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empowered next generation DNA
sequencing: perspective and prospectus

Sneha Mittal, Milan Kumar Jena and Biswarup Pathak *

The pursuit of ultra-rapid, cost-effective, and accurate DNA sequencing is a highly sought after aspect of

personalized medicine development. With recent advancements, mainstream machine learning (ML)

algorithms hold immense promise for high throughput DNA sequencing at the single nucleotide level.

While ML has revolutionized multiple domains of nanoscience and nanotechnology, its implementation

in DNA sequencing is still in its preliminary stages. ML-aided DNA sequencing is especially appealing, as

ML has the potential to decipher complex patterns and extract knowledge from complex datasets.

Herein, we present a holistic framework of ML-aided next-generation DNA sequencing with domain

knowledge to set directions toward the development of artificially intelligent DNA sequencers. This

perspective focuses on the current state-of-the-art ML-aided DNA sequencing, exploring the

opportunities as well as the future challenges in this field. In addition, we provide our personal

viewpoints on the critical issues that require attention in the context of ML-aided DNA sequencing.
1. Introduction

Next-generation DNA sequencing (NGS) is presently a powerful
paradigm for decoding genetic information encoded within
DNA with high resolution and industrial scalability.1–6 This
technology has opened new frontiers in genomics research,
clinical diagnostics, and personalized medicine, propelling
advancements in diverse elds such as cancer research,
hereditary diseases, and evolutionary biology.7–9 In NGS, ionic
current and transverse tunneling current are two overarching
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concepts used to identify the individual DNA nucleotides.10–12

The basic principle of electric measurements assisted NGS is
that the molecule of interest is translocated or dragged through
the device under the inuence of an electric eld, which causes
variations in the electric signals associated with each nucleo-
tide. Based on these variations, sequencing is achieved.

In NGS measurements, electric current and translocation
time are two key parameters that make biomolecule identi-
cation possible.13–16 However, one potential difficulty in deter-
mining these parameters is that these signals are associated
with unwanted noise, which makes their identication difficult.
Moreover, the interpretation of these parameters at the single
nucleotide level is very tedious and complex due to the
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similarity in the histograms plots of electric current and
translocation time. In this regard, the time, cost, and
complexity of NGS measurements necessitate new potential
tools such as machine learning (ML) for cost-effective, fast, and
accurate prediction of molecules with spatiotemporal
resolution.17

ML has the potential to decipher complex patterns and
extract knowledge from large datasets. With its ability to
autonomously learn and adapt from data, ML holds tremen-
dous promise in revolutionizing various domains. In the realm
of DNA sequencing, ML has already begun to reshape the
landscape by enhancing the accuracy, efficiency, and scalability
of existing NGS methodologies.18 Integrating ML algorithms
into NGS workows can unlock hidden information, accelerate
discoveries, and pave the way for breakthroughs in genomics. A
generalized ML workow illustrating the implementation of
data-driven ML algorithms into DNA sequencing across tradi-
tional NGS architectures: nanopore, nanogap, and nanochannel
is given in Fig. 1.

Given the importance of ML, in this perspective, we focus on
the recent ML developments in the eld of NGS, encompassing
both the theoretical and experimental aspects. This perspective
begins with a discussion on why ML should be integrated with
NGS, followed by a summary of pioneering studies in the eld.
Subsequently, we provide a guide to ML developments with the
feature engineering process for both theoretical and experi-
mental measurements. Lastly, we outline a prospectus for the
advancement of efficient and robust articially intelligent DNA
sequencers.

2. Why we need machine learning?

The primary motivation behind implementing ML in NGS is
rooted in the urgent need to overcome the challenge of simi-
larity in the histogram plot of electric current and translocation
time of DNA nucleotides. Traditional sequencing technologies
oen struggle to keep pace with the massive amounts of
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information generated from the sequencing of a complete
genome, leading to bottlenecks in data analysis and interpre-
tation at the single nucleotide level.19,20 ML algorithms, on the
other hand, have the potential to tackle the complexity of
genomic data interpretation, ranging from DNA ngerprints
(molecular conductance, electric current, and translocation
time) recognition and noise detection to nucleotide classica-
tion with high precision and accuracy.

For more than two decades, researchers have been exploring
potential strategies for sequencing DNA through theoretical
and experimental measurements. However, ML is especially
appealing for a number of reasons. First, the process of nding
an electrical signature of each DNA nucleotide is a key step in
DNA sequencing. Determining the key signatures of each DNA
nucleotide at a signicantly reduced time and cost of cumber-
some theoretical and experimental studies is at the heart of ML.
Second, ML has phenomenal potential to resolve the signal
overlap between the current signals of DNA nucleotides through
classication tools. There are certain reports providing
a glimpse of the classication of DNA nucleotides from complex
electric current data of the whole DNA strand.21,22 Third, ML
regression and classication algorithms have immense poten-
tial to extract the individual current signal from complex data
with a high magnitude of noise matrix and decode the genetic
code efficiently.
3. Pioneering studies of machine
learning-aided DNA sequencing

