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Advanced fault detection in PV panels using deep
neural networks: leveraging transfer learning and
electroluminescence image processing

Ihtesham Ibn Malek and Hafiz Imtiaz *

Photovoltaic (PV) systems are susceptible to different types of faults, such as electrical, physical, and

environmental issues, which can significantly impact power generation and system reliability. Physical

faults, such as cracks, delamination, shading, dirt accumulation, and temperature fluctuations, can

reduce module efficiency by altering irradiance levels. To address these challenges, accurate and

timely fault detection is essential for ensuring optimal PV system performance and longevity. In this

work, we propose a novel machine learning (ML) approach for fault detection using unlabeled

electroluminescence (EL) images of PV panels. First, we label the dataset through k-means clustering,

applied to features extracted using transfer learning (TL) from a pre-trained VGG-16 model’s

convolutional and pooling layers. k-Means clustering categorizes the images into three classes based on

Silhouette scores, with all healthy panels grouped together. We employ Principal component analysis

(PCA) to reduce dimensionality, revealing that 64 principal components account for 95% of the variance

in the data. Finally, we train and evaluate classical ML models, including random forest (RF) for binary

classification and logistic regression (LR) for three-class classification, achieving accuracies of 97.54%

and 89.44%, respectively. We empirically demonstrate that data augmentation further improves the

performance of the three-class classification, with RF emerging as the best classifier at 91.5% accuracy.

Additionally, we note that the convolutional neural network (CNN) model, which is comparatively

lightweight and computationally efficient, saw an increase in accuracy from 98% to 99.5% with data

augmentation for binary classification, while the semi-supervised learning approach for the three-class

problem achieved an average accuracy of 92.25%. By combining TL, k-means clustering, and data

augmentation, our proposed approach enhances fault detection accuracy, reduces reliance on manual

labeling, and improves PV system reliability. The proposed method advances automated fault detection

techniques and supports the broader adoption of renewable energy systems.

1 Introduction

The global shift towards renewable energy sources has intensi-
fied the adoption of photovoltaic (PV) power systems, position-
ing them as a viable alternative to conventional fossil fuel-
based and nuclear power plants.1–3 The increasing focus on
climate change and energy security has positioned PV technol-
ogy as an environmentally responsible option, leveraging solar
energy with minimal carbon output.4,5 Unlike traditional power
generation methods, PV systems offer significant advantages,
including reduced operational costs, decentralized energy pro-
duction, and improved energy accessibility in remote areas.6,7

Additionally, PV systems enhance grid stability by integrating

distributed energy resources, thereby reducing dependency
on centralized power generation.8,9 However, the transition to
PV-based energy systems also introduces new technical
challenges,10 particularly in maintaining system reliability
and efficiency in diverse environmental conditions.11,12

Despite the numerous benefits of PV systems, their opera-
tional efficiency is often compromised by various types of faults
that affect energy output and system longevity. These faults can
be broadly classified into electrical, physical, and environmen-
tal categories – each posing unique challenges to fault detec-
tion and diagnosis.13,14 Electrical faults, such as open circuits,
short circuits, and degradation of wiring connections, can lead
to severe power losses, increased safety risks, and potential
system failures.15 Physical faults, including micro-cracks, dela-
mination, and corrosion, gradually degrade PV module perfor-
mance, reducing their lifespan. Meanwhile, environmental
faults, such as shading, soiling, and temperature fluctuations,
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cause efficiency losses by affecting the irradiance levels
received by the PV panels.16 Among these, physical and envir-
onmental faults are particularly critical, as they often remain
undetected in early stages, resulting in irreversible damage and
increased maintenance costs over time.17 Therefore, precise
and timely fault detection is crucial for ensuring the durability
and optimal performance of PV installations.18 To address
these challenges, researchers have explored various fault detec-
tion methodologies, ranging from traditional model-based
approaches to advanced data-driven techniques.19 Model-
based methods, such as equivalent circuit modeling and ana-
lytical techniques, provide theoretical insights into PV system
behavior but require extensive parameter tuning, making them
less adaptable to real-world variations.20

Real-time monitoring methods, including infrared thermo-
graphy and electroluminescence (EL) imaging, offer practical
means of identifying physical defects but often demand spe-
cialized equipment and favorable environmental conditions for
accurate assessment.21 Similarly, output signal analysis techni-
ques, such as wavelet transforms and statistical methods, have
demonstrated promising results in detecting anomalies in PV
performance. However, they lack robustness when dealing with
large-scale and complex PV arrays.22 Recent advancements in
machine learning (ML) have revolutionized PV fault detection
by enabling automated and high-accuracy classification of
faults based on historical data and real-time measurements.23

Traditional ML techniques, such as support vector machines
(SVMs) and decision trees (DTs), have been applied to fault
diagnosis with varying levels of success, achieving detection
accuracies of up to 99.5% for electrical faults.13 Additionally,
thermography-based fault classification has demonstrated
93.4% accuracy,21 while wavelet transform approaches using
radial basis function networks have reached 97% efficiency in
identifying faults within a 1kW PV system.22 Among ML-based
approaches, deep learning models,24 notably convolutional
neural networks (CNNs), have demonstrated superior perfor-
mance in detecting physical and environmental faults by
analyzing image-based datasets.25 However, a persistent chal-
lenge in applying CNN-based models to PV fault detection is the
reliance on well-labeled datasets, as mislabeling in training
data significantly impacts model accuracy and generalization.26

