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Translating the power of transition metal catalysis to the native habitats of enzymes can significantly expand
the possibilities of interrogating or manipulating natural biological systems, including living cells and
organisms. This is especially relevant for organometallic reactions that have shown great potential in the
field of organic synthesis, like the metal-catalyzed transfer of carbenes. While, at first sight, performing
metal carbene chemistry in agqueous solvents, and especially in biologically relevant mixtures, does not
seem obvious, in recent years there has been a growing number of reports demonstrating the feasibility
of the task. Either using small molecule metal catalysts or artificial metalloenzymes, a number of carbene
transfer reactions that tolerate aqueous and biorelevant media are being developed. This review intends
to summarize the most relevant contributions, and establish the state of the art in this emerging research
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1. Introduction

Organometallic catalysis has revolutionized the way in which
chemists conceive organic synthesis. The use of transition
metals as catalysts transcended classical synthetic methodolo-
gies, and has allowed chemical transformations that otherwise
would not be feasible." Most of these organometallic reactions
have been carried out in organic solvents, and usually under air
and water-free conditions to avoid catalyst deactivation and the
formation of side products. The fact that many organic
substrates are not soluble in water has further averted the use of
aqueous solvents in organic and organometallic reactions.

However, there has been an increasing demonstration that
many organometallic complexes and intermediates do tolerate
the presence of water. Indeed, a huge number of water-
compatible organometallic reactions have been recently devel-
oped.”> Work in the field has been further impelled by the
growing interest in developing sustainable synthetic technolo-
gies, and by the observation that the presence of water can even
accelerate some reactions.?

These advances have led scientists to wonder if organome-
tallic reactions could be carried out in biological and even living
settings, as this could open new opportunities in cell biology
and biomedicine. However, the translation of organometallic
chemistry to biological habitats is not straightforward, and
presents important challenges. First, a cellular milieu cannot be
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equated to a typical aqueous solvent, owing to its gel-like nature
and intrinsic crowded environment. Furthermore, the presence
of numerous biological components can promote the deacti-
vation of the metal reagents or inhibit the catalytic cycles.
Moving to living environments is further hampered by potential
toxicity and transport issues, and by the low concentration of
reagents and reactants.

Nonetheless, with the advent of bioorthogonal chemistry, as
coined by Bertozzi and coworkers,* an increasing number of
organic reactions, including metal-catalyzed processes, have
been demonstrated to work in biological and living environ-
ments.>® A key discovery that sparked the field is the well-known
copper-catalyzed azide alkyne cycloaddition (CuAAC), paradigm
of click chemistry, which is usually carried out with Cu(u)
reagents and external reducing agents like ascorbate. Despite
the intrinsic toxicity of these reagents, an appropriate tuning of
the reaction conditions has allowed its use in cellular
settings.” Its impressive chemoselectivity has also led to many
applications for bioconjugation and post-translational modifi-
cation of proteins or nucleic acids."”***

The CuAAC entails a typical organometallic mechanism
involving oxidative cyclometallation and reductive elimination
steps, and it is a fundamental reference in the field of biological
organometallic catalysis. Another early (2006) report that has
gained increasing recognition by the chemical biology
community is the discovery by Meggers et al. that Ru(u) catalysts
can promote the removal of alloc protecting groups in designed
substrates, even in the presence of HeLa cells.*

Although for several years there were not many new contri-
butions in the area, in the last decade there has been an upsurge
in reports dealing with transition metal-promoted reactions in
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biological media, and also in living organisms like bacteria.">>°
Some of these discoveries have already found very relevant
biological applications.”*** The reactions include uncaging
processes, mainly those catalyzed by ruthenium or palladium
complexes, such as the cleavage of N-allylcarbamates or O-allyl/
propargyl ethers,****** ruthenium catalyzed bond-forming
reactions (annulations between thioalkynes and azides (RuA-
tAC),**** (2 + 2 + 2) cycloadditions®®) or isomerization of allylic
alcohols,* gold-catalyzed hydroarylations,*® and even palla-
dium promoted Sonogashira®* or Suzuki-Miyaura**** cross
couplings.

Therefore, a wide range of organometallic transformations,
from deprotection to cross-coupling, cyclization or cycloaddi-
tion reactions, have been demonstrated to be compatible with
biological environments, provided appropriate metal
complexes and probes are employed.

What about metal carbenes? Can their reactivity be exported
to biological environments? Metal carbene transfer reactions
are among the most powerful and versatile transformations in
catalysis and organometallic chemistry, and have been used for
many synthetic applications.**** Translating the rich reactivity
typically exhibited by metal carbenes in organic solvents to
aqueous and biological media, could open important new
avenues in research at the interface between chemistry and
biology.

Indeed, in the last decade, there has been an increase in the
number of reactions involving bioorthogonal metal-carbene
transfer processes. In some cases, it has also been demon-
strated that this chemistry can be performed in cells or in
bacteria. In this review, we intend to cover the most significant
contributions in this topic, from bioconjugations and chemo-
selective modifications of biopolymers to synthetic trans-
formations of small molecules in biological settings, including
bacteria or mammalian cells.

a) Spin configuration of carbenes in the ground-state

singlet carbenes triplet carbenes
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2. Catalysis involving metal carbene
transfer reactions

Carbenes are highly reactive chemical entities that possess
a neutral divalent carbon atom with six electrons on its valence
shell. According to the spin configuration of the two
nonbonding electrons in the ground state, we can consider two
types of carbenes: singlet carbenes, with both electrons occu-
pying the sp> orbital with antiparallel spins, or triplet carbenes,
with two electrons with parallel spins, occupying the sp” and the
p. orbital (Fig. 1a).*

A wide range of precursors have been employed for the
generation of carbenes, such as tosylhydrazones, diaziridines,
triazoles, cycloheptatrienes, alkynes or ynamides, among
others.”” However, the most widely used carbene precursors are
diazo compounds, which are reasonably stable but can readily
decompose to carbenes under mild reaction conditions.**** The
resulting free carbenes tend to be highly reactive, and therefore
difficult to use in chemical transformations; however, upon
appropriate coordination to transition metals they give metal
carbenes, which present a more controllable and rich reactivity.
The chemical properties of these metal complexes depend on
the spin configurations of the carbene, and on the overlap with
the metal orbitals.

Different criteria have been used to classify metal carbenes.
Historically, they have been categorized as Fischer and Schrock
carbenes, depending on the metal complex and the type of
substituents at the carbene; but in the context of this review, it
is useful a classification based on the nature of the substituents
adjacent to the reactive carbene centre. Acceptor/acceptor (A/A)
and acceptor (A) carbenes are highly reactive due to the lack of
stabilization of the electrophilic carbene centre. In contrast, the
presence of donor groups stabilizes the metal carbene centre

¢) Reactivity of metal carbenes
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Fig. 1

(a) Electronic structure of carbenes. (b) Classification of metal carbenes based on the nature of the substituents adjacent to the carbene.