In 2012, Lindsay and co-workers pioneered a concept for the
classication of DNA nucleobases through the support vector
machine (SVM) algorithm in conjunction with gold nanogap
electrodes (Fig. 2a).21 They proposed a recognition tunneling
(RT) technique to identify single nucleobases within a DNA
oligomer using 4(5)-(2-mercaptoethyl)-1H-imidazole-2-
carboxamide (Iz) as an adapter molecule. The adapter mole-
cule helps in reducing the distribution of current signals,
enabling better resolution among DNA bases (dAMP, dGMP,
dCMP, and dTMP) and epigenetic modication, 5-methyl cyto-
sine (dmeCMP).24 The authors extracted features from the
collected recognition tunneling current data, and the optimized
multiple parameters t allowed nucleobase classication from
a single peak with an accuracy of 80% and achieved 95%
accuracy when analyzing multiple spikes in a signal cluster. The
SVM-assisted separation of ve bases and water into distinct
clusters is displayed in Fig. 2b. To ensure precise DNA
sequencing, achieving higher accuracy is paramount. The
challenge remains to accurately distinguish the subtle variances
in a comprehensive DNA sequence with 1-D conductance
measurements. In this context, Kim and co-workers pioneered
the approach of two-dimensional molecular electronics spec-
troscopy. The technique presents a promising avenue to
recognize the single molecule signatures of both DNA and
cancerous methylated DNA nucleobases at atomic resolution.25

Motivated by the previous work, Biswas et al. next tried to
increase the accuracy of the base calling by ne-tuning the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Schematic illustration of ML workflow for predicting the signature fingerprints of DNA nucleotides with next-generation sequencing
architectures: nanopore, nanogap, and nanochannel. (b) MLworkflow for predicting the class of DNA nucleotides exclusively from their signature
electronic fingerprints.
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chemical structure of adapter molecule Iz, leading to a change
in the recognition tunneling current.26 By tuning the chemical
structure of Iz, they synthesized three new adapter molecules: 1-
(2-mercaptoethyl)-1H-pyrrole-3-carboxamide (Pr), 5-mercapto-1-
benzo[d]imidazole-2-carboxamide (Bz), and 3-(2-mercap-
toethyl)-1H-1,2,4-triazole-5-carboxamide (Tz). Instead of gold
tunneling electrodes, in this work, they utilized palladium (Pd)
electrodes as Pd has better conductance and metal-oxide
semiconductor compatibility. For SVM classication, recogni-
tional tunneling events were dened by two types of signals, i.e.,
spikes (individual single peaks) and clusters (a subset of close
spikes). The results showed the following order of accuracy for
classifying DNA nucleotides: Bz > Iz > Tz > Pr.

While these studies successfully introduced a novel
approach for accurately calling nucleobases from stochastic
signals, the studies posed an important unanswered question:
whether real-time signals in a model system exhibit sufficient
variation with the chemical properties of the target molecule in
simulations to allow an ML algorithm to identify individual
signals with good accuracy. To provide a theoretical underpin-
ning to the proposed approach, Krstić et al. utilized the gold
nanogap electrodes functionalized with a reader molecule (Iz)
and employed multiscale theory and both all-atom and coarse-
grained DNAmodels (Fig. 2c and d).23 The authors reported that
© 2024 The Author(s). Published by the Royal Society of Chemistry
the frequency characteristics of Brownian uctuations could be
leveraged to identify trapped molecules using a SVM algorithm.

Pathak and co-workers theoretically explored the potential of
a germanene nanogap toward single-molecule DNA sequencing
using the quantum tunneling approach (Fig. 3a).27 Herein, to
reduce the overlapping issue of electric conductance signals,
the authors combined the quantum transport method with ML
classication algorithms to achieve high-throughput DNA
sequencing. They report that using a random forest classier
(RFC) algorithm trained with the transmission function dataset,
each binary, ternary, and quaternary classication of DNA
nucleotides can be achieved with high precision and accuracy
(Fig. 3b). Moreover, they also explored the effect of electrode-
nucleotide coupling on transmission function and noticed
that transmission signatures are sensitive to electrode-
nucleotide coupling, and the RFC algorithm is capable of
extrapolating that information well during the classication.

Taniguchi et al. proposed a new method, namely, one elec-
tric current pulse method using ML to discern the DNA nucle-
otides from the background noise through gold nanogap
electrodes (Fig. 3c and d).28 The novelty of the approach is that,
in contrast to the traditional ionic current and translocation
time features, the authors focused on extracting the pulse from
the current–time proles of DNA nucleobases, followed by
Chem. Sci., 2024, 15, 12169–12188 | 12171
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Fig. 2 (a) Schematic of 4(5)-(2-mercaptoethyl)-1H-imidazole-2-carboxamide adapter molecule (Iz) trapping the dAMPmolecule between gold
nanogap electrodes via hydrogen bond.21 Atom color code: C (grey), H (white), O (red), S (yellow), and N (royal purple); (b) 2D projection of a 3D
plot displaying the separation of five bases and water into distinct clusters.21 Reprinted with permission from ref. 21. Copyright 2012 IOP science.
(c) Schematic of Iz functionalized gold electrodes trapping guanosine molecule with transient hydrogen bonds with and without water mole-
cules23 and (d) two-dimensional distribution of probability densities of two signal features illustrating well-separated data points for A and G
nucleobases.23 Reprinted with permission from ref. 23. Copyright 2015 IOP science.
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extraction of features from each pulse. To extract the features,
the pulse wave width was divided into ten equal segments for
learning and validation. The collected tunneling current data
was then averaged for each section, leading to a 10-dimensional
feature vector. By using the positive unlabeled classication
(PUC), 2-, 3-, and 4-types of DNA nucleotides were identied
with a high degree of accuracy. The approach benets from the
fact that by utilizing this method, one can identify the DNA
nucleotides within the noise matrix. From the discussion so far,
it is evident that nanogap architectures are promising for DNA
sequencing, and aer integration with ML tools, ultrarapid and
accurate identication of DNA nucleotides can be achieved.