Existing research has highlighted the limitations of super-
vised learning approaches in PV fault detection, emphasizing
the need for improved dataset quality and labeling techniques.
Manual annotation of PV fault images is labor-intensive and
error-prone, while the scarcity of publicly available labeled
datasets restricts model scalability. To mitigate these chal-
lenges, some studies have explored unsupervised clustering
methods to enhance dataset organization; however, their
applicability to large-scale PV datasets remains an open
question.26 Additionally, semi-supervised learning (SSL) has
emerged as a promising approach, combining limited labeled
data with a large amount of unlabeled data to improve model
performance.27

Recent studies have further advanced PV fault detection by
integrating deep learning, IoT, and enhanced monitoring

strategies. For instance, Aljafari et al.28 proposed a 1D-CNN
combined with an IoT platform for grid-connected PV systems,
achieving fault detection accuracies of 98.15% under normal
conditions and 93.12% under cyberattacks, leveraging opti-
mally placed sensors and a temperature-dependent PV model
for real-time monitoring. Similarly, Awedat et al.29 enhanced U-
Net architectures with Residual Blocks, Atrous Spatial Pyramid
Pooling (ASPP), and Attention Mechanisms to improve feature
extraction, contextual understanding, and fault localization
from thermal images, addressing environmental noise and
subtle anomalies. Moreover, Satpathy et al.30 investigated elec-
trical fault tolerance of various PV array configurations using
MATLAB simulations, prototype experiments, and a low-cost
monitoring system with optimal sensor placement and web-
based alerts, demonstrating practical real-time fault detection
and highlighting the robustness of series-parallel configura-
tions. These studies collectively emphasize the effectiveness of
combining deep learning with advanced monitoring and real-
time IoT-enabled systems, highlighting the growing trend
towards practical, accurate, and scalable PV fault detection
frameworks. In addition,31 proposed SPF-Net, combining
InceptionV3-Net with U-Net for PV fault detection, achieving a
validation accuracy of 98.34% and an F1 score of 0.94.32 applied
ResNet architectures on EL images for crack detection,
with ResNet34–152 yielding F1-scores between 86.63% and
88.89%.33 introduced an OpenCV-based automated method
for hotspot detection using grayscale conversion, histogram
analysis, and adaptive thresholding, providing efficient and
scalable PV panel monitoring. These studies further demon-
strate the effectiveness of deep learning and image processing
for accurate PV fault detection.

Furthermore, while transfer learning (TL) has proven effec-
tive in other domains of image classification, its integration
with clustering methodologies for PV fault detection remains a
field to contribute.34 Addressing these gaps is essential for
developing scalable and automated fault detection frameworks
that can adapt to real-world PV deployment scenarios.

An additional but often overlooked aspect of PV fault detec-
tion is the impact of domain-specific variations on classification
performance. Factors such as environmental heterogeneity,
panel aging effects, and variations in PV module technologies
introduce inconsistencies in fault characteristics, leading to
reduced model reliability.35 Standard ML models often struggle
with generalization when trained on limited or specific datasets
from various PV installations, necessitating adaptive learning
techniques and domain adaptation strategies to enhance
robustness.36 By incorporating augmentation mechanisms, ML-
based fault detection models can achieve higher consistency and
accuracy across diverse PV environments, thereby improving
their practical applicability.37

In this work, we present a machine learning-based approach
for detecting physical and environmental faults in PV systems
using electroluminescence (EL) imaging. Our approach
addresses the challenge of working with unlabeled panel
images by combining TL, k-means clustering to improve both
dataset quality and classification performance. Feature
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extraction is performed using the convolutional and pooling
layers of a pre-trained VGG-16 model. The extracted features are
then clustered into three categories using k-means clustering,
creating labeled data for supervised learning. To further refine
the dataset, principal component analysis (PCA)38–40 is applied,
reducing dimensionality while preserving essential informa-
tion. The labeled dataset is then used to train classical machine
learning models for both binary and three-class classification
tasks with data augmentation. Note that, a CNN model is
trained separately for binary classification, while a SSL
approach is used to improve performance in the three-class
problem. By integrating k-means clustering for dataset labeling
and leveraging TL for feature extraction, our approach
enhances fault detection accuracy and increases the reliability
of PV systems. Addressing key challenges such as automated
data labeling, domain adaptation, and scalability, this work
contributes to advancing intelligent fault detection methods for
real-world PV applications.

2 Proposed methodology

We aim to classify physical and environmental faults in PV
panels. These faults can be due to physical damage, such as
cracks, or environmental issues, such as shading. A critical
challenge in this task is the need to effectively handle large
datasets, as traditional machine learning techniques41 often
struggle with the complexity of image-based data. Misclassifi-
cations can lead to power losses, especially when faulty panels
are misidentified as normal. Given the significant impact of
faults on the power output of PV systems, it is essential to use
robust algorithms capable of identifying these faults accurately.
CNNs are particularly well-suited for this task due to their
powerful feature extraction capabilities, making them ideal
for image-based fault detection in PV panels.