(c) Some transformations of metal carbenes carried out in aqueous media. EDG = electron donating group; EWG = electron withdrawing group.
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and attenuates the reactivity. This is the case of donor/acceptor
(D/A) carbenes, which have been widely used due to their good
balance between reactivity and stability (Fig. 1b).*>*°

The rich reactivity of metal carbenes is mostly related to the
charge distribution along the metal-carbon bond and the
electrophilicity of the carbene carbon, allowing its reaction with
a variety of nucleophiles. Within the broad spectrum of reac-
tions enabled by metal carbenes, most common trans-
formations include cyclopropanations of alkenes,* > C-H
functionalizations,****¢ insertions into X-H bonds (X = O, N, S,
Si),””*® the formation of ylides®** (and subsequent rearrange-
ments) or cycloaddition processes**** (Fig. 1c). This reactivity is
different from that exhibited by carbene precursors, usually
diazocarbonyl compounds, which tend to decompose and/or
engage in rearrangement or dimerization reactions.

The reactions of metal carbenes with substrates exhibiting
non-polar bonds (i.e. cyclopropanation of alkenes or insertions
into C-H or Si-H bonds), tend to proceed through a concerted
mechanism,** while in the case of insertions into polar X-H
bonds a stepwise ylide mechanism might be operative. Beyond
these general features, the characteristics of the transition
metal complex play a key role in the mechanistic pathway.>®

Transition metal-catalyzed carbene transformations have
been well studied in organic solvents, with rhodium, copper
and iron being the most explored metals. It is important to note
that besides carbene transfer reactions from diazo or related
precursors, metal carbenes can also be used as catalysts, e.g. in
metathesis processes.

3. Metal-promoted carbene transfer
reactions in agueous media

The rich chemistry of metal carbenes has been explored
essentially in organic solvents, and under water-free conditions,
owing to the assumption that water might react with the car-
bene. However, as mentioned above, the reactivity of metal
carbenes can be modulated by playing with the metal ligands
and the substituents at the carbene atom, as well as with the
type of substrates and reaction conditions; and thus, it can be
made compatible with aqueous media. Indeed, in recent years
there have been important contributions that demonstrate the
viability of metal-mediated carbene transformations in aqueous
media, and also in biologically relevant settings. Herein we
present a summary of the most significant developments. The
reactions have been organized according to the type of substrate
(small molecules or biopolymers) and, where relevant, to the
type of transformation (cyclopropanation, C-H insertion, X-H
insertion or ylide formation). Metal carbenes have also been
used as catalysts for olefin metathesis in aqueous and bio-
relevant environments. This topic has been covered in specific
reviews,* and thus herein we will only mention some relevant
examples performed in cellulo (Section 5.2).

3.1. Transformations of small molecules

3.1.1 Cyclopropanations. The cyclopropanation of styrene
has been stablished as a benchmarking reaction in metal
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carbene transfer processes, with ethyl diazoacetate (EDA) being
the most widely used carbene precursor. However, performing
this type of reaction in aqueous media has only recently been
addressed.

The first example of a metal-catalyzed cyclopropanation
performed in the presence of large amounts of water was re-
ported by the Nishiyama group in 2001.% The authors used EDA
as carbene precursor, and a ruthenium complex exhibiting
a water-soluble chiral ligand [hAm-pybox: bis(hydrox-
ymethyldihydrooxazolyl)pyridine] as catalyst, in a biphasic
aqueous/organic milieu. The reaction yields the cyclopropane
product with high levels of enantioselectivity (up to 94%, Fig. 2,
trans/cis stereoselectivity up to 97 : 3). Curiously, the presence of
water had a marked influence in the enantioselectivity, which
changed from 8% ee in pure THF to a 78% ee in THF/H,O
mixtures. This result was attributed to a solvation effect of water
around the hydroxy groups of the im-pybox.

In 2002 Charette and Wurz reported a different approach to
perform similar cyclopropanations. They found that the
combination of hydrophobic rhodium catalysts such as dirho-
dium(m) octanoate (Rh,(Oct),) with hydrophobic alkenes allows
the formation of “small alkene/catalyst beads or micelles” in
water. Then, a slow diffusion of EDA through the surface of the
beads enabled a controlled formation of the desired cyclo-
propanated products in high yields (Fig. 2). Noticeably, water-
soluble rhodium carboxylates (Rh,(OAc), or Rh,(O,CCF;),)
were inefficient, leading to low yields. An asymmetric version of
this reaction was also studied using ruthenium(n) and cobalt()
chiral catalysts.*

A family of catalysts that has been extensively employed for
cyclopropanation reactions in organic solvents are metal-
loporphyrins, an interesting type of metal complexes that is also
present in certain metalloenzymes with oxidative functions. In
2008, Simonneaux and coworkers prepared water-soluble
ruthenium and iron porphyrins by the introduction of sulfo-
nate groups, and used them as catalysts for the asymmetric
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Fig. 2 Metal catalyzed cyclopropanations. Top: General reaction
scheme. Bottom-left: Asymmetric Ru-catalyzed cyclopropanation
reported by Nishiyama. Bottom-right: Rh-catalyzed cyclopropanation
reported by Charette and Wurz.
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Fig. 3 (a) Water-soluble Fe and Ru porphyrins developed by Simon-
neaux and coworkers for asymmetric cyclopropanations in water. (b)
Cobalt porphyrin “ship in a bottle” developed by de Bruin and
coworkers, reproduced from ref. 67 with permission from Wiley-VCH
GmbH, copyright 2014.

cyclopropanation of styrene in water, with EDA as the carbene
precursor (Fig. 3a). They obtained the desired products in yields
up to 85%, with high diastereoselectivity (trans/cis up to 96/4)
and good enantioselectivity for the trans isomer (83%).°

In 2014, de Bruin and co-authors reported the first example
of size-selective cyclopropanation reactions using a soluble
“molecular ship-in-a-bottle catalyst”. The bio-inspired supra-
molecular cage constituted by a cobalt-porphyrin catalyst
encapsulated into a cubic MgLg cage (Fig. 3b) showed excellent
activity in the cyclopropanation of styrene derivatives using
water/acetone mixtures (5:1).” The reaction afforded the
products in yields up to 88%, under mild reaction conditions
(50 °C) and low catalyst loadings (0.25 mol%, TONs up to 351).
Remarkably, the porous cage-catalyst allowed for size selectivity;
bulky substrates led to lower yields likely due to the slower
migration through the cage pores.

Another interesting approach based on the use of nano-
reactors was reported in 2014 by van Hest et al., who immobi-
lized  chiral  bis(oxazoline)-copper  catalysts inside
a polymersome membrane to perform asymmetric cyclo-
propanations of alkenes in water. Interestingly, only hydro-
phobic alkenes underwent the cyclopropanation, likely because
of their ability to localize into the active site of the polymer.®®

All these results confirm the compatibility of specific metal
carbenes with water, which even plays an important role in the
reactivity and selectivity of the processes by eliciting hydro-
phobic effects.

