English letters L and T (Fig. 9).
Each cell in the pattern was represented using a unique binary
chemical species, i.e., the state of the cell is expressed by the
presence or absence of a chemical species. The operation of
this network could be divided into five stages (in what follows,
the variable i represents the index of a cell in the pattern, and j
represents the index of the pattern): (i) weight multiplication,
xiwijðxi [ f0; 1g; wij [ RþÞ, where the input species Xi cata-

Fig. 8 Pictorial representation of the simulation chamber’s arrange-
ment and associated compartments. In both (a) and (b), we see a bigger
outer compartment representing the OCN, while the two smaller com-
partments represent the two HCNs. (a) Depicts the forward phase of the
FCNN described above. On the top-left, we see the input species being
injected in their inactive forms into the OCN as represented by a X’i
(notice the superscript). They then enter the HCNs and are converted
into their active form, and input-weight integration is performed.
Outputs from the input-weight integration are then sent to the OCN as
the input species. (b) It depicts the backpropagation stage, where the
weight changer species are generated according to a modified version
of the perceptron weight update rule. These weight changer species re-
enter the HCN and adjust their weights appropriately according to the
reactions shown in eqn (6). This figure has been reproduced from Blount
et al.17 with permission from MIT Press, copyright 2017.

Fig. 9 Winner-take-all neural network for pattern recognition. (a)
Operational diagram of the WTA circuit. The similarity with an expected
pattern is evaluated. (b) Conceptual examples show the classification of
two 3 × 3 patterns. Even if the circuit is given noisy information, it can
still proceed by answering which input pattern is most similar. This
figure has been reproduced from Cherry et al.5 with permission from
Springer Nature, copyright 2018.
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lytically converted the weight species Wij into the product
species Pij; (ii) summation, where all the product species per-
taining to a single pattern were converted into a single
weighted-sum species Sj; (iii) pairwise annihilation, where the
Sj species reacted with each other annihilatively; (iv) signal res-
toration, which brought back the concentration of the remain-
ing species to their original concentrations; (v) reporting,
where several reporter reactions were used to convert each
output to a fluorescent signal. The authors further demon-
strated that their system is robust to noise by showing that it
could handle tampered input patterns. Further, they extended
this motif to identify handwritten digits from the MNIST62

dataset of 10 × 10 patterns, and the resultant system was
robust up to 30 (out of 100) bit flips in the input pattern. A
follow-up paper from the same group described a loser-take-all
network also.63

One of the advantages of a WTA-style network is that it
doesn’t require explicit training – which is often a cumber-
some process, especially in chemistry – to perform classifi-
cation as long as the explicit pattern to be recognized is
known. The classification process in this motif is akin to com-
paring two images and tallying if they match, pixel by pixel.
Such a comparison can be performed naturally in chemistry
due to the parallelism inherent in chemical reactions.
Therefore, one can see argue that WTA is a chemistry-friendly
computational paradigm.

4.11 Binary-weight ReLU network

ReLU stands for rectified linear unit and is a popular acti-
vation function in the neural network literature. Vasic et al.9

proposed a chemical system that implemented a three-layer
network (an input layer, 1 hidden layer, and an output layer)
called binary-weight ReLU, which uses ReLU as its activation
function. It is a simplified multi-layer perceptron network with
weights restricted to {1, −1}. The authors exploit the similarity
between a class of coupled CRNs known as rate-independent
CRNs and the ReLU function in the construction of a CRN for
this network. Rate-independent CRNs, as the name suggests,
are those where the steady-state concentrations of the reactant
and product species are independent of the rate law and
instead depend only on their stoichiometric coefficients. The
reaction network shown below in eqn (7) depicts the
implementation of a ReLU function using rate-independent
CRNs.

Xþ ! Mþ Yþ

Mþ X� ! Y� ð7Þ

Implementation of the ReLU function using rate-indepen-
dent reactions.

Their CRN (eqn (7)) represents the variables of the network
in a dual-rail format, where the value of a variable is rep-
resented by the difference in the concentration between the
two species preassigned for that variable. For example, the
input value xi of the network was represented by the species X+

and X− and its output value by Y+ and Y−. Fig. 10 shows the

steady-state concentrations of the output species on a training
problem from the IRIS dataset.