Fig. 1 illustrates the comprehensive workflow of this study.
Initially, EL images are captured from the PV panels, which are
then transferred to a computer system for data acquisition. In
the next step, the acquired data undergo a labeling process,

where the features extracted from the images through TL are
clustered using the k-means algorithm. Data augmentation
methods are then employed to synthetically expand the dataset,
improving the model’s capacity to generalize. In the training
phase, convolutional layers within a CNN extract meaningful
features from the enriched dataset, while pooling layers con-
dense spatial information to enhance computational efficiency.
Ultimately, the fully connected layers interpret these extracted
features and classify the image, determining its condition
based on learned representations.

2.1 Transfer learning enhanced k-means clustering

To improve the efficiency of image classification, we employed
transfer learning by leveraging the pre-trained Visual Geometry
Group (VGG16) model available in Keras, originally trained on
the ImageNet dataset. VGG16 consists of 13 convolutional
layers, 5 max-pooling layers, and 16 weighted layers.42 The
rationale for selecting VGG16 lies in its proven ability to extract
high-level spatial features from images, significantly reducing
the computational complexity associated with training a deep
learning model from scratch. By utilizing the convolutional and
pooling layers of VGG16, we extracted meaningful representa-
tions from input images, facilitating a faster and more accurate
classification process.

Once the feature representations were obtained from the
VGG16 model, we applied k-means clustering to group the
images based on similarity. k-Means clustering is an iterative,
centroid-based clustering algorithm that partitions a dataset
into k clusters.43 The process begins by initializing k cluster
centroids, followed by assigning each data point to the closest
centroid using Euclidean distance. The centroids are progres-
sively revised through successive iterations, with their positions
recalculated as the average of the data points assigned to each
cluster. This iterative process continues until convergence,
ensuring that data points within the same cluster exhibit high
similarity.26

By integrating TL with k-means clustering, we improved
clustering accuracy and effectively identified patterns within

Fig. 1 The work flow of this work.

Energy Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
 2

56
8.

 D
ow

nl
oa

de
d 

on
 7

/1
/2

56
9 

20
:1

9:
04

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ya00239g


Energy Adv. © 2025 The Author(s). Published by the Royal Society of Chemistry

the dataset. This method enabled the unsupervised labeling of
images, leading to a refined classification of photovoltaic (PV)
panel conditions, as illustrated in Fig. 2.

The overall workflow involves modifying the VGG16
model to extract feature vectors from the fully connected
‘fc2’ layer. Prior to clustering, the images were preprocessed
by resizing them to 224 � 224 pixels to match the input
dimensions of VGG16. These images were then passed
through the model to obtain deep feature representations,
which were subsequently clustered using the k-means algo-
rithm. The optimal number of clusters was determined using
silhouette analysis, which evaluates clustering quality based
on the silhouette score. The best-performing value of k was
selected by identifying the highest silhouette score, and
k-means ++ was utilized to initialize cluster centroids more
effectively.

For clarity in interpretation, images assigned to cluster 0
were labeled as ‘‘Normal,’’ whereas those in clusters 1 and 2
were labeled as ‘‘Faulty.’’

2.2 Image augmentation

To enhance dataset diversity and improve the model’s general-
ization capability, image augmentation techniques were applied.44

These augmentations were performed dynamically during training
to mitigate overfitting and increase robustness against real-world
variations.45 The transformations employed are detailed below:

2.2.1 Rotation. Images were randomly rotated within a
range of �301 to introduce orientation variations. For a 3 � 3
pixel matrix, a 90-degree rotation is illustrated as follows:

a b c
d e f
g h i

2
4

3
5)

g d a
h e b
i f c

2
4

3
5

Fig. 2 k-Means clustering followed by transfer learning for feature extraction. The pre-trained VGG16 model extracts deep features, which are
subsequently clustered using k-means.
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2.2.2 Vertical flip. To introduce invariance to top-bottom
orientation, images were flipped along the horizontal axis. This
transformation is represented as follows:

a b c
d e f
g h i

2
4

3
5)

g h i
d e f
a b c

2
4

3
5

2.2.3 Zoom. Images were randomly zoomed up to 20%
using a scaling transformation. Scaling by factors sx = 1.2 and
sy = 1.2 results in:

1:2a 1:2b 1:2c
1:2d 1:2e 1:2f
1:2g 1:2h 1:2i

2
4

3
5

2.2.4 Brightness adjustment. To simulate varying lighting
conditions, brightness was adjusted by scaling pixel values and
adding a constant shift. For a scale factor of 1.2 and an additive
shift of 10:

1:2aþ 10 1:2bþ 10 1:2cþ 10
1:2d þ 10 1:2eþ 10 1:2f þ 10
1:2gþ 10 1:2hþ 10 1:2i þ 10

2
4

3
5

2.2.5 Shear transformation. Shear augmentation was
applied with a shear intensity up to 20 degrees, using shear
factors lx and ly. For lx = 0.2 and ly = 0.1:

aþ 0:2d bþ 0:2e cþ 0:2f
d þ 0:1a eþ 0:1b f þ 0:1c
gþ 0:2d hþ 0:2e i þ 0:2f

2
4

3
5

We clarify that all the 3 � 3 matrices described above serve only
as didactic representations to illustrate the augmentation opera-
tors mathematically. The full-resolution EL images were actually
used for augmentation, as shown in the Results section, and
these represent the real transformations applied to the dataset.