3.1.2 Insertions into C-H bonds. Considering such
compatibility, it is not surprising that other reactions mediated

© 2022 The Author(s). Published by the Royal Society of Chemistry
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by metal carbenes have also been accomplished in water
mixtures. In 2004, Afonso et al. observed that hydrophobic and
sterically bulky a-diazoacetamides (such as N,N-diisopropyla-
mide derivatives) can participate in intramolecular C-H inser-
tion reactions in neat water, in presence of water soluble
Rh,(OAc),. The reaction was carried out at 80 °C with turnover
numbers (TON) of 883 for a total of 10 cycles. Interestingly, less
hydrophobic substrates tend to give alcohols resulting from
addition of water to the metal carbene (Fig. 4a).* These results
suggest that hydrophobic metal carbenes somewhat avoid the
reaction with water molecules, and prefer to undergo the C-H
insertion.

Further studies revealed that the use of more hydrophobic
catalysts such as Rh,(Oct), partially avoided or completely
suppressed the hydroxylation reaction, even when less hydro-
phobic substrates were employed.”

Another interesting metal-carbene mediated C-H insertion
was proposed by the group of Ye, using ynamides as carbene
precursors and gold catalysts. In the presence of an oxidant, the
reaction generates a-oxo gold carbenes that can be trapped by
indoles or anilines (Fig. 4b). The intermolecular reactions were
carried out at 80 °C using water as reaction media, providing the
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Fig.4 C-H insertion reactions in water. (a) Intramolecular insertion of
rhodium carbenoids into aliphatic C—H bonds reported by Afonso and
coworkers. (b) Functionalization of indoles and anilines by in situ
generated a-oxo gold carbenes.
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C-alkylation products in excellent yields, after 1-2 hours.”
Remarkably, the presence of water suppressed undesired over-
oxidations of the gold carbene.

3.1.3 Insertions into X-H bonds. Insertion into X-H bonds
(X = heteroatom) is a particularly interesting reactivity of metal
carbenes to generate carbon-heteroatom bonds, and can also
be achieved in the presence of water. In 2015, Simonneaux and
coworkers reported the insertion of carbenes into N-H bonds of
amino acid derivatives in aqueous media (Fig. 5a). The process
is catalyzed by a water soluble iron porphyrin, FeTSPPCI
((5,10,15,20-tetrakis)-(4-sulfonato-phenyl)-porphyrin-iron(ur)
chloride), and was performed in citrate buffer at pH 10. In
addition to the expected product, the reaction also produces
small amounts of bis-inserted compounds. FeTSPPCIl also
proved to be an effective catalyst for site-selective modification
of the terminal NH, group of insulin using EDA, and a PBS/
acetonitrile (7 :4) mixture as reaction media, with 90%
conversion after 1 h. In this case, 10% of the double insertion
product was detected.”

In 2016, Sivasankar and coworkers reported an efficient
synthesis of a-amino phosphonates in water via insertion of
copper(i) carbenoids into the N-H bond of anilines under mild
reaction conditions (Fig. 5b). The best results were obtained
with (CH3CN),CuClO, as catalyst, yielding the desired N-H
insertion products in short reaction times (from 15 min to 2 h in
most cases).” Later on, in 2017, they found conditions for the
N-H insertion of carbenes exhibiting different electronic prop-
erties. AgOTf was the best choice for donor/donor carbene
precursors, providing moderate yields after 5 minutes of reac-
tion, while for donor/acceptor carbenes containing aryl and
ester groups, Pd,(dba); led to the product in 90% yield after 30
minutes. In the case of acceptor/acceptor carbenes, the most
efficient catalyst was found to be [Ir(COD)Cl],, affording the
N-H insertion product in 81% yield after 12 h. The authors
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studied in more detail the reaction for acceptor/acceptor car-
benes, and used their method to synthesize a series of aniline-
derivatives in good yields. However, in the case of aliphatic
amines, such as benzylamine, and heteroaromatic amines like
2-aminopyridine, only traces amounts of the N-H insertion
products were detected.”™
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Fig. 6 (a) Gold-catalyzed tandem O-H insertion/cyclization in DMF/
H,O. (b) Doyle—Kirmse reaction of in situ generated sulfonium ylides.
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Fig. 5 N-H insertion reactions in water. (@) N—H insertion of iron carbenoids into amino acid derivatives catalyzed by a water soluble iron
porphyrin in citrate buffer (CBS) reported by Simonneaux. (b) Carbene insertions into N—H bonds of anilines catalyzed by copper or iridium
complexes reported by Sivasankar. (c) Iron catalyzed annulation of 1,2-diamines and diazodicarbonyl compounds reported by Lee.
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In 2016, Lee and coworkers reported an elegant strategy for
the synthesis of quinoxalines, pyrazines and benzoquinoxalines
through the annulation of 1,2-diamines and diazodicarbonyls
in water at 70 °C, using Fe(OTf); as catalyst (Fig. 5¢). The process
is initiated by the insertion of an iron carbenoid into the N-H
bond of the diamine, followed by cyclization and oxidative
aromatization, to afford the desired heterocycles in excellent
yields.”

A relevant report by the group of Kwak in 2016 described the
use of a Cu(1)-zeolite as a heterogeneous catalyst for the N-H
insertion of a-diazoesters into substituted anilines. The reac-
tion proceeds under mild conditions in a mixture of H,O/t-
BuOH (1 : 1). The Cu(1)-zeolite catalysts were stable and could be
recycled, maintaining their activity over four reaction runs.”®

Gross and coworkers reported N-H insertion reactions of
EDA and ethyl diazopropionate (EDP) on anilines in aqueous
solutions, catalyzed by iron corrole conjugated albumins. The
authors did not observe enantiomerically enriched products in
any of the cases, and did not comment on the potential accel-
erating effect of the protein.”

In some transformations, the insertion of water into the
metal carbenes is the desired process. This is the case of the
work of Wang et al, who developed a water insertion/
oxacyclization cascade of o-acetylenyl-substituted phenyl-
diazoacetates catalyzed by the gold(1) complex IPrAuCl (Fig. 6a).
The process takes place through a sequence of gold carbene
formation/water trapping and alcohol-alkyne 6-endo-dig cycli-
zation. The transformation can take place in neat water
providing mixtures (2 : 1) of 5-endo-dig and 6-endo-dig cycliza-
tion products; however, the best conditions consisted of using
a mixture DMF/H,O (1 : 1) at 80 °C for 24 h, providing 1H-iso-
chromenes in moderate to good yields (64-82%).”

3.1.4 Ylide formations. A powerful method for C-C bond
formation is the [2,3]-sigmatropic rearrangement of sulfonium
ylides generated in situ by reaction between a metal carbene and
a sulfide, also known as the Doyle-Kirmse reaction. This
transformation has also been described in water, proceeding
efficiently with Rh,(OAc), (0.5 mol%) as catalyst, at room
temperature, with different aryldiazoacetates and phenyl allyl
sulfide, affording the products in excellent yields (82-97%,
Fig. 6b).” When phenyl propargyl sulfide was used as reaction
partner, the reaction was very slow, and a more hydrophobic
catalyst such as Rh,(Oct), was needed to obtain the products in
high yields (87-95%).