In addition to nanogap architectures, researchers have also
delved into utilizing ML-integrated solid-state nanopores for
DNA sequencing. In 2019, Fyta and co-workers introduced
a new approach to identify distinct DNA molecular events
through ionic current measurements of the 2D MoS2 nano-
pore.22 Different from the previous studies, in this work, the
authors introduced an unsupervised ML model for clustering
nanopore ionic traces into different classes, remarkably avoid-
ing the need for labels. Within this approach, the authors
introduced four key features: dwell time, ionic current blockade
height, ionic blockade mean current, and levels, denoting the
12172 | Chem. Sci., 2024, 15, 12169–12188
quantity of putative distinct DNA congurations during nano-
pore translocation events. To provide insight into the molecular
features inherent in the nanopore data, k-means clustering is
employed, as implemented in the scikit-learn library.29 The
feature space analysis with respect to ionic blockade mean
current and ionic blockade height for all four DNA nucleotides
is shown in Fig. 4a. To nd the optimum number of clusters
further, Silhouette (S) and Calinski-Harabasz (CH) scores are
calculated for each nucleotide and the results demonstrate that
the dwell time is not as efficient as the newly introduced feature
ionic blockade height for classication (Fig. 4b).

Building on the importance of the newly introduced
feature—i.e., ionic blockade current height—the authors next
reported the deep neural network to enhance the read-out-
efficiency of DNA nucleotide identication (Fig. 4c).30 In place
of using the models trained with full ionic current traces, a new
method was introduced, which reduced the current traces to
a few descriptors and thus reduced the data dimensionality.
Leveraging convolutional networks and deep neural networks
trained on lower dimensional data, an average accuracy of 94%
is achieved. It was noticed that the feature, ‘ionic blockade
height’ in combination with other features, leads to the well-
separated and dense data clustering in the feature space,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Schematic of germanene nanogap consisting of left and right electrodes which act as the source and drains of electrons, respectively.27

(b) Analysis of ML classification algorithms toward prediction of class of DNA nucleotides.27 Reprinted with permission from ref. 27. Copyright
2023 American Chemical Society. (c) Schematic of single molecule gold nanogap tunneling junction, where the tunneling current passes
through the trapped molecule.28 (d) Schematic of pulse learning analysis.28 Reprinted with permission from ref. 28. Copyright 2019 American
Chemical Society.
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signicantly enhancing the applicability of MoS2 nanopore
toward DNA sequencing.

Recently, Pathak and co-workers proposed a concept for
sequencing DNA nucleotides using the ML-integrated gold
nanopore with a transverse current approach (Fig. 5a).31 In
earlier reported methods, ML algorithms were used only for the
classication of DNA nucleotides. Here, for the very rst time,
the authors explored the potential of ML in sequencing DNA
nucleotides. To achieve this goal, the features were extracted
directly from the chemical and electrical properties of the
peripheral atoms of the nucleotides and the transmission
function was considered as output. It is observed that by
utilizing the extreme gradient boosting regression (XGBR)
algorithm, it is possible to identify the DNA nucleotides with
a low root mean square error (∼0.12), provided the model is
trained with a transmission function dataset of only one
nucleotide. The scatter plot for DFT calculated transmission
and XGBR predicted transmission for dGMP is shown in Fig. 5b.

To further explore how well a solid-state nanopore archi-
tecture can be integrated with ML tools and utilized for high-
throughput DNA sequencing, the authors delved deeper and
© 2024 The Author(s). Published by the Royal Society of Chemistry
studied other solid-state materials such as graphene (Fig. 5c
and d) and C3N (Fig. 6a and b) nanopores in the realm of ML-
aided DNA sequencing.32,33 They observed that nanopore
architectures are promising toward both writing (prediction of
electronic signatures) and reading (identication of the class of
nucleotides) of DNA nucleotides. In integration with articial
intelligence, solid-state nanopores allow the identication and
classication of each DNA nucleotide with good precision and
accuracy. Training upon only single nucleotide datasets
prediction of other nucleotides with congurational variations
is possible by using an extreme boosting gradient regressor
(XGBR). Moreover, using ML classication tools such as SVM,
RFC, and decision tree classier (DTC) models trained with only
four transmission features, each binary, ternary, and quaternary
classication of unlabeled DNA nucleotides can be achieved
with good accuracy.32,33

Other than solid-state nanopores, biological nanopores are
also integrated with ML classication tools and utilized for
high-throughput DNA sequencing. Tabatabaei et al. reported an
extended molecular alphabet for DNA data storage combining
natural and chemically modied DNA nucleotides (Fig. 6c and
Chem. Sci., 2024, 15, 12169–12188 | 12173
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Fig. 4 (a) Feature space analysis for the translocation events of all four DNA nucleotides (dAMP, dGMP, dCMP, and dTMP),22 (b) Silhouette (S) and
normalized Calinski-Harabasz (CH) scores for all single-nucleotide translocation measurements.22 Reprinted with permission from ref. 22.
Copyright 2019 IOP science. (c) Schematic of mapping ionic current traces by means of features, dwell time, ionic blockade height, ionic
blockademean current, and levels into grey-level scale images, which ultimately leads to the prediction of class of DNA nucleotides.30 Reprinted
with permission from ref. 30. Copyright 2021 IOP science.
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d).34 It has been noticed that using theMycobacterium smegmatis
porin A (MspA) biological nanopore, it is possible to detect
different combinations and ordered sequences of natural and
modied nucleotides in oligomers. In addition, a neural
network architecture is demonstrated for sequencing the
extended alphabet with increased accuracy by 60%.