The augmentation process was implemented using Keras’
ImageDataGenerator class, which dynamically generated augmen-
ted images during training. Each image underwent transforma-
tions such as rotation, zoom, and flip with specified probabilities,
increasing dataset variability. Images were resized to a standard
resolution, and pixel values were scaled to remain within the
bounds of [0,1]. For each original image, up to five augmented
images were generated and stored alongside the original dataset.
These augmentations enhanced the model’s capacity to generalize
across a wide range of real-world scenarios, reducing overfitting
and improving classification performance on unseen data.

2.3 Convolutional neural network

This section details the use of CNNs to classify solar PV panel
images into two categories: healthy and faulty. To simplify the
classification problem, all panels exhibiting physical or envir-
onmental faults are grouped into a single class labeled as
faulty. This results in a binary classification task aimed at
distinguishing operational PV panels from defective ones.

The dataset used for training and evaluation consists of
labeled RGB images, each resized to a uniform dimension of
128 � 128 pixels. The CNN model in Fig. 3 extracts meaningful
features from these images using multiple convolutional

layers.46 Initially, 32 convolutional filters of size 3 � 3 are
applied to detect spatial features, such as edges and textures.
Following this, a max-pooling layer with a window size of 2 � 2
is employed to reduce the spatial dimensions while retaining
the most critical features. This downsampling reduces the
image size to 21 � 21 � 32, optimizing computational effi-
ciency. A second convolution and max-pooling sequence is then
applied, further refining feature extraction before flattening the
output into a one-dimensional feature vector comprising 288
elements. These extracted features are then fed into fully
connected dense layers for final classification.

The network architecture is outlined in Table 1. Each layer
processes its input by computing a weighted sum of activations
from the preceding layer, which is then transformed through
an activation function. The rectified linear unit (ReLU) activa-
tion function, as defined in eqn (1), is used for the input and
hidden layers to introduce non-linearity:

y = max(0, x) (1)

Fig. 3 The convolutional neural network (CNN) architecture employed in
this work.

Table 1 Parameters used in the convolutional neural network

Parameters Values

Algorithm Backpropagation
Activation
function

ReLU (input/hidden layers), sigmoid (output layer)

Layers 2 hidden layers with 64 units each
Loss function Binary cross-entropy
Optimizer Adam
Data split Train: 70%, validation: 20%, test: 10%
Batch size 50
Epochs 100
Tuning Dropout
Augmentation 5 types
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Here, negative inputs are mapped to zero, while positive
inputs are retained, aiding efficient gradient propagation. The
output layer employs a sigmoid activation function to map the
network’s final predictions to a probability range between 0 and
1, suitable for binary classification, as defined in eqn (2):

y ¼ 1

1þ e�x
(2)

The model’s performance is evaluated using the binary
cross-entropy loss function, formulated in eqn (3), where y
represents the actual class label, ŷ is the predicted probability,
and N is the total number of samples:

L y; ŷð Þ ¼ �
XN
i¼1

yi log ŷið Þ þ 1� yið Þ log 1� ŷið Þ½ � (3)

The network is optimized using the Adaptive Moment
Estimation (Adam) optimizer, which dynamically adjusts learn-
ing rates for faster convergence. The dataset is partitioned into
training, validation, and test sets in a 70 : 20 : 10 ratio. The
training process employs a batch size of 50 and runs for 100
epochs. To enhance generalization and prevent overfitting,
dropout layers with rates of 10% and 20% are introduced in
the initial and subsequent hidden layers. In addition, techni-
ques for data augmentation are employed to expand the train-
ing dataset.

The CNN model is implemented using TensorFlow and is
structured to efficiently extract hierarchical features from
images. The network consists of an initial convolutional layer
with 32 filters of size 3 � 3, followed by a ReLU activation
function. A max-pooling layer with a 2 � 2 window is then used
to reduce spatial dimensions and computational cost. This
sequence of convolution followed by pooling is repeated to
extract progressively abstract features.

Following feature extraction, the output is flattened into a
one-dimensional vector and passed through dense layers con-
sisting of 64 neurons with ReLU activation. To regularize the
model, dropout layers with rates of 10% and 20% are included
before the final output layer. The model outputs a binary
classification prediction using a single neuron with a sigmoid
activation function. The network is compiled with binary cross-
entropy as the loss function and the Adam optimizer, while
accuracy is used as the primary evaluation metric.

2.4 Semi-supervised learning

Semi-supervised learning is a powerful approach that leverages
a small amount of labeled data in conjunction with a large pool
of unlabeled data to improve model performance.47 The pro-
cess typically consists of two main stages: an initial supervised
training phase followed by a pseudo-labeling phase,48 as illu-
strated in Fig. 4.

In the first stage, a CNN is trained on a small subset of
labeled data to learn essential patterns from the dataset. Once
trained, this model is then employed to create pseudo labels for
the much larger unlabeled dataset. These pseudo-labeled sam-
ples are subsequently combined with the original labeled data

to train a more robust CNN model in the second stage. Finally,
the trained model is evaluated on a separate test set to classify
unseen samples accurately. By utilizing the vast amount of
unlabeled data in this iterative manner, SSL helps mitigate the
limitations of data scarcity and enhances classification
performance.