They showed that their proposed CRN implemented the
binary-weight ReLU network by establishing the equivalence
between a trained neural network and the ODE simulator of
the compiled CRN with weights trained in silico. They further
demonstrated this equivalence by testing the compiled CRN
on various standardized datasets such as IRIS64 and MNIST.62

4.12 Hebbian learning architectures using DNA

Fil et al.22 used both CRNs and DNA-based constructions to
describe a spiking neuron that closely modeled the activity of
a biological neuron. Instead of a constant downstream signal,
the spiking neuron produces spikes in signal output that
attenuate at a set rate over time. The authors designed the
CRN so that the output species of one neuron could be con-
verted into the activation species of a different neuron. Using
this model, they sought to demonstrate associative learning
based on Hebbian theory through several examples. In collo-
quial terms, Hebbian theory is thought to describe the
concept by which simultaneously firing neurons are more
likely to wire together.

First, in a proof-of-concept demonstration, the authors
defined a simple system of three neurons to demonstrate
associative memory. The expected result was to observe the

Fig. 10 Simulations of a CRN-based neural network implementing a
ReLU activation function on the IRIS data. (a) Shows simulation results
without simplification of unimolecular reactions. (b) Shows simulation
results after initial unimolecular reactions of the ReLU implementation
are compressed into downstream bimolecular reactions and concen-
trations. The results show a faster approach to steady-state and more
accurate initial concentrations. This figure has been reproduced from
Vasic et al.9 with permission from ML Research Press, copyright 2020.
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influence of the weights of one connection upon the weights
of another previously non-existent connection. Neurons A1 and
A2 were inputs, and neuron B was an output. The activity of A2
was initially independent of B (a spiking signal in A2 did not
trigger any activity in B), whereas a sufficiently high signal
from A1 did propagate the signal to B. Activation signals H are
the edge weights, and a reversible reaction between an input
An and the output B increases the concentration of each
observed H when the signals of An and B are simultaneous.
The example showed that through simultaneous firings of A1

and A2 together, the weight of A2 and B increased, such that
finally, when only A2 and not A1 fired, B was still triggered.

Next, the authors demonstrated the ability to discern up to
five channels of firing neurons based on their signal frequency
or how often a spiking signal was detected from inputs A1

through A5. Neurons that fired frequently would trigger an
output more frequently, thus increasing the concentration of
their respective H. Each channel was then ranked by its edge
weights, and channels that fired frequently had heavier
weights (higher H concentration) to the output, while channels
that fired less frequently had lower weights (lower H
concentration).

In addition and unique to this work, the theoretical construc-
tions introduced memory decay and unsupervised learning, so
relationships between neurons could be reprogrammed. This
work also showed a DNA-based implementation for the pre-
sented CRNs via join-fork gates.65 Join-fork gates describe a scal-
able DNA computation architecture from designing gates that
can import multiple signals ( join) and release multiple output
signals (fork). The DNA-based constructions were simulated
using VisualDSD59 and demonstrated the same results for dis-
cerning frequency biases and temporal associations as those gen-
erated from simulating the CRNs.

4.13 DNA-based convolutional neural networks

Xiong et al.6 implemented a convolutional neural network
(CNN) via a DNA switching gate architecture to perform
pattern recognition on 12 × 12 patterns. This is thus far the
highest recorded input bandwidth of DNA-based neural net-
works. A CNN first convolves a local region (kernel), such as a
2 × 2 window, of data points into a feature. These features have
the advantages that their input nodes share the same weight,
feeding into the next layer of neural network nodes.

This work adopted the DNA switching gate architecture
(Fig. 11a)66 and used its secondary hairpin structure to modu-
late the strand displacement kinetics. The switching gate
architecture is particularly adapted to this task as it contains a
scalable design principle of modulating and repeating weights
across different, distinct DNA-based gates implementing
different nodes. On each side of the hairpin stem is a toehold
domain and an output domain. To trigger the gate, an input
strand has to attach to the toehold domain and then undergo
a branch migration to displace the strand attached to the
output domain (Fig. 3b). When the hairpin is formed, the
toehold and output domain are also adjacent, thus allowing
the branch migration to proceed. However, when a de-

activating strand that could open the hairpin is present, the
toehold and output domains are separated, and the branch
migration becomes unfavorable (OFF state). An activating
strand can be introduced, forming duplex waste with the de-
activating strand to reform the hairpin and reinitiate the gate
(ON state).

Through this motif, the authors demonstrated the construc-
tion of perceptron nodes required to design a DNA circuit
implementing a CNN. The circuit was first trained in silico,
and the evaluated weights were set by adjusting the hairpin
stem of each DNA switching gate (Fig. 11b). Following the
correct circuit setup, the authors demonstrated the classifi-
cation of 32 distinct patterns. The patterns were further
grouped into 4 subgroups (Arabic numerals, Chinese oracles,
and English and Greek alphabets) of 8 patterns each. Each
pattern was defined by the presence or lack of a DNA strand
representing each of the 144 pixels of the pattern. A convolu-
tion of the pattern first determined the subgrouping of the
pattern, while the second layer determined the precise pattern
within that group (Fig. 11c & d). Due to the grouping, outputs
could be identified as a multiplexed set of 4 × 8 fluorescent
signals.