So far, using ML, the potential of nanopore and nanogap
architectures in single-molecule DNA sequencing has been
thoroughly investigated from both theoretical and experimental
aspects. It has been demonstrated that both architectures are
promising to identify DNA nucleotides with high precision and
accuracy. Further, to check the potential of nanochannel
architecture, Pathak and co-workers thoroughly investigated the
potential of MXene and MoS2 nanochannels toward ML-aided
12174 | Chem. Sci., 2024, 15, 12169–12188
DNA sequencing. MXene nanochannels are demonstrated to
be promising for both genome and epigenome sequencing.35

Using Ti2NS2 MXene nanochannel, the transmission of both
DNA and methylated DNA nucleobases is predicted with low
root mean square error (∼0.16) (Fig. 7a and b). Notably, if the
ML algorithm is trained with the data of methylated DNA bases,
selective identication of all four DNA nucleobases is possible.

Currently, transition metal dichalcogenides are emerging as
a potential material for molecule DNA sequencing. It has been
previously demonstrated that using the MoS2 nanopore, the
DNA nucleobase can be identied with a high signal-to-noise
ratio (SNR ∼15).37 On account of the importance of MoS2,
Pathak and co-workers proposed an articially intelligent MoS2
nanochannel in high throughput recognition and classication
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Schematic of gold nanopore consisting of left and right electrode and a central scattering region.31 (b) Scatter plot of DFT calculated
transmission vs. predicted transmission.31 Reprinted with permission from ref. 31. Copyright 2022 American Chemical Society. (c) Schematic of
graphene nanopore32 and (d) confusion matrix for classification of DNA nucleotides (dAMP, dGMP, dCMP, and dTMP).32 Reprinted with
permission from ref. 32. Copyright 2023 American Chemical Society.
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of DNA nucleotides (Fig. 7c).36 Different from the previous
works, here they introduced RDKit ngerprints as important
features toward DNA recognition. To reduce the dimensionality
of features, principal component analysis has been employed,
which reduces the 2048 RDKit features to 3 principal compo-
nents (Fig. 7d). RDKit ngerprints, in combination with previ-
ously reported elemental features, led to a noteworthy reduction
of 16% in the mean absolute error values. Moreover, herein, for
AI calling of DNA nucleotides exclusively from their trans-
mission readouts, the authors leveraged the supervised ML
classication tools and predicted the class of DNA nucleotides
with a perfect accuracy of 100%. To check real-time viability of
the proposed approach, they try to predict the DNA nucleotides
in different rotated congurations. For each rotated congura-
tion, binary, ternary, and quaternary classication of DNA
nucleotides, a perfect classication accuracy of 100% is ach-
ieved. To provide insight into the machine decision making
process, the feature importance plots and SHAP summary bar
plots are evaluated and the feature ‘MIN’ is found to be the most
dominant toward DNA classication. For better understanding,
year-wise documentation of experimental and theoretical
studies reported on ML aided DNA sequencing studies is
tabulated in Table 1.
© 2024 The Author(s). Published by the Royal Society of Chemistry
4. Guide to ML developments

Feature designing is a crucial step in the machine learning (ML)
pipeline for making accurate predictions, as the quality and
relevance of features directly impact the model's ability to
understand patterns and make accurate predictions. The
process of feature designing involves creating, selecting, or
transforming the input feature variables to enhance a model's
predictive capabilities. In the ML framework of sequencing
DNA, depending on the experimental and theoretical
measurements, different input features have been designed and
utilized to decode the complex genetic code exclusively from
their electric readouts. The key parameters considered in
designing features in both theoretical and experimental studies
are as follows.
4.1. Experimental feature engineering

Earlier experimental reports utilizing ML are based on recog-
nition tunneling (RT) measurements.21,23,26 They mainly lever-
aged ML classication tools such as SVM and RFC to identify
the class of DNA nucleotides. To extract features, RT events are
rst divided into two parts: spikes and clusters. The spike is an
Chem. Sci., 2024, 15, 12169–12188 | 12175
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Fig. 6 (a) Schematic of C3N nanopore33 and (b) ML predicted sensitivity plot for DNA nucleotides dTMP, dGMP, and dCMP.33 Reprinted with
permission from ref. 33. Copyright 2023 American Chemical Society. (c) Schematic illustration of neural network-assisted MspA biological
nanopore readout processing for different combinations and ordered sequences of natural and chemically modified nucleotides34 and (d)
confusionmatrix with lowest and highest accuracy scores.34 Reprinted with permission from ref. 34. Copyright 2022 American Chemical Society.
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individual single RT peak and the cluster is a subset of close
spikes. Considering the importance of spikes and clusters,
different features have been extracted and utilized to identify
DNA patterns. Later, new features like ionic blockade current
height and dwell time were introduced, and ionic blockade
height was reported to be a superior method for the precise
identication of DNA nucleobases.22,30 Recently, a new electric
current pulse method has been introduced and features have
been extracted directly from the pulse.28 A detailed description
of feature engineering in experimental measurements is listed
in Table 2.
4.2. Theoretical feature engineering