3 Experimental results and discussions

This section presents the results of the data labeling, data
augmentation, feature extraction, and performance evaluation
of classical machine learning models, CNN, and semi-
supervised learning techniques.

3.1 Data labeling

In the process of detecting faults in solar PV panels, images are
essential for identifying potential issues such as cracks or
shaded regions. Fig. 5a illustrates the various conditions of
solar panels: healthy panels, panels with visible cracks (physi-
cal faults), and panels with shaded regions (environmental
faults). Faulty panels are those with either cracks or shading,
while healthy panels are categorized separately. This classifica-
tion approach results in a binary image classification problem
for distinguishing between physical and environmental faults.
For our analysis, we used a dataset comprising 2000 unlabeled
images of solar panels to detect faults, as referenced in ref. 49.

For fault classification in PV arrays, the model adopts a
neural network-based architecture combined with a supervised
learning approach. This approach requires both feature extrac-
tion and labeled data to make accurate predictions. In the case
of detecting physical and environmental faults, features are
extracted from images using convolutional layers and kernel
filters, which play a crucial role in identifying key patterns in
the images. Effective preprocessing and feature extraction are
essential to enhance classification performance.

Given the absence of labels in the training dataset, we
initially applied an unsupervised method for labeling, specifi-
cally using k-means clustering. The pre-trained VGG16 model
was leveraged for feature extraction, with the goal of generating
two clusters. However, a two-cluster solution did not yield
optimal results, leading us to explore the most suitable number

Fig. 4 Semi-supervised learning process.
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of clusters for better performance. The Silhouette method50 was
utilized to assess the quality of clustering for various values of
k. The Silhouette scores, shown in Fig. 5b, indicate the highest
score for k = 6, suggesting that this clustering option may
provide the most distinct separation of the data.

Despite the higher Silhouette score at k = 6, a smaller
number of clusters would simplify the classification task. Given
this trade-off, we opted for k = 3, which provides a reasonable
balance between clustering quality and simplicity. In this
configuration, the dataset was divided into three clusters: one
representing healthy panels, and the other two encompassing
both cracked and shaded defective panels, which were manu-
ally corrected. As a result, the final classification was achieved
with two distinct categories: healthy panels and faulty panels.
The labeled images, along with their corresponding labels, are
shown in Fig. 6.

Although the Silhouette analysis indicated that k = 6 yields
the highest cluster separation with k = 3 being a close second,
the resulting groups for k = 6 did not correspond to meaningful
physical categories when visually examined. Several clusters
contained mixed samples of cracked and shaded panels, indi-
cating that a purely mathematical optimum did not guarantee
physically interpretable groupings. To ensure label reliability,
each cluster, whether in the k = 3 or k = 6 configuration, was
manually validated by visually reviewing the electrolumines-
cence patterns in the images. This validation step confirmed
whether a panel was healthy, cracked, or shaded, and helped
eliminate inconsistencies introduced by unsupervised cluster-
ing. The manual inspection revealed that the three-cluster
configuration produced cleaner, more stable groups that
aligned with actual physical conditions.

To further examine the reliability of the automatically gen-
erated labels, we assessed the cluster-condition consistency
through manual inspection. As shown in Table 2, the k = 3
configuration exhibits high purity: summing the correctly
labeled panels along the diagonal (568 + 406 + 875 = 1849)
out of 2000 yields a cluster purity of 92.45%. This confirms that
the pseudo-labels derived from VGG16 features are sufficiently
accurate for downstream supervised training and do not intro-
duce significant label noise. These validated labels were sub-
sequently used to train the CNN model for physical and
environmental fault classification.

Fig. 5 (a) EL images of PV panels under different conditions: healthy
panel, panel with cracks, and panel with shading. (b) Silhouette scores
for various cluster numbers (k).

Fig. 6 Labeled images clustered in two class.
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3.2 Feature extraction and augmentation

The features were extracted from the labeled image data using
the convolutional and pooling layers of the pre-trained VGG16
model, resulting in a total of 4096 (=212) features. Since
visualizing all these features is challenging, PCA was applied
to reduce the dimensionality. The results of PCA are shown in
Fig. 7, where the individual variance ratios (VRs) are depicted
on the primary Y-axis, while the cumulative variance is shown
on the secondary Y-axis.

From the PCA analysis, we observed that the individual
variance ratios drop significantly beyond the first 26 = 64
components. In other words, selecting these 64 components
captures B95% of the total variance, ensuring that the most
informative features from the VGG16 embeddings are pre-
served. The purpose of choosing 26 components is therefore
to reduce dimensionality while retaining the essential signal for
downstream reconstruction and analysis, balancing efficiency
with information retention. The graph reveals that nearly 26

features contribute significantly to the data, as the individual
VR tends to zero beyond this point, and the cumulative variance
reaches approximately 95%. To further reduce the dimension-
ality and capture the most significant components, we selected
principal components (PCs) at 21, 23, 25, and 27 for image
reconstruction. This was done by taking the corresponding
number of PCs, performing an inverse transformation, and
reconstructing the images from the reduced set of components.
The reconstructed images based on these selected PCs are
shown in the upper row of Fig. 8.