4.14 Towards a mathematical theory of CRN
implementations of neural networks

So far, the works described above on molecular-scale learning
have been particular constructions, i.e., the methods and
frameworks were tuned to the use case they were addressing.
Anderson et al.20 contended that, to fast-track the field’s devel-
opment, it is necessary to develop an appropriate mathemat-
ical framework that establishes the theoretical underpinnings
of the CRNs that implement neural networks and learning,
which could lead to a general theory of chemical learning.
First, they prove that the ODE system associated with a class of
CRNs can implement learning if and only if they manifest pro-
perties, such as the existence of unique fixed points and the
possibility of faster convergence to those fixed points. Then,
they prove the correctness of their theory by proving the equiv-
alence between a CRN and a neural network that uses a
“smoothed” ReLU activation function.

4.15 Nonlinear decision making with enzymatic neural
networks

Datasets are often characterized by nonlinear dependencies
between their inputs and outputs. CRN implementations that
model such functions are often cumbersome and might
require cascading existing reaction systems. Moreover, pure
DNA reactions often suffer from leaky reactions and long reac-
tion times, further exacerbated as the circuit grows. Enzyme-
based implementations, on the other hand, are cleaner, less
complicated, and enjoy faster reaction times. Okumura et al.67

proposed the use of the PEN toolbox48 (Fig. 3e) to design and
implement an enzymatic neuron which adheres closely to the
traditional perceptron model. The authors argued that the less
leaky implementations of enzymatic circuits could simplify the
composition of layers. Using this enzymatic neuron as a build-
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ing block, they constructed a multi-layer perceptron (MLP)
with a two-node hidden layer, superposed by logic gates, to
obtain nonlinear decision boundaries.

Using a space partitioning example, the authors demon-
strated the circuit’s capabilities to differentiate nonlinear
boundaries. Their MLP aimed to find nonlinear decision
boundaries according to the sum of two inputs. Of particular
interest, this was finally performed using droplet microflui-
dics, which reduced working volumes by 105 and bolstered
experimental throughput such that the circuit behavior could
be characterized across 25 000 droplets. Each droplet con-
tained some concentration of two inputs X1 and X2. The intro-
duction of the MLP fluorescently labeled the sum of the inputs
as one of three categories (α, β, or γ), thereby dividing the 2D
concentration plane by three nonlinear decision boundaries.

4.16 Pattern recognition in the nucleation kinetics of non-
equilibrium self-assembly

Evans et al.21 studied the pattern recognition capabilities of
the nucleation kinetics in a multifarious self-assembly process
– a set of shared constituents forming many distinct struc-

tures. Their system comprised a mutually inert general-
purpose tile set S and a set of interaction tiles named H, A,
and M, the addition of which initiates the self-assembly
process. Each of the interaction tiles H, A, and M necessitate
the formation of H, A, and M patterns, respectively. The for-
mation of the nucleation seed acts as the rate-limiting step in
the self-assembly process, followed by a quick assembly
around the seed to form the final pattern. Since the concen-
trations of the shared tiles drive the formation of the seed,
those concentrations can be purported to be directly respon-
sible for the kind of pattern formed, i.e., the final pattern
could be viewed as a complex function of the concentration
vector C of the shared tiles. This work thus enables pattern
recognition in this high-dimensional concentration space,
where the concentration vector determines the nucleation seed
and the pattern formed, leading to smooth decision regions in
this high-dimensional concentration space. The high-dimen-
sionality aspect, however, comes naturally as a part of the
system design and should not be treated as a feature, i.e.,
systems with lower dimensionality will not have simpler
implementations.

Fig. 11 The DNA switching gate architecture utilized to construct a molecular convolutional neural network. (a) The switching gate architecture
has an energy landscape determined by its sequence and structure. Its primary advantage is the modulation of its reaction rate by simply adjusting
the stem length of the hairpin structure. This promotes the scalability of its operation in large systems requiring multiple, distinct programmable
species. This figure has been reproduced from Lai et al.66 with permission from ACS, copyright 2018. (b) The advantages of the switching gate archi-
tecture are utilized to construct a convolutional neural network. Weight-sharing is achieved in the architecture by moderating the length of the
hairpin stem to control the kinetics of binding the input. This compresses network complexity and implements the convolution step by weight-
sharing within a convolved region of nodes. (c) The network is implemented to provide a two-step classification. First by category, then by the
specific item within the category. (d) The DNA ConvNet was demonstrated to distinguish 32 different patterns divided as 8 patterns within each of 4
subgroupings. Each pattern was a 12 × 12 image represented by the presence or lack of a DNA strand representing each of the 144 pixels. This figure
has been reproduced from Xiong et al.6 with permission from Springer Nature, copyright 2022.
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5. Outlook and drawbacks

As the field is very much in its nascence, most works focused
on building architectures “that just work” for the use case
under consideration rather than developing general-purpose
architectures and algorithms. Further, problems such as leaks,
slow reaction times, and reaction cross-talk prevent the
implementations from simulating even moderate-sized neural
networks.