Different from the experimental reports, in theoretical studies,
both ML regression and classication algorithms have been
wisely utilized for high throughput DNA sequencing. ML
regression algorithms leverage the elemental and molecular
properties of individual DNA nucleotides as input features to
predict the transmission ngerprints of each individual mole-
cule.32,36 While ML classication algorithms extract features
directly from the transmission proles and train on these
features, the ML classiers predict the class of each nucleotide
12176 | Chem. Sci., 2024, 15, 12169–12188
with high precision and accuracy. A detailed description of
designed features in theoretical studies is listed in Table 3.
5. Data regimes and ML
methodologies

As discussed above, ML tools have been successfully integrated
with NGS datasets, including both theoretical and experimental
datasets, to accelerate the process of high-throughput DNA
sequencing. Here, it should be noted that ML models are
inherently data-driven, and the size of NGS datasets can
signicantly inuence their performance. Understanding the
distinction between experimental and theoretical studies in
terms of dataset size, as well as the suitability of different ML
methods in various data regimes, is crucial for advancing DNA
sequencing technologies.
5.1. Experimental big data regime

In the real NGS measurements, sequencing of native DNA and
RNA molecules is achieved through devices from Oxford
Nanopore Technologies such as MinION, GridION, and Prom-
ethION, resulting in a massive amount of data in FAST5 format
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) Schematic of Ti2NS2 MXene-based nanochannel device leveraging ML regression tools for identification of both DNA and methylated
DNA.35 (b) Scatter plot of DFT calculated transmission vs. ML predicted transmission for 5-methyl cytosine (5 mC) nucleobase.35 Reprinted with
permission from ref. 35. Copyright 2023 American Chemical Society. (c) Schematic of MoS2 nanochannel device leveraging artificial intelligence
(AI) for prediction of transmission fingerprints and class of DNA nucleotides36 and (d) principal component analysis plot reducing the dimen-
sionality of the dataset to three principal components.36 Reprinted with permission from ref. 36. Copyright 2023 Royal Society of Chemistry.
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(∼1.3 TB FAST5 les for ∼30× human genome).38–40 The
primary challenge associated with FAST5 les is signal pro-
cessing. Generally, signal processing of ionic current data ob-
tained through nanopore sequencing consists of four steps:
denoising raw data, spike recognition, feature extraction, and
analysis.41 For each step of signal processing, different ML
algorithms were utilized. The primary step is the denoising of
raw data, i.e., the accurate interpretation of the noisy and
complex ionic current signals that occur as the analyte passes
through the nanopore. ML algorithms, especially deep learning
models, are adept at handling this complexity.42,43 They are used
to enhance signal processing by identifying patterns and dis-
tinguishing between the current disruptions caused by different
nucleotides, signicantly improving the accuracy of base
calling. The second step involves spike recognition, i.e., iden-
tication and extraction of translocation events, for which the
most suitable algorithm is the Hidden Markov Model
(HMM).44,45 To reduce the overlapping issue of residual current
and duration time of DNA nucleobases obtained from the bio-
logical nanopore, the AdaBoost-based ML model is utilized,
which is trained on feature vectors obtained from HMM,
enabling the identication of each nucleobase.46,47 For feature
extraction, the most common ML algorithm is Bi-path Network
© 2024 The Author(s). Published by the Royal Society of Chemistry
(B-net), which is based on the residual neural network
(ResNet).48 Other than that, a different method, namely,
shapelet, has also been proposed for feature extraction.49 The
Learning Time-Series Shapelets (LTS) algorithm successfully
differentiates between various DNA oligomers that have nearly
identical blockade current amplitudes and durations. The last
and most important step involves the analyte classication.
Major attempts have been directed toward the utilization of
three algorithms: SVM, decision trees (DTs), and random
forests (RFs).41 Using SVM trained on features extracted from
characterization of DNA translocating event including relative
intensity, surface area, dwell time, and both the le and right
slope, both short ssDNA (10-mers) and dsDNA (40-mers) are
classied with good accuracy.50 For better understanding, the
commonly used ML algorithms for processing of experimental
NGS nanopore signals are depicted in Table 4.
5.2. Theoretical low data regime

Compared to experimental studies, which deal with full DNA
strands (∼3.2 billion nucleobase pairs) or DNA oligomers,
theoretical studies oen rely on simulated or smaller datasets of
single nucleobase, highlighting specic aspects of DNA
sequencing.55 In experimental NGS measurements,
Chem. Sci., 2024, 15, 12169–12188 | 12177
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conductance and ionic blockade current signals are the major
identifying parameters, while ML-coupled theoretical studies
mainly deal with transmission function (∼500 data points per
nucleotide) as targeted regression and classication param-
eter.35,36,56,57 ML regression algorithms are generally used for the
prediction of transmission proles of DNA nucleotides.31,36 ML
classication algorithms are also utilized for the classication
of DNA nucleotides based on features extracted from their
transmission proles.32,36 As shown in Table 3, for the identi-
cation of transmission proles of DNA nucleotides, the best-
tted regression algorithms are noted to be XGBR and RFR
and the algorithms LR, RFC, DTC, and SVCrbf are found to be
well-suited to DNA nucleotide classication.