3.2. Chemoselective reactions of peptides and proteins

The above examples demonstrate that, in contrast to preestab-
lished assumptions, the reactivity of metal carbenes can be
harnessed in the presence of aqueous mixtures. This is espe-
cially relevant for their potential use to modify biological poly-
mers like peptides or proteins, as most of them require aqueous
solvents for an appropriate handling and solubility. As early as
in 1966 it was shown that diazoketones, in the presence of
copper salts, were able to inactivate pepsin, apparently due to
the selective modification of a carboxylate residue in the active
site of the protein.**®

© 2022 The Author(s). Published by the Royal Society of Chemistry
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However, truly designed protein modification reactions
using metal carbenes were not reported until almost 40 years
later. In 2004, Antos and Francis demonstrated the viability of
using rhodium carbenoids for the selective modification of
tryptophan side chains in myoglobin and subtilisin (Fig. 7a).
The reaction was performed in water/ethyleneglycol (8 : 2, in the
millimolar concentration range), using o-diazo esters and
Rh,(0OAc),, and in the presence of hydroxylamine, providing
a mixture of indole N-H and C-H insertion products. The
addition of hydroxylamine dramatically enhanced the reactivity
of the catalyst, presumably by binding to the distal rhodium of
the bimetallic catalyst and stabilizing the reactive intermedi-
ates.®” Subsequent studies using N-(tert-butyl)hydroxylamine as
additive allowed modification of peptides and proteins (lyso-
zyme and FKBP mutants) selectively on tryptophan residues
exhibiting solvent-accessible indole side chains, at mild pH.*

In 2013 Ball demonstrated the feasibility of performing
selective cysteine modification under mild reaction conditions,
using a N-(tert-butyl)hydroxylamine-containing buffer employed
by Antos and Francis, Rh,(OAc), and a biotin-tethered diazo
substrate. The authors applied these reaction conditions to
a mixture of proteins, and observed the modification of proteins
with accessible cysteine thiols, while those with buried or
oxidized cysteine residues remained unmodified.**

Che et al. reported the first example of a metalloporphyrin-
catalyzed carbene transfer for the selective modification of
proteins. A designed water-soluble ruthenium glycosylated
porphyrin catalyst [Ru"(4-Glc-TPP)(CO)] (1,4-Glc-TPP = meso-
tetrakis(4-(B-p-glucosyl)phenyl)porphyrinato  dianion)
employed for different carbene transfer reactions in aqueous
media (inter- and intramolecular cyclopropanation, Doyle-
Kirmse reaction, N-H insertion). Interestingly, the catalyst
proved to be effective for the selective alkylation of the N-
terminus of peptides and proteins using a fluorescent-
tethered diazo compound (Fig. 7b). However, when the
protein presented free thiols (cysteines) in its structure, the
insertion of the metal carbene took place into the S-H bond
rather than in the terminal N-H bond.*

Interestingly, Fischer carbenes have also been employed for
bioconjugation reactions. Jaouen and coworkers performed
a organotungsten labelling of bovine serum albumin using
a Fischer carbene with the general formula L(CO),W=C(OR")
R”.% The authors observed a side-chain specific labelling in the
amino group borne of some lysine residues, leading to stable
aminocarbene adducts. On the other hand, Sarkar et al. modi-
fied self-assembled monolayers (SAMs) on gold or glass with
Fischer carbenes to immobilize protein A on surface, through
reaction of pendant lysine residues with the electrophilic
Fischer carbene (Fig. 7¢).*

Despite these successes, the reactions tend to be low
yielding, and chemoselectivities are, in many cases, modest. As
an alternative to these methods, Ball and coworkers developed
an elegant strategy based on proximity-driven bioconjugations
that combines molecular recognition with metallocarbene
reactivity. This approach is based on the use of a dirhodium
metallopeptide made of a rhodium(u) catalyst conjugated to
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a peptide that is able to recognize another specific protein (via
a coiled-coil assembly, Fig. 7d).*®

Using this approach, the authors performed site-specific
modification of peptides and proteins at physiological pH,
and in biologically relevant buffers.?** The use of biotin-diazo
conjugates as reagents allowed for affinity tagging of the target
proteins. They were even able to use designed metallopeptide
catalysts to perform selective protein modifications in E. coli
lysate. Moreover, they developed a strategy for the site-specific
functionalization of antibodies based on the wuse of

6484 | Chem. Sci, 2022, 13, 6478-6495

a hexarhodium metallopeptide catalyst with affinity for the Fc
fragment of the antibody.”” Based on molecular recognition of
the Fc region, this approach enabled the introduction of
orthogonal alkyne handles into mono- or polyclonal antibodies,
opening the door to the quick production of antibody
conjugates.

3.3. Chemoselective modification of nucleic acids

Pioneering work by Gillingham et al. demonstrated the poten-
tial of metal carbenes to perform selective post-synthetic

© 2022 The Author(s). Published by the Royal Society of Chemistry
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modifications of oligonucleotides. In their first report, in 2012,
they used Rh,(OAc), to catalyze the structure-selective N-H
insertion of in situ generated rhodium(u) carbenoids into
exocyclic amine groups of purine nucleobases under mild
conditions. The reaction was carried out in aqueous buffers
using donor/acceptor substituted carbenes at concentrations of
50 mM. This approach allows strategic targeting of solvent
exposed nucleobases in double-stranded nucleic acids, as well
as in single strands, bulge regions or overhangs (Fig. 8a, left).”

Shortly thereafter, they demonstrated the effectiveness of
Cu(r) salts, generated from copper sulfate and sodium ascor-
bate, to catalyze a similar insertion of donor/acceptor carbenes
into the N-H bond of adenine in MES buffer. The diazo
compound was further modified to contain an alkyne or azide
handle, thus developing a tandem carbene insertion/CuAAC
reaction (Fig. 8a, right).**
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Interestingly, the use of acceptor carbenes generated from a-
diazoesters or diazoacetamides and copper(i) led to chemo-
selective alkylation of the O° position in guanine (0%G) in
mono- and oligonucleotides, attributed to the pre-coordination
of the catalyst to the N7 of guanine (Fig. 8b).” However, with
complex oligonucleotides containing multiple chelation sites,
reaction rates are low, likely due to unproductive catalyst
sequestration.