In this work, we tried to put in context these fragmented
adaptations of machine learning at the molecular scale. In
doing so, we bring to light several commonalities in seemingly
disparate attempts at modeling said learning. For example,
most works consider representing the values of weights and
inputs separately using the concentrations of real variables.
Many works produce appropriate weight-changer species to
readjust their weights. Despite this, no single, comprehensive
experiment stands out as direct evidence for “learning” (e.g.,
ANN learning) at the molecular scale. The performance advan-
tages of ANNs have been due to the sheer scale of their net-
works and the data bandwidth available to train them. Despite
the intriguing prospects of parallelism and biocompatibility of
DNA computing, these advantages are not present within the
existing molecular computing technologies. Although, it is
also not fair or realistic to expect a simple repetition of
machine learning in a different medium. It is, however, unde-
niable that the questions of scalability in molecular-scale
learning systems predetermine its practical usage.

A scalable molecular computing architecture for imple-
menting neural network-like computation would desire the
availability of several magnitudes more distinct DNA strands
operating within the same volume than what has been demon-
strated. There are two closely related challenges to combat in
the scaling up: (i) orthogonality and (ii) leak. Orthogonality is
the property that the designed DNA sequences that follow two
disparate reaction pathways remain mutually inert to each
other in a well-mixed solution. This is necessary to design reac-
tions with negligible cross-talk and ensure the system works as
intended. While the software packages such as NUPACK68 and
the more recent SeqWalk69 help design large sets of orthog-
onal species, there is a need to develop novel computational
tools for various DNA computing architectures, such as the
seesaw compiler70 that discover not only orthogonal species
but also orthogonal reaction pathways at the scale necessary to
build neural networks of substantial depth and complexity.

Reaction leak is another closely related issue. If the species
are not sufficiently orthogonal, spurious reactions can happen,
which can cause the system to diverge. These can also fre-
quently occur due to synthesis errors, and PAGE purification
of strands is a baseline prerequisite for any DNA computing
circuit. Yet even when all the design principles are correctly
accounted for, leaks can still be a prominent contributor to
errors due to a phenomenon called fraying, where the last few
bases at either end of a DNA duplex bind poorly and can tran-
siently expose an unintended toehold resulting in a spurious
strand displacement. Such strands could begin propagating

errors downstream in the circuit, making it unviable. One of
the simpler modifications is to design domains at a sequence
level such that all the duplexes are terminated by G–C bonds,
which are stronger than the A–T bonds. “Clamping”71 is
another frequently used technique to mitigate leakage from
fraying where each duplex is extended by 1 to 3 bases, so the
fraying happens at an unimportant domain instead. This tech-
nique was applied in the examples of neural network-like cir-
cuits discussed in this review.5,6,12

Other strategies to combat leak include more drastic design
changes, such as running a shadow circuit (“shadow cancella-
tion”),72 or fundamental changes to the architecture like
lengthening domains,71,73 catalytic hairpin assembly
(CHA),74,75 or the “junction substrate”.76 Compared to clamp-
ing, which is straightforwardly applicable, implementations of
new architectures into existing examples can be more compli-
cated. While architectures are developed to be computationally
universal, it is not guaranteed that there can be a straight-
forward implementation of the critical principles of neural net-
works, like weight and thresholding, which happened to have
simple implementations in seesaw gates and switching gates.
Such questions remain to be objectively answered. Strategies
like shadow cancellation or CHA involve making principled
decisions on positioning domains based on predicted leak
sites. The principles applied in these strategies to counteract
leaks could also limit the sequence variability and introduce
design overheads that could hamper neural network
implementations that are already vying and hard-pressed for
room to scale upwards. It would be interesting to see, rather
than a race for scale, the variations of architectures in imple-
menting only a single perceptron unit.