6. Signal denoising

A major stumbling block in achieving high throughput DNA
sequencing is reducing unwanted noise signals.55 Noise in
sequencing data can arise from various sources, including
sequencing platform errors (such as base calling and phasing
errors), instrumental noise (signal intensity variations and
background noise), sample quality issues (DNA degradation
and contamination), amplication biases (PCR errors and
uneven coverage), genomic complexities (repetitive regions and
structural variations), and procedural inconsistencies (library
preparation errors and data processing mistakes). This noise
can obscure true genetic variations and lead to incorrect
conclusions, making it critical to employ effective denoising
strategies. In this regard, various algorithms, including both
ML-based and non-ML-based, have been developed to isolate
the target analyte signals from the background noise.41 Tradi-
tional methods of signal denoising include low-pass lters,
which restrict the bandwidth of the signal and lter out the
noisy background.58 The low-pass lters rely on the hard
frequency threshold, which may lead to unwanted ltration of
high-frequency signal components, which are crucial for effi-
cient analyte characterization. To mitigate this effect, a poten-
tial alternative is the Kalman lter, which can efficiently isolate
a signal from severely overlapped background noise.59 Other
than that, wavelet transform-based ltering technology60,61 and
consensus lter62 have also been utilized for denoising of
nanopore signals.

Compared to traditional non-ML-based algorithms, the
utilization of ML algorithms for signal denoising is critically
less explored. One notable approach is the use of convolutional
neural networks (CNNs) and recurrent neural networks (RNNs),
which are well-suited for handling sequential data and can
effectively model the dependencies in DNA sequences to detect
and correct errors.63 For instance, ‘DeepVariant,’ developed by
Google, uses deep learning techniques to identify variants in
sequencing data with high accuracy, outperforming traditional
methods such as GATK, Hidden Markov Model (HMM), naive
bayes classication, and the gaussian mixture model in several
benchmarks.64 Similarly, the algorithm ‘Clairvoyante’ leverages
deep neural networks to improve the calling of genetic variants
from nanopore sequencing data, showing signicant improve-
ments in accuracy compared to existing tools.65 Moreover,
Chem. Sci., 2024, 15, 12169–12188 | 12181
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Table 4 Schematic of ML-guided nanopore signal processing with representative ML algorithms used for each step of processing of nanopore
data to analyte identification

S. No. Algorithm Function Ref.

1 Deep neural network (DNN) Data denoising 42 and 43
2 Hidden Markov model (HMM) Spike recognition 44 and 45
3 Fuzzy-c means clustering (FCM) Spike recognition 51
4 DBSCAN Spike recognition 52
5 Bi-path network (B-net) Feature extraction 48
6 Learning time-series shapelets (LTS) Feature extraction 49
7 Support vector machines (SVM) Analyte classication 26
8 Decision trees (DTs) Analyte classication 41
9 Random forests (RFs) Analyte classication 53 and 54

Table 5 A summary of non-ML-based and ML-based algorithms for denoising nanopore/nanogap signals

S. No. Algorithm Algorithm type Comments Ref.

1 Low-pass lter Non-ML-based Efficiently restricts the
bandwidth and lters out
noise signals

58

2 Kalman lter Non-ML-based Signal isolation from
severely overlapped
background noise

59

3 Wavelet-transform based
technology

Non-ML-based Signal and background
noise can be separated in the
wavelet domain rather than
overlapped frequency
domain

60 and 61

4 Consensus lter Non-ML-based Removes the uncorrelated
events as noise from the
channels

62

5 DeepVariant ML-based Identies variants in
sequencing data

64

6 Clairvoyante ML-based Sample agnostic and nds
variants in less than 2 hours
on a standard server

65

7 Gaussian mixture model ML-based Effective tool for accurately
clustering and identifying
cell types from single-cell
RNA-Seq data

66

8 Positive unlabeled
classication (PUC)

ML-based Identication of 2-, 3-, and 4-
type nucleotides is achieved
at a single-molecule
resolution

28
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unsupervised learning methods, such as clustering algorithms,
have been used to distinguish between true genetic variants and
sequencing errors. A study by Liu et al. demonstrated the use of
a Gaussian mixture model to reduce noise in single-cell RNA
sequencing data, leading to more accurate downstream anal-
ysis.66 Despite nanopore signal denoising, an attempt toward
denoising of nanogap signals has also been made.28 By using
the positive unlabeled classication (PUC) method, single DNA
molecule information has been precisely discerned from the
background of electrical noises generated through gold nano-
gap tunneling measurements. For better understanding,
a summary of non-ML-based and ML-based algorithms used in
denoising the nanopore/nanogap sequencing data is provided
in Table 5.
© 2024 The Author(s). Published by the Royal Society of Chemistry
7. Opportunities and challenges
7.1. ML-guided ionic current techniques

As discussed above, ML-guided ionic current techniques offer
substantial opportunities to enhance DNA sequencing but also
present serious challenges. On the opportunities front, ML
models, especially deep learning algorithms like convolutional
neural networks (CNNs) and recurrent neural networks (RNNs),
signicantly improve sequencing accuracy by distinguishing
true genetic signals from noise, thereby enhancing base calling
and variant detection.63 These models enable real-time analysis,
providing immediate feedback during sequencing, which opti-
mizes throughput and data quality. Furthermore, ML tech-
niques excel in recognizing complex patterns in ionic current
data, allowing for the detection of subtle genetic variations with
Chem. Sci., 2024, 15, 12169–12188 | 12183
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high sensitivity and specicity.65 Their ability to continuously
learn and adapt to new data further renes their predictive
capabilities. Additionally, ML-guided methods are versatile,
applicable across various sequencing platforms, and capable of
integrating multiomics data for comprehensive biological
insights.41 However, several challenges need to be addressed.
High-quality, annotated datasets are essential for training ML
models, but acquiring such data can be resource-intensive.
Sequencing data oen contains noise and systematic biases,
complicating model training and requiring robust error-
handling mechanisms. The black-box nature of many
advanced ML models poses interpretability issues, hindering
their acceptance in clinical and research settings where
understanding the basis of predictions is critical.67 Moreover,
the computational demands of training and deploying these
models necessitate substantial processing power and efficient
algorithms, posing scalability issues as data volumes increase.
Addressing these challenges through collaborative efforts,
improved data quality, and advancements in computational
techniques will be crucial to fully realize the potential of ML in
ionic current-based DNA sequencing.
7.2. ML-guided transverse current techniques