Very recently, Park and coworkers reported an elegant site-
selective post-synthetic modification of oligonucleotides at
unpaired guanosines. The use of a coordinatively saturated
Rh(1) catalyst like [Rh(COD)Cl], circumvented the chelation
issues related to the deactivation of the catalyst observed by
Gillingham, while maintaining the chemoselectivity towards
base-unpaired guanosines in single- and double-stranded
oligonucleotides. They exploited this feature and introduced

a) N, P
ook S P
NH, lo) 4
HN SAr Ar)j\COZMe 0 o 0 HN?" N
(0]
<N XN Rhy(OAc), (10 mol%) < ) CuSO;, ascorbate </N a O)
) MES buffer pH 6, 24 h MES buffer pH 6 N N/)
YA '\ {-BUOH (20-50% V/v) ) = alkyl or
y /\ ® DNA and RNA alkylation p \// biotinylated
® preference for purine nucleobases @ — - - fragment

P . < v
Y\ (I @uﬂ ( :l i

turn regions overhang regions |

‘single-stranded double-stranded

@ tandem carbene insertion/CuAAC @ small DNA fragments

® mild conditions

bulges hairpins
b) 0 COXR
0 G o/\ﬂ/ AR |I/| 0
XR E Cu ® chemoselective at 05-G
/N NH CUSO4, ascorbate /N ' /N NH e N’-G directing group controls selectivity
< )\ < | )\ \via < I @ mild conditions
N N/ NH MES buffer pH 6 5 'T‘ N/ NH, © yields up to 92%
Z \// \ X=OR,NR; !
c)
1st iteration - 2nd iteration GE} G>,}
3 3 3
5'/\/\ ssDNA 5'/\/\ ssDNA 5'/\!3/\

natural ON separation mono-functionalized separation ‘
di-functionalized
Bulge-G Bulge-G
formation formation
A * b€ >
G Q' e —)
AT g G S
G LT LI ¢ ¢ ITETCTE e rreee ., - l,_"m
; : 3 , N A ’ 3 S 'N'-times iteration
S T T e ST T
3 5 3 5

Bulge-selective
labeling

Bulge-selective
labeling

@ terative introduction of multiple modifications
in a programmable fashion

@ highly diluted conditions

® DNA-protein cross-linking

Fig. 8 Nucleic acid alkylation using metal carbenes. (a) Structure-selective catalytic alkylation of DNA and RNA (left) and tandem carbene N-H
insertion/CUAAC (right) reported by Gillingham. (b) Chemoselective alkylation at guanine O®-G using copper carbenes reported by Gillingham.
(c) Site-selective functionalization of oligonucleotides using rhodium carbenes reported by Park, reproduced with permission from ref. 96,
licensed under a Creative Commons Attribution (CC BY) license. It is attributed to Park, and the original version can be found here (https://

www.nature.com/articles/s41467-021-21839-4).
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guanosine-bulge loops in duplexes, which resulted in high
regioselectivity, and allowed iterative introduction of multiple
modifications in a programmable fashion (Fig. 8c).°® The utility
of this approach was further showcased by performing DNA-
protein cross-linking in cell lysate.

4. Carbene transfer reactions
catalyzed by metallobiopolymers

A major challenge in research at the interface of catalysis and
chemical biology is the design of artificial metalloenzymes
(ArMs) that can reproduce the catalytic efficiency and selectivity
of natural enzymes, but promoting new-to-nature reactions. In
recent years, and largely thanks to the advent of protein engi-
neering, and specially directed evolution, there has been
impressive progress in the field, and a variety of catalytic met-
alloproteins capable of performing transition-metal catalyzed
reactions have been developed.®** These reactions have been
carried out mainly in vitro, in aqueous buffers, but in recent
years a number of metalloenzymes that also work in bacteria
have been reported.'**'* Importantly, some of the most rele-
vant contributions in this area deal with carbene transfer
mainly because of the ability of metalloheme-
containing proteins to generate metal carbene intermediates.

The design and development of ArMs has been largely based
on repurposing natural metalloenzymes or on anchoring
a metal cofactor to a protein-binding pocket. In the first
approach (Fig. 9, left), a natural metalloenzyme is modified by
directed mutagenesis and/or by introducing a non-natural
metal-containing cofactor. In the second approach (Fig. 9,
right), the metal can be either covalently bound to protein
residues, or anchored into a protein cavity through supramo-
lecular association (e.g. biotin-modified catalysts in streptavi-
din, strategy primarily developed by Ward).

Although the overwhelming number of reports of the use of
ArMs to perform carbene transfer reactions cannot be covered
in this review, we present some selected contributions. In this
first section, we will mainly focus on the strategies employed to
prepare new ArMs and their reactivity profiles, while the
following section spotlights the compatibility of the systems
with living cells. Besides, we will also disclose some examples of

reactions,

General strategies for the development of ArMs

From natural metalloenzymes Anchoring metals to a protein
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&

supramolecular
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Fig. 9 Main strategies for the development of ArMs.
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the use of nucleic acids instead of protein as coatings for the
catalytic metals in carbene transfer processes.

4.1. Reactions promoted by heme-containing artificial
metalloenzymes

4.1.1 Metalloenzymes based on natural counterparts. One
of the most widely used strategies to create ArMs consists of the
modification of native heme-based metalloenzymes, since they
already exhibit a metal-containing prosthetic group. In this
approach, it is common to perform an initial screening to
identify a suitable metalloenzyme for the desired reaction, that
can then be subjected to directed evolution to improve effi-
ciency and selectivity. Alternatively, the native heme moiety can
be replaced by others that present defined modifications on the
porphyrin or the metal (Fig. 9, left).

Arnold and coworkers, envisioning the structural similarity
between the iron-oxo intermediate involved in cytochrome
P450-catalyzed oxidations and an iron carbene, repurposed the
system to work as a carbene transferase. In 2013, using as
benchmark reaction the cyclopropanation of styrene with EDA,
they demonstrated that variants of P450gy; from Bacillus meg-
aterium can promote the carbene transfer, forming cyclopro-
pane products with high levels of diastereo- and
enantioselectivity.’*'** Additional studies using directed
evolution to introduce mutations at the binding pocket of
different P450 cytochrome variants allowed to tune the selec-
tivity and activity. Therefore, in the last decade, the group has
successfully engineered new variants that catalyze cyclo-
propanation**®'*” and cyclopropenation’®® reactions, as well as
N-H,' Si-H,"° B-H'" and C-H"**'* insertions, with high rates
and turnovers, and exquisite regio- and stereocontrol.

In 2014, Fasan et al. extended this strategy to other heme
proteins, developing evolved variants of myoglobin (Mb) and
horseradish peroxidase. Furthermore, they demonstrated that it
is possible to replace the heme group by porphyrin cofactors
with abiotic metals (i.e. Mn or Co), to give metalloenzymes with
similar levels of activity and selectivity."* Using directed
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Fig. 10 Insertion of carbenes into C(sp®)—H bonds catalyzed by
several metal-PIX reconstituted myoglobins containing a single
mutation at the axial residue.
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evolution, they reported Mb mutants that successfully catalyze
the cyclopropanation of a variety of aryl-substituted olefins with
EDA, with excellent levels of diastereo- and enantiose-
lectivity.”>*** They also developed variants that catalyze car-
bene transfer reactions such as insertions into N-H,***"*?3 S-H'>*
or Si-H"® bonds, and ylide formations.**®

Other pivotal contributions in the field were made by the
laboratory of Hartwig in 2016, by replacing iron with iridium
(exhibiting a methyl group as axial ligand) in myoglobins. After
directed evolution, they identified versions, such as [Ir(Me)-
PIX-Mb], that display carbene transfer activity and can even
promote stereoselective Csp>~H bond insertions.’”” The same
strategy was applied to variants of the cytochrome P450 enzyme
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CYP119, to give ArMs (Ir(Me)-MPIX-CYP119) with high activity
and excellent selectivity (C-H bond insertions with up to 98%
enantiomeric excess, 35 000 turnovers, and 2550 per hour
turnover frequency, Fig. 10).*>* In addition to the improved rates
and the enantioselectivities that can be achieved, some ArMs
allow challenging regioselectivities to be controlled, such as in
C-H insertions in a range of 4-substituted phthalan
derivatives.