Additionally, five augmentation methods were applied to the
images to enhance the dataset and improve the robustness of
the model. These methods included random rotation of the
images, flipping the images vertically, and zooming with ran-
dom zooming transformations. The brightness levels of the
images were adjusted through brightness adjustment, and
shearing transformations were applied to introduce random
shearing effects. These augmentations introduced variability
into the dataset, helping the model generalize better during
training. The results of these augmentations are shown in lower
row of Fig. 8. These augmented images demonstrate the
diversity introduced to the dataset, which is expected to help
improve the model’s generalization capabilities.

3.3 Classical ML models performances

The performance of various classical machine learning models,
trained on labeled data with extracted features for both binary
and three-class classification tasks, is shown in Table 3. The
models evaluated include Logistic Regression (LR), DT, SVM,

Table 2 Distribution of panels across clusters

Cluster no. Healthy Cracked Shaded

First cluster 568 0 0
Second cluster 0 406 93
Third cluster 0 58 875

Fig. 7 PCA VRs: individual VR on the primary Y-axis and cumulative
variance on the secondary Y-axis.

Fig. 8 Image reconstruction using the selected PCs at 21, 23, 25, and 27 (upper row) and image augmentation techniques (lower row).
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K-Nearest Neighbors (KNN), and Random Forest (RF).51 For the
binary classification, RF achieved the highest accuracy of
97.54%, followed by KNN with 96.65%. Both models also
excelled in precision, recall, and F1-score, indicating their
overall robustness in handling the binary classification task.
LR, while having a slightly lower accuracy of 96.13%, demon-
strated competitive precision and recall values.

In the three-class classification scenario, LR performed the
best in terms of accuracy at 89.44%, though this is notably
lower than its binary classification performance. Other models,
like DT and KNN, showed lower accuracy, with DT scoring
81.69% and KNN achieving 84.15%. The precision, recall, and
F1-score values are also generally lower in the three-class case
compared to the binary classification. A closer inspection
reveals that, in the three-class classification task, LR performed
better than expected, but RF and SVM showed decreased
performance compared to their binary classification counter-
parts. This is due to the added complexity of the three-class
classification task.

This highlights that the three-class task tends to reduce
overall accuracy and precision, with the models having to deal
with an additional class and more variability in the data. To
improve model performance for three-class classifications, data
augmentation techniques were applied, and the results are
shown in Fig. 9, where an increase in accuracy and precision
is observed on the primary y-axis, and recall values are shown
on the secondary y-axis. It is evident that all models, except LR,
show increased accuracy after augmentation. Furthermore,
precision and recall increased for all models except KNN,
suggesting that data augmentation helped improve the general-
ization ability of most models. After applying data

augmentation, the RF model demonstrated the most signifi-
cant improvement, achieving an accuracy of 91.5% in the three-
class classification, up from 88.2% without augmentation. RF
consistently outperformed other models in binary classification
tasks, while LR showed relatively balanced performance across
both binary and three-class classifications. The results of the
data augmentation process further support these findings,
where an improvement in model robustness is evident.

3.4 Performance of CNN for binary-classification

The CNN model’s performance is assessed using a confusion
matrix, shown in Fig. 10. This matrix offers important insights
into the model’s classification accuracy. Notably, the CNN
model accurately classified 56 panels as healthy, and 140 faulty
panels were correctly identified, demonstrating its effectiveness
in distinguishing between healthy and faulty panels. However,
there were 4 misclassified panels, indicating that there is room
for improvement. These misclassifications could stem from
various factors, such as ambiguity in the images or limitations
in the model’s capacity to distinguish subtle differences
between panel conditions. These errors underscore the need
for further refinement in the model, such as additional training
data or tuning of hyperparameters.

In terms of model robustness, a critical indicator is the
validation accuracy during training. A well-performing model
generally demonstrates higher validation accuracy than train-
ing accuracy, indicating its ability to generalize well to unseen

Table 3 Classification results for binary and 3-class classification without augmentation

Model

Binary 3-Class

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

LR 0.9613 0.94 0.93 0.94 0.8944 0.95 0.93 0.94
DT 0.9560 0.94 0.92 0.93 0.8169 0.94 0.89 0.92
SVM 0.9560 0.94 0.92 0.93 0.8539 0.94 0.93 0.93
KNN 0.9665 0.92 0.98 0.95 0.8415 0.92 0.98 0.95
RF 0.9754 0.96 0.97 0.96 0.8820 0.95 0.96 0.96

Fig. 9 Enhanced performance after data augmentation. Fig. 10 Confusion matrix for CNN without augmentation.
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data. In our case, this trend is observed, with the validation
accuracy consistently surpassing the training accuracy across
most epochs. This is a positive sign, as it suggests that the
model is not overfitting to the training data and is instead
learning to generalize better.