In transverse current techniques for DNA sequencing, ML is
essential for overcoming the technical complexities and
enhancing the accuracy of base identication. These techniques
involve measuring the electronic transport properties of nucle-
otides as a DNA strand passes near a nanoscale gap between
electrodes. Through unsupervised learning and other advanced
ML approaches, these algorithms can classify and interpret the
nuanced electronic signatures of different nucleotides with
high precision, improving the reliability of sequencing data.18

Furthermore, ML techniques are crucial for noise reduction,
ltering out extraneous signals to achieve a higher signal-to-
noise ratio.28 Besides, certain challenges must still be
addressed, such as the measurement of electronic transport
properties in transverse current techniques, which is technically
complex and requires sophisticated pattern recognition capa-
bilities that can be challenging to develop and optimize. Like
ionic current techniques, transverse current methods also
require high-quality, annotated datasets for effective ML
training. The resource-intensive nature of producing these
datasets poses a signicant challenge. Integrating ML-guided
transverse current techniques with other sequencing methods
and multi-omics data can be complex, requiring sophisticated
algorithms and comprehensive data management strategies.
Overcoming these challenges will involve the development of
more advanced computational techniques, enhanced data
quality and annotation methods, and collaborative efforts
across the scientic community.
8. Perspective and prospectus

So far, we have discussed how ML regression and classication
algorithms can propel biosensors toward rapid and accurate
DNA sequencing without prior knowledge of sequence
12184 | Chem. Sci., 2024, 15, 12169–12188
information. This is primarily achieved by the astute feature
engineering and rational selection of prediction models for
rapid and accurate prediction of key features of DNA nucleo-
tides. Importantly, we shed light on the indispensable role of
ML in the identication of DNA nucleotides through the eluci-
dation of complex ionic current and transverse-tunneling
current data. Moving forward, the following aspects could be
helpful in the efficient development of articially intelligent
DNA sequencers: (1) building a generalized ML approach for
efficient DNA sequencing, (2) strengthening the ML prediction
with knowledge of the structure–property relationship, (3)
leveraging advanced ML algorithms for key signatures deter-
mination of DNA nucleotides, (4) theory-driven ML approaches
accelerating experimental efforts, and (5) meeting the demands
for active collaboration.
8.1. Building a generalized ML approach for efficient DNA
sequencing

The advent of ML algorithms in NGS technology has made
a drastic reduction in the time and cost of tedious theoretical
and experimental demonstration of DNA sequencing.18,32 To
date, however, the research efforts are mainly focusing on ML
algorithms trained with certain features. To improve the effi-
ciency of ML predictions, possible conformations of DNA
nucleotides or the bonding congurations of DNA nucleotides
with each other could also be a promising aspect of feature
extraction. To streamline the feature extraction, device-DNA
interactions are of particular importance. In this regard, the
inclusion of well-sampled data with features extracted directly
from the inherent molecular and geometrical properties of
individual DNA nucleotides can accelerate the development of
a generalized ML model for ultrafast DNA sequencing.

We needmore precise and easily available features, extracted
from the molecular and chemical properties of a DNA strand,
close to the realistic environment for a generalized ML model
promising efficient and accurate DNA sequencing. To account
for realistic conditions, features extracted from the character-
istic properties of DNA-solvent interactions can also be of
particular importance. Theoretical tools such as the molecular
dynamics (MD) simulations and quantum mechanics-
molecular mechanics (QM-MM) approach can be helpful in
the generation of more efficient features with improved infor-
mation on dynamic interactions of DNA nucleotides within the
solvent environment.

Moreover, the need for various targeted properties used in
ML-aided sequencing is of growing importance. In addition, the
full potential of ML algorithms can be harnessed by training the
algorithms with a well-sampled dataset. To make sure the
model performance is maximized, a large number of training
datasets is needed. For a generalizedML approach of nucleotide
determination, it becomes crucial to extract features from the
easily available data without the need for information on
a complete DNA strand. For example, one can establish a stan-
dardized library of molecular features of DNA nucleotides (both
geometrical and molecular properties are important) to
sequence the complete DNA strand without the need for
© 2024 The Author(s). Published by the Royal Society of Chemistry
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additional information on environmental conditions. We
postulate that the integration of ML algorithms with complex
transverse-tunneling current and ionic current data could be
synergistically concatenated to create a biosensor capable of
single nucleotide resolution. A standardized data library of DNA
nucleotides would be key in accelerating the growth of ML-
integrated next-generation DNA sequencing. Using the best-
tted algorithm, each DNA nucleotide can concurrently be
identied with pooled computational and experimental data.
Such an ML-integrated next-generation DNA sequencing
approach is expected to guide the robust development of
biosensors with industrial scalability, which is essential for
personalized medicine development.
8.2. Strengthening the ML prediction with knowledge of the
structure–property relationship

The complexity of data resulting from the enormous number of
DNA nucleotides undergoing orientational variations demands
more robust and sophisticated ML algorithms. One noteworthy
trend in ML-aided DNA sequencing is the interpretation and
explanation of utilized ML algorithms, enabling a better
understanding of the structure–property relationship. It is of
particular importance in designing an efficient biosensor
because, through this, one can determine why certain predic-
tions are made. In addition, interpretable ML algorithms can
provide valuable mechanical insight and can help in improving
the model's performance. The interpretability can also help in
the identication and mitigation of biases and discrimination
in ML algorithms which in turn can help in enhancing the
ability of ML algorithms toward accurate prediction.