It is also possible to build ArMs with modified heme scaf-
folds, such as the one developed by Lehnert with meso-
porphyrin IX (RuMpIX) incorporated into wild-type (wt) Mb and
Mb mutants (Fig. 11). However, these modified proteins
exhibited moderate catalytic activity towards the cyclo-
propanation of styrene derivatives, and in N-H modifications of
aniline derivatives.'* Hayashi et al. selected an iron porphycene
cofactor to reconstitute myoglobin, and demonstrated that the
modified protein significantly accelerates a catalytic cyclo-
propanation reaction, which turned to be 615-fold faster than
that obtained using native myoglobin (Fig. 11). Interestingly,
the authors performed mechanistic studies and reported the
first spectroscopic observation of the active metallocarbene
species in this type of reconstituted proteins.™*

All these impressive contributions demonstrate the enor-
mous power of ArMs to perform carbene transfer reactions in
aqueous buffers, with rates and selectivities much better than
those achieved under standard organometallic conditions with
discrete catalysts.

4.1.2 Artificial metalloenzymes featuring other type of
protein scaffolds. A different approach to build ArMs relies on
anchoring a metal-containing ligand into protein pockets other
than those present in native metalloenzymes (Fig. 9, right).
Lewis et al. made a de novo synthesis of a metalloenzyme by
covalently linking a dirhodium tetracarboxylate bearing
a cyclooctyne to a genetically engineered prolyl oligopeptidase

129
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Supramolecular
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Fig. 12 De novo designed metalloenzymes. (a) Rhodium ArM developed by Lewis. (b) Self-assembled LmrR-heme metalloenzyme reported by
Roelfes, reproduced with permission from ref. 135, licensed under a Creative Commons Attribution (CC BY-NC 4.0) license, by Roelfes. Dis-
colored from original. The original version can be found here (https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201802946). (c)

Streptavidin-biotin strategy followed by Ward.
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(POP) equipped with an azidophenylalanine (Fig. 12a)."*> The
resulting ArM displayed excellent catalytic properties for the
intermolecular cyclopropanation of several styrene derivatives.
Through directed evolution, both the activity and enantiose-
lectivity could be improved.'*® These evolved ArMs also cata-
lyzed diazo cross-couplings in a highly chemo- and
stereoselective fashion. Moreover, a one-pot cascade reaction
was developed by combining diazo coupling with an enantio-
selective reduction of the resulting alkene, using an alkene
reductase.'**

In 2018, Roelfes and coworkers reported the de novo design
of a non-native heme protein based on the large, promiscuous,
hydrophobic binding pocket of the lactococcal multidrug
resistance regulator (LmrR) (Fig. 12b). By self-assembly of
hemin and LmrR in a buffered solution, they created a bio-
catalyst for the cyclopropanation of styrene derivatives with
EDA. The reaction requires an inert atmosphere and the addi-
tion of sodium dithionate as a reductant agent to generate the
active Fe(n) heme complex. Among the different mutants
synthesized, LmrR_MS8A delivered the product with good yield
(45%) and reasonable enantiomeric excess (ee = 51% [1R,2R
enantiomer]), and TTNs up to 449. Interestingly, the crystal
structure showed that the iron centre is apparently inaccessible
for the substrates, as it is sandwiched between two tryptophan
residues, and therefore, the dynamic nature of the enzyme
seems to be responsible for the observed activity and
enantioselectivity.'*

Inspired by the work of Wilson and Whitesides,
groups, and especially Ward's, have designed artificial
enzymes based on the use of biotin-avidin interactions to
tether the metal cofactor to the protein. In 2018, the group
demonstrated that covalently anchoring a dirhodium catalyst
to a biotin, and embedding it within engineered streptavidin,
gives a hybrid catalyst for olefin cyclopropanation and car-
bene C-H insertion reactions, albeit with modest perfor-
mances (Fig. 12¢)."*” Importantly, they demonstrated that the
strategy can be implemented to work in the periplasm of E.
coli (vide infra).

136 gseveral

4.2. Carbene transformations promoted by metals coated on
DNA scaffolds

Although much less than proteins, nucleic acids have also been
used to build metalloderivatives capable of performing carbene
transfer reactions in aqueous buffers. DNA can be considered as
a privileged scaffold that can provide a protective microenvi-
ronment for metal carbene intermediates, while also serving as
a source of chirality.

Pioneering work in this field of DNA-based organometallic
catalysis was performed by Roelfes et al. (Fig. 13a). Using copper
complexes with intercalating ligands (dppz derivatives), and
salmon testes duplex DNA as a source of chirality, they achieved
asymmetric intramolecular cyclopropanation of a-diazo-B-
ketosulfones, with enantiomeric excesses up to 84%.'** Likely,
the microenvironment resulting from the stacking of the
ligands between the DNA bases may favour cyclopropanation
over water addition to the carbene.

6488 | Chem. Sci,, 2022, 13, 6478-6495
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Fig. 13 DNA-based carbene transfer reactions. (a) Intramolecular
cyclopropanation catalyzed by assembled DNA/Cu complexes. (b)
Cyclopropanation of styrene with EDA using DNA-based biocatalysts.

They also implemented the use of porphyrin metal ligands in
this type of carbene transfer reactions. In 2016 they reported
a DNA-accelerated cyclopropanation of styrene derivatives with
EDA, with a moderate enantiomeric excess of 53% in the pres-
ence of the salmon testes DNA/cationic iron porphyrin hybrid
catalyst (Fig. 13b). An ortho-substituted N-methylpyridinium
porphyrin that predominantly interacts with DNA through
groove binding, and makes the catalytic site accessible for
substrates, was shown to be the best catalyst.”*®* The authors
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proposed that the rate acceleration observed may be related to
the formation of hydrophobic pockets in the DNA upon binding
of the iron porphyrin, thus providing a high effective molarity
that benefits reactivity.