Furthermore, Fig. 11a presents a plot that shows the accu-
racy of the CNN model over the number of epochs. It is evident
that the model reached a peak accuracy of 98% at both the 54th
and 95th epochs, highlighting its ability to learn effectively
from the data. While it might seem tempting to improve
accuracy further by increasing the number of hidden layers or
epochs, doing so may lead to overfitting, where the model
performs well on the training data but struggles to generalize to
new, unseen data. Therefore, it’s important to balance model
complexity to avoid overfitting while still achieving optimal
performance. Based on this accuracy trend, the current archi-
tecture seems well-tuned for the task at hand. Fig. 11b presents
the loss curve of the CNN model. The validation loss is
consistently lower than the training loss throughout the
epochs, showing that the model generalizes well. This trend
is consistent with the accuracy curve in Fig. 11a, reflecting
stable and effective learning as the model optimizes over time.

The CNN model shows strong performance with accurate
fault detection in solar panels, with only minor misclassifica-
tions. The confusion matrix and accuracy plot both provide
clear insights into its effectiveness and potential areas for
improvement. The model’s behavior indicates it is learning
well, as evidenced by its consistent validation accuracy and

high peak accuracy, while avoiding overfitting. Additionally, its
relatively low-density architecture makes it lightweight and
computationally efficient.

Finally, data augmentation was applied to further enhance
the model’s accuracy, as observed with the improvement in
classical machine learning model performance. Given that
healthy panel images constitute almost half of the number of
faulty panel images, five augmentation methods were applied
to the healthy panel images, and two augmentation methods
were applied to the faulty panels. This balanced the dataset and
boosted the performance from 98% to 99.5% as shown in
Fig. 12a. This indicates that data augmentation plays a crucial
role in enhancing the model’s ability to generalize, particularly
in cases where the dataset is imbalanced, and it demonstrates
the power of augmenting the data to achieve higher accuracy in
real-world applications.

To further ensure the robustness of this result, we explicitly
confirmed that all augmented samples were restricted to the
training split only, with strict separation between augmented
data and both the validation and test sets, thereby preventing
any possibility of data leakage or artificially inflated accuracy.
The validation accuracy consistently remained higher than the
training accuracy throughout training, indicating strong gen-
eralization and absence of overfitting. Additionally, the confu-
sion matrix in Fig. 12a shows that misclassifications remained
minimal across both classes, confirming stability of the classi-
fier. Because the test and validation sets share the same
distribution and no augmented images enter either split, the
validation confusion matrix at the best epoch was numerically
identical to the test confusion matrix, demonstrating consis-
tent performance across unseen data. The ROC curve in
Fig. 12b further supports this conclusion: the model’s curve
(orange) lies well above the navy dashed line representing a
random classifier, achieving an area under the curve (AUC) of
99.05%, indicating near-perfect discrimination between the
two classes. To further verify robustness, we conducted five
independent runs of 10 epochs each. These runs differ due to
randomness in weight initialization, data shuffling, and drop-
out layers. A t-test yielded t = 0.731, p = 0.518, showing no
statistically significant difference between runs. This demon-
strates the stability and reliability of the reported perfor-
mance. The performance gain is therefore attributable to the
targeted augmentation strategy used to correct class imbal-
ance, rather than to training randomness or accidental data
leakage.

The computational profile of the proposed method was also
evaluated. Full model training required approximately 1168.18
seconds with a peak memory usage of 25.17 MB, which corre-
sponds to one-time offline training and therefore does not
affect deployment. For real-time PV monitoring, the relevant
factor is inference time, which is significantly lower; a single
forward pass completes within tens to hundreds of millise-
conds on standard embedded hardware. Given its modest
memory footprint and fast inference characteristics, the
proposed CNN architecture is suitable for embedded PV inspec-
tion systems requiring real-time operation.

Fig. 11 Training results of the model: (a) accuracy versus number of
epochs; (b) loss versus number of epochs, for both training and validation.
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3.5 Performance of semi-supervised learning

The performance of the semi-supervised learning approach is
evaluated. The model was trained with a combination of
labeled and unlabeled data, where 10% of the data was used
for testing, 30% for training, and the remaining 60% was
treated as unlabeled data for pseudo-labeling. The average
accuracy of the model was evaluated as a function of the
percentage of labeled data. As shown in Fig. 13, the model
achieved its maximum accuracy of 92.25% when 30% of the
data was labeled. This highlights the effectiveness of SSL, where
the inclusion of unlabeled data through pseudo-labeling helps
improve the model’s generalization ability. We note that
pseudo-labels were assigned only to unlabeled samples for
which the model predicted class probabilities above a confi-
dence threshold of 0.95, while low-confidence samples were
excluded to mitigate error propagation. The model was itera-
tively retrained after adding high-confidence pseudo-labeled
data, and the remaining unlabeled samples were re-evaluated

in subsequent iterations, ensuring reliability of the pseudo-
labeling process.

In Fig. 14, the confusion matrix for the SSL model is
presented, with the iteration that gives the maximum accuracy
of 92.5% at 30% labeled data. The diagonal values reflect the
correct predictions for each class, while the off-diagonal values
indicate the instances of misclassification. Specifically, the
model shows strong performance in classifying the Healthy
and Shaded classes, with only a few misclassifications. The
Cracked class, however, experiences a higher number of mis-
classifications, particularly with the Other faults class. This is
primarily due to inherent similarities in the EL patterns of
Cracked and Shaded panels. The test sample labels were
manually verified and corrected, ensuring that labeling errors
do not contribute to these misclassifications. Despite this
challenge, the iterative pseudo-labeling process and high-
confidence filtering ensure robust overall performance, even
when a large portion of the training data is unlabeled, as
reflected in the final SSL accuracy of 92.25%.