Another common theme regarding the DNA implemen-
tations of learning is the reliance on training the circuits
in silico and then translating the resultant weights into the
concentrations of the chemical species. In other words, these
networks are static instances of a trained neural network.
They should be capable of autonomous learning to build net-
works similar to biochemical machinery. It should be noted
that such a discussion should include caution, as looking so
far ahead could be counterproductive to grounding the ideas
on what is possible and what can be achieved. For
instance, weights were often designed as the concentrations
within seesaw gates, whereas they are integrated into the
strand design in the switching gates architecture. While the
former appears more compatible with the goal of
adaptation, the latter demonstrated the largest-scale instance
of neural network-like computing in molecular computing
thus far.

Fundamentally, being able to re-train a DNA-based circuit
reinvokes the process of implementing the loss function from
the perceptron training algorithm. While initial runs of a DNA
circuit proceed serially, the circuit must also be expected to
run iteratively, repeating the same weight update process after
each training input. The PEN toolbox has previously demon-
strated such temporal, oscillatory behavior by demonstrating
predator–prey dynamics, for example, as CRNs.48 While this
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behavior is periodic, it offers some promise in the context of
DNA-based neural networks – the concentration of one
species, such as a weight species, can be modulated based on
observed concentrations of another species, such as the loss
value. More recently, Lapteva, Sarraf, & Qian77 also demon-
strated temporal DNA logic circuits using only DNA-based reac-
tions, providing an architecture for comparing the time of
arrival between two signals leading to strategies that define the
order of learning events in DNA circuits. The surveyed work by
Lakin et al.15 proposed an amplifier circuit that can be dyna-
mically modified, but it has not been demonstrated experi-
mentally yet. In a broad sense, designing a DNA circuit that
can run iteratively remains a challenging problem.

While grounding our expectations for the future in the
field, researchers should imbue an affinity towards scalable
general-purpose architectures that are robust to noise.
Technologies other than pure DNA-based circuits, such as
enzymes from the PEN toolbox, strand-displacing polymer-
ase,78 microfluidics,79 or reaction–diffusion systems80 could
introduce dynamics that may be otherwise unwieldy and
potentially impossible to implement using DNA strands alone.
To revisit our previous speculation, adding nicking and lig-
ation enzymes could allow the switching gate architecture to
change its weight-determining hairpin. Reaction–diffusion
systems can be naturally oscillatory, whereas microfluidics has
stepwise automation, filtration, and temperature control
mechanisms that could stabilize DNA-based reactions and out-
source the circuit complexity.

While instances of applications are still few, Lopez et al.
demonstrated a potential application of DNA-based neural
network-like computation for early cancer diagnostics – an
indication of the potentially transformative impacts of this dis-
cipline. Correlation data of gene expression profiles to cancer
diagnoses were used as training data to determine the weights
of a linear classifier called the support vector machine (SVM),
a construction similar to a single perceptron. In silico training
found minimum representations of each genetic profile. When
RNA inputs were input into the system as indicators for each
gene, the trained SVM could determine a weighted likelihood
for cancer by comparing the relative presence of each gene,
affected by the trained weights. This construction
similarly classified infections as caused by viral or bacterial
pathogens.

Overall, we view molecular-scale, DNA-based neural net-
works as integrating some of the furthest state-of-the-art tech-
niques in DNA computing. Furthermore, we believe a large,
unexplored portion of DNA computing techniques waits to be
evaluated for their applicability to program neural networks.
There has been a recent growth in the publication of theore-
tical models of CRNs that implement neural network compu-
tation, and attempts at implementing, which has traditionally
been the trend in DNA computing, should soon follow.
Fundamental techniques in DNA computing that advance the
scale and robustness of its circuits continue to be discovered,
and we expect this to accelerate the developments in molecular
learning.

6 Conclusion

In the last two decades, the field of molecular computing has
made many outstanding achievements, both theoretical as
well as in laboratory demonstrations. But what should be the
future goals and aspirations of this emerging field?

Through this review, we argue that one of the noteworthy
goals of the molecular computing community should be to
achieve programmability in chemical systems through learning
and adaptation. To estimate where we stand currently, we dis-
cussed several works from the DNA computing community
that make significant strides towards achieving this goal
through simulation or practical implementations. We further
used these works to understand the advantages and shortcom-
ings of their varied techniques. These applications described
their potential for recognition tasks, often by encrypting
digital image data into a molecular form. However, it should
not be expected that computational processing using chemical
mediums should hope to triumph against silicon compu-
tation. Applications that are truly biologically relevant and
more naturally suited to the medium, such as comprehensive
biosensing diagnostic technologies or intelligent control
systems for drug delivery agents that automate diagnostic and
therapeutic cycles of medical care, are more realistic expec-
tations of the field that may await progress far beyond the
horizon.
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