DNA G-quadruplexes (G4s) have recently been incorporated
as scaffolds for transition-metal promoted carbene transfer
reactions. In 2019, Sen's group reported the cyclopropanation of
styrene with EDA using heme-DNAzymes as catalysts (Fig. 13b).
They exploited the ability of hemin to target and bind by
stacking parallel G4 DNAs with three unpaired adenines or
thymines at their 3’-end (G4-AAA or G4-TTT). The resulting
complex was used to perform cyclopropanation reactions in
yields up to 80%, and with good cis/trans ratios (8 : 92); but not
significant enantiomeric excesses. Interestingly, the G4s
provided faster kinetics and better product turnover than when
using disaggregated hemes, both in the absence and in the
presence of other DNA folds (e.g. double-stranded DNA).**

Li et al. built hybrid systems using intramolecular antipar-
allel G-quadruplex variants of thrombin-binding aptamer (TBA)
G4-DNAs and cationic Fe porphyrin FeTMPyP4 (Fe-meso-tet-
ra(N-methyl-4-pyridyl)porphyrin, Fig. 13b). After adequate
mutations, two efficient stereocomplementary catalysts were
identified. Specific residues in the G4 structure, spatially close
to the active site, were crucial for obtaining good selectivities in
cyclopropanation reactions.***

5. Exporting metal carbene reactions
into biological environments and living
cells

5.1. Organometallic reactions in living contexts

Nature exploits the efficiency and selectivity of native metal-
loenzymes to regulate a plethora of biochemical trans-
formations in living cells and organisms. As stated above,
artificial metalloenzymes have demonstrated impressive activ-
ities in abiotic processes in vitro; however, their use in living
cells has been essentially limited to bacteria, and usually with
metal cofactors that are very similar to those occurring in
nature. This contrasts with discrete transition metal catalysts,
that have demonstrated to work in complex biological envi-
ronments and even within living mammalian cells, albeit with
very modest activities.*'*1>17~43

As indicated in the previous sections, reactions involving
metal carbenes can be performed in aqueous media, using
specifically tailored conditions. A more challenging issue is
related with their bioorthogonality, and the possibility of
exporting them to complex biological environments and living
settings. Although advances in this area have been scarce,
a number of reports increasingly show the potential of metal-
promoted carbene transfer reactions in the fields of bio-
orthogonal and biological chemistry.

5.2. Carbene transfer reactions in cellular settings and in
bacteria

In addition to the considerations mentioned above, exporting

metal carbene chemistry to living environments poses

© 2022 The Author(s). Published by the Royal Society of Chemistry
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NS O TMS _ <j§\
Ts—N Cp*RuCI(COD)
— biological media*
air, r.t., 5 min
Ts—N

*E. coli lysate, Rattus norvegicus urine, HS, FBS

@ bio-tolerant o fast @ complex biological media

Fig. 14 Ru-catalyzed fusion of a diazo with an enyne in complex
biological media to provide bicyclic cyclopropanes reported by Teply
and coworkers.

important challenges associated with the activity and, espe-
cially, stability of the catalyst and/or reactive intermediates, and
the selectivity towards abiotic substrates in the presence of
different biomolecules (thiols, amines, amino acids...).

5.2.1 Reactions mediated by small, discrete metal
complexes. An isolated report by Teply and coworkers (Fig. 14),
indicated that Cp*RuCl(COD) is capable of promoting the
reaction of trimethylsilyldiazomethane with an enyne to give
bicyclic cyclopropanes in moderate yields. According to the
authors, the reaction proceeds very quickly (5 min), in an open
to air flask, and in the presence of complex biological media
such as E. coli cell lysate, Rattus norvegicus urine, human serum
or fetal bovine serum.” These results are very promising in
terms of the bioorthogonal possibilities of this type of carbene
transfer reactions.

A particularly remarkable contribution in the area was dis-
closed by Balskus et al., who demonstrated that metallocarbene
chemistry can be interfaced with bacterial metabolism. They
engineered E. coli to generate styrene from bp-glucose, and
integrated metallocarbene intermediates into the metabolic
pathway using a biocompatible iron(ur) phthalocyanine catalyst
(FePcCl) that transformed styrene into non-natural phenyl
cyclopropanes in single-vessel fermentations (Fig. 15).*

Very recently, Mascarefias and coworkers reported the first
example of a metal-carbene transfer reaction within live
mammalian cells (Fig. 16). Using a common copper salt
(Cu(OAc),), they synthesized benzoquinoxalines in cellulo, in

Engineered
E. coli
FePCCl CO,Et
D-glucose @—— 2
aeroblc
Microbial metabolism 32°C,60h 95% yield, d.r. 3.5:1

©® Biocompatible metal catalyst
® |ntegration of metallocarbene

chemistry with E. coli metabolism

Fig. 15 Combination of microbial metabolism and metallocarbene
chemistry to generate cyclopropanes from p-glucose in E. coli re-
ported by Balskus.
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Fig. 16 Exporting metal carbenes to live mammalian cells. Copper
catalyzed synthesis of quinoxalines enabled by N—-H carbene insertion.

a one-pot process that is initiated by an N-H carbene insertion
of the in situ generated copper carbenoid into ortho-amino
arylamines. The intracellular generation of a fluorescent ben-
zoquinoxaline allowed for in vivo monitoring of the reaction by
fluorescence microscopy. Remarkably, the methodology could
be applied to elicit biological effects through the intracellular
synthesis of Tyrphostin AG1385, a tyrosine phosphorylation
inhibitor that disrupts mitochondrial functions, producing
mitochondrial fragmentation and depolarization. Moreover,
the authors were able to elicit cell-selective responses by
equipping the copper catalyst with a targeting unit (RGD
motif)."**

5.2.2 Transformations catalyzed by metalloenzymes

Metalloenzymes derived from natural counterparts. As previ-
ously indicated, some of the metalloenzymes capable of
promoting carbene transfer reactions have been used directly in
vivo, in the bacteria in which they are generated. The first
example was reported by Arnold's group in 2013. Following
their initial studies on directed evolution of cytochrome P450,
they demonstrated that the introduction of an axial cysteine-to-
serine mutation in the iron cofactor abolishes mono-
oxygenation activity of P450 while maintaining carbene transfer
activity (Fig. 17). They performed the cyclopropanation of
styrene with EDA in whole-cells using E. coli expressing a serine-

Fe carbene

Fe(lV) oxene

Fig. 17 Comparison of Fe-oxene and Fe-carbene intermediates in
heme-based metalloenzymes proposed by Arnold.10410
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mutated P450 (also called P411), obtaining good results in
terms of yield, diastereo- and enantioselectivity, as well as good
turnover numbers.'®