Fig. 13 Accuracy with variation in labeled data samples in SSL.

Fig. 12 Performance evaluation of the proposed model: (a) confusion
matrix for healthy and faulty classes; (b) ROC curve of the classifier.

Fig. 14 Confusion matrix after applying semi-supervised learning (SSL).
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3.6 Comparative analysis

Table 4 compares various classification methods and results
across several studies in the field of PV panel image classifica-
tion. In particular, our work demonstrates a significant advan-
tage in both dataset labeling and accuracy when compared to
the other approaches.

Our approach utilizes k-means clustering for automated
data labeling combined with transfer learning techniques.
Unlike many of the previous studies that rely on manual
labeling, this hybrid approach allows for efficient handling of
large datasets and reduces the need for labor-intensive manual
annotation, which is often a bottleneck in machine learning
workflows. The k-means clustering method automatically labels
the dataset, while transfer learning helps to transfer knowledge
from pre-trained models, thus improving performance even
with a relatively smaller dataset.

Regarding accuracy, as seen in the table, our method
achieves an impressive accuracy of 99.5% on a dataset with 2
classes, which is higher than many other approaches listed. For
instance, the closest competitor is the study by ref. 58, which
achieved 99.95%, but this study used a larger training dataset
(3102 samples compared to our 2000 samples). Additionally,
our method uses only 70% of the dataset for training, further
demonstrating the robustness of our approach despite a com-
paratively smaller training portion.

Finally, while several studies listed in the table used rela-
tively smaller datasets, ranging from 1720 to 3217 samples, our
work leverages a substantial sample size of 2000, with 70% of
the data used for training. This provides a balance between
dataset size and computational efficiency, ensuring robust
model performance even with a more modest training portion
compared to some of the other works, such as ref. 58, which
utilized 80% of the dataset.

Given the infrequency of physical and environmental faults
in solar PV panels, we propose that periodic monitoring—such
as weekly image assessments—should be adequate for early
detection of any emerging issues.

4 Conclusions

The early detection of faults in PV systems is essential for
maintaining their efficiency, safety, and longevity. In this study,

we developed a comprehensive fault classification model that
integrates machine learning techniques to address physical
and environmental faults in solar panels. By utilizing CNN,
we were able to accurately differentiate between normal and
faulty states. For physical and environmental fault detection,
we leveraged k-means clustering enhanced by transfer learning
using the pre-trained Visual Geometry Group model to effec-
tively label and classify image data. This combination of
advanced algorithms allowed for precise feature extraction
and improved clustering accuracy. Features were extracted from
the second-to-last fully connected layer of VGG16, providing
high-level representations suitable for classification. While the
proposed method demonstrates strong performance on labeled
datasets and controlled test conditions, its application in real
photovoltaic system deployments may face certain limitations,
such as variations in lighting, panel orientation, soiling, and
environmental conditions, as well as practical constraints due
to high-resolution imaging and computational requirements.
Future work should explore robustness under diverse real-
world conditions, strategies to optimize computational effi-
ciency for field deployment, and a layer-wise ablation study to
further optimize feature extraction. Although challenges per-
sist, particularly in differentiating faults under varying condi-
tions, the integration of these methods demonstrates a notable
enhancement in the reliability of fault detection. Our approach
not only strengthens the operational resilience of photovoltaic
systems but also supports the larger objectives of sustainability
and the adoption of renewable energy solutions.
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Table 4 Comparison of classification methods and results

Study Classes Samples Training portion (%) Data labeling Feature extraction Classification method Accuracy

Akram et al.52 2 3217 Manual CNN 93.02%
Deitsch et al.53 2 1968 CNN 88.42%
Demirci et al.54 2 2624 DFB SVM 94.52%
Et-taleby et al.55 2 2624 75% VGG16 SVM 99.49%
Al-Otum56 4 2624 70% CNN 88.60%
Ozturk et al.57 2 1720 80% CNN 95%
Abdelsattar et al.58 2 3102 80% CNN Mobilenetv2 99.95%
Tella et al.59 4 2624 — CNN Resnet18 73.02%
Karakan60 3 5836 75% CNN SqueezeNet 97.82%
This-work 2 2000 70% k-Means, TL CNN 99.5%

3 — SSL 92.5%
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Abbreviations

CNN Convolutional Neural Network
DNN Deep Neural Network
EL Electroluminescence
KNN k-Nearest Neighbors
LR Logistic Regression
ML Machine Learning
PV Photovoltaic
RF Random Forest
SSL Semi-Supervised Learning
SVM Support Vector Machine
TL Transfer Learling
VGG Visual Geometry Group
VR Variance Ratio
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presented in the manuscript. Source data for this article,
including the images collected in September 2022, were pub-
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tayebiarasteh/PV_defect_detection. However, the repository
has since been made private by the owner. As such, the dataset
has been uploaded as supplementary information (SI). The SI
contains unlabelled images of solar PV panels. See DOI: https://
doi.org/10.1039/d5ya00239g.
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