It is worth noting the strategy reported by Arnold in 2016,
which allowed the in vivo production of organosilicon
compounds (Fig. 18a)."** In this case, cytochrome ¢ from Rho-
dothermus marinus (Rma cyt ¢) was shown to be the most active
hemoprotein. Importantly, high levels of selectivity were ach-
ieved for Si-H carbene insertions. Even in the presence of other
functionalities such as alcohols or primary amines, styryl
olefins or electron rich double bonds, susceptible of undergoing
O-H, N-H insertion or cyclopropanations, the C-Si bond
formation was predominant. Interestingly, by selecting the
adequate ArMs, the authors were able to selectively catalyze the
insertion of the carbene either into a Si-H or N-H bond of the
same substrate (Fig. 18b).'*®

a) Si-H insertion

AN o E. coli* H f
;Sie + R 5 RM "
R' "H OR® ' Mo-N buffer (pH 7.4) . B
N2 N328204, rt,4h //S|\R1
*Cytochrome ¢ from Rhodothermus marinus TON up to 3410
(Rma cyt c) 98% ee
@ carbon-silicon bond formation @ high TON ® high ee

@ high chemoselectivity @ yields up to 70%

b) Engineered cytochrome c carbene transfer catalysts

Different front loop
conformations

8l
o

Rma TDE
97%
Si~H insertion

Rma TDFPI
90% amination

H
Si.,
o
EtOYLN
0O H

Activity and chemoselectivity can be altered by tuning the
conformational dynamics of Rma cyt c front loop via new mutations

c¢) B-H insertion
Nz BH2

E. coli*
+ - 3
RI-BH, + RziH(OR R/H(
M9-N buffer (pH 7.4)
O

0 rt,6h

OR®

*Cytochrome c from Rhodothermus marinus
(Rmacytc)

TON up to 15300
er > 99:1

@ carbon-boron bond formation @ high TON @ high ee

® gram-scale biosynthesis @ total chemoselectivity

@ proteins more active in the context of the whole-cell

Fig. 18 Expanding nature's carbene catalytic repertoire for in vivo (E.
coli) reactions. (a) Synthesis of chiral silicon compounds. (b) Chemo-
selectivity of carbene transfer: Si—H versus N—H insertion, reproduced
from ref. 145 with permission from American Chemical Society,
copyright 2021. (c) Synthesis of chiral boron compounds.
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Fig. 19 Combination of microbial metabolism and artificial metal-
loenzyme cyclopropanation to generate cyclopropanes from b-
glucose in E. coli reported by Hartwig (CYP119 PDB ID: 14FU).

Using directed evolution, they could enhance the catalytic
function of this ArM for B-H insertions, reporting, one year
later, a fully genetically encoded platform for producing chiral
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organoboranes in bacteria (Fig. 18c).""* These enzymes were
found to form carbon-boron bonds in the presence of borane-
Lewis base complexes, through carbene insertion into the
boron-hydrogen bond. Surprisingly, the variants demonstrated
to be even more productive when the reactions were carried out
using whole Escherichia coli cells expressing this enzyme.

The P411 scaffold has been further optimized by directed
evolution, and demonstrated to work in E. coli for other reac-
tions, such as the synthesis of bicyclobutanes, via successive
carbene addition to unsaturated carbon-carbon bonds.™*

Fasan and coworkers reported the first example of intra-
molecular olefin cyclopropanations with allyl a-diazoacetate
derivatives (with high stereocontrol and complementary enan-
tioselectivities), in whole cells, using engineered Mb based
catalysts.'” The same strategy was applied to the synthesis of
symmetrically fused cyclopropane-y-lactams starting from
allyldiazoacetamides.™®

Very recently, Arnold et al. evolved a hemoprotein (P411) that
exhibits a mechanism entailing an N-H insertion and
a protonation at the active site of the protein. This engineered
active site also places the necessary water molecules for rapid
and stereoselective proton rearrangement prior to product
release. The ArM works in whole cells, exhibiting high activity
and enantioselectivity (up to 98% ee).'**

All the above reactions are based on the modification of
native metalloprotein systems. The intracellular assembly of
metalloproteins equipped with non-natural metal cofactors is
more difficult.

An interesting example from Brustad's group deals with the
engineering of cytochrome P450 to selectively incorporate
Ir(Me)-deuteroporphyrin IX (Ir(Me)-DPIX), in lieu of natural

b) Tanaka o

Et,N

/H/\N
N\<C

1)

coumarin-Ru
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cancer cell recognition

117232
5t 4

GArM-Ru

Hydrophobic

binding pocket
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Cancer cell

o
MeO
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- >
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ake
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In vivo metathesis reactions developed by (a) Ward and (b) Tanaka.
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heme, directly in bacteria. The strategy required the introduc-
tion of mutations within the heme binding pocket. The result-
ing “in-cell” assembled iridium complex promoted olefin
cyclopropanation reactions by EDA, and showed enhanced
activity for aliphatic and electron-deficient olefins compared to
the native heme enzyme."°

Hartwig and coworkers recently demonstrated the viability of
assembling an iridium containing heme metalloenzyme in
bacteria, using the HUG system to transport the Ir(Me)MPIX
cofactor into engineered cells expressing CYP119. They even
demonstrated that it is possible to combine natural and artifi-
cial metalloenzymes in E. coli to afford cyclopropanated prod-
ucts from simple sugars (Fig. 19)."' Very recently, they
identified a second system for transporting iridium porphyrin
into Nissle 1917 (a non-pathogenic E. coli strain), based on the
presence of an outer-membrane receptor of these cells.'*

Metalloenzymes based on non-native protein scaffolds. As dis-
cussed above, it is possible to assemble artificial metal-
loenzymes using a biotin-streptavidin recognition strategy.
Ward demonstrated that a dirhodium complex tethered to
a biotin moiety can interact with streptavidin proteins located
in the periplasm of E. coli, and the resulting complex performed
carbene transfer reactions in vivo."” The reactions are only
effective in the periplasm, owing to the absence of thiols and
other components that could deactivate the catalyst.

In addition to carbene transfer reactions from diazo
precursors, metal carbenes are also key reagents and interme-
diates in alkene metathesis processes, which can also be cata-
lyzed by artificial metaloenzymes.’”* Ward and coworkers
designed a biotinylated Hoveyda-Grubbs second-generation
catalyst (biot-Ru) that binds to streptavidin in the periplasm
of E. coli, to give an effective artificial metalloenzyme that
promotes a ring-closing-metathesis (Fig. 20, left).

A similar approach, based on the affinity of coumarin for
albumin, was employed by the group of Tanaka to build ArMs
that perform “in cell” metathesis reactions (Fig. 20, right).***

6. Conclusions

What seemed unfeasible at first, achieving metal-catalyzed
carbene transfer reactions in water mixtures, and even under
the stringent conditions of a biological environment, has now
become a reality. Exporting metal carbene chemistry to these
reaction environments is possible, provided the substrates,
catalysts and conditions are appropriately tuned.

Considering the rich and versatile chemistry of metal car-
benes, we foresee a bright future for further expanding the
applications of these intermediates in chemical and cell
biology, as well as biomedicine.

Current challenges include, among others, the creation of
versatile artificial metalloenzymes that can perform chemo-
selective and bioorthogonal metal-carbene transfer reactions in
mammalian cells, increasing rates and turnover with discrete
metal catalysts, the development of metallocatalysts embedded
in nanoscaffolds that facilitate the reactivity, or the develop-
ment of biological applications.
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