In our reports, we tried to introduce transparency into the
ML model predictions by performing the cooperative game
theory-based SHapley Additive exPlanations (SHAP) anal-
ysis.27,33,35 The SHAP analysis, in combination with the feature
importance plot helps to anchor the ML prediction toward the
establishment of device-DNA interaction with base knowledge
of scientic reasoning. We postulate that interpretable ML
models would help in guiding feature selection techniques,
through which more robust prediction of output with domain
knowledge of ML decision making process can be made.

Despite signicant attempts made to explore the potential
key signatures (descriptors) elucidated from signal variations, it
still remains difficult to determine how a rationale DNA
sequencing would be manifested through such descriptors in
a future outbreak. The current ML-aided DNA sequencing
strategies revolve around only ionic current and translocation
time as the potential targeted output. Well, this process can be
further hastened if we consider more potential output variables
encoding key signatures of individual DNA nucleotides.
Reviewing the existing ML-aided DNA sequencing reports (both
experimental and theoretical), we postulate that apart from the
used output variables (ionic current height, ionic current
magnitude, translocation time, and transmission function),
more output variables determining the key characteristics of
DNA nucleotides while translocating through the NGS device
© 2024 The Author(s). Published by the Royal Society of Chemistry
could be incorporated to enhance the signal to noise ratio
characteristic.

8.3. Leveraging advanced ML algorithms for accurate DNA
sequencing

The full suite of ML algorithms in long-read DNA sequencing is
yet to be harnessed. For complex data mining, potential alter-
natives are principal component analysis (PCA), isometric
mapping (ISOMAP), and uniform manifold approximation
(UMAP), among others.68–71 Moreover, through the utilization of
more advanced ML tools, such as direct neural networks, graph-
neutral networks could be helpful in reducing prediction
errors.30,65 For improved algorithm interpretation, Shapley
additive explanations (SHAP), local interpretable model-
agnostic explanations (LIME), and contrastive explanation
methods (CEM) can be of particular importance in avoiding the
pitfalls of ML, such as undertting and overtting.72,73 For real
time data, we envision that leveraging the advanced ML tools
could spark a paradigm shi in the area of single-molecule DNA
sequencing, enabling the identication of individual nucleo-
tides without the need for sequence information of complete
DNA strand.

8.4. Theory-driven ML approaches accelerating experimental
efforts

There is also growing interest in integrating theory-driven ML
approaches with experimental data to accelerate the process of
precision base calling from real-time data. Theory-driven ML
involves incorporating domain knowledge and theoretical
models into ML algorithms to enhance their performance and
interpretability. In this direction, Fyta and co-workers have
made pioneering efforts. The authors utilized the experimental
data of MoS2 nanopores and by using unsupervised and deep
learning tools, the ionic blockade current height was demon-
strated as an efficient feature for clustering of DNA trans-
location events.22,30 As the eld is in its nascent stage, other
potential alternatives such as physics-informed neural networks
(PINNs),74 hybrid models,75 and transfer learning76 can also be
of signicant importance in accelerating the theory-driven ML
experimental efforts. PINNs integrate physical laws and
constraints into neural networks, allowing them to learn more
effectively from data that adheres to known theoretical princi-
ples. Hybrid models, combining mechanistic models with data-
driven approaches, can improve the robustness and generaliz-
ability of ML algorithms. For example, the integration of
mechanistic understanding of gene regulatory networks with
data-driven methods can enhance the prediction accuracy of
sequencing outcomes.75 Through transfer learning (applying
models trained on large, annotated datasets to new, smaller
datasets), one can leverage existing knowledge and improve
performance in low-data regimes. This approach could be more
useful in genomic studies where annotated data is oen scarce.

8.5. Meeting the demand for active collaboration

In the current landscape, the application of machine learning
(ML) in DNA sequencing is in its early stages with only a limited
Chem. Sci., 2024, 15, 12169–12188 | 12185
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number of reports, primarily theoretical, leveraging ML
regression and classication algorithms. However, the realm of
real-time DNA sequencing generates vast and intricate genomic
data. The main hindrance is caused by a lack of standardized
protocols and testing and validation of new data. To harness the
full potential of ML, collaborative efforts are imperative,
bringing together bioinformaticians, geneticists, and data
scientists to seamlessly integrate ML tools into existing
sequencing workows and optimize their performance for real-
time analysis. Implementation of ML in the eld involves
several key steps. Firstly, collaboration facilitates the integra-
tion of ML techniques into experimental design, allowing
researchers to optimize data collection processes for subse-
quent analysis. Secondly, ML can aid in the preprocessing and
cleaning of raw genomic data, handling noise, and extracting
meaningful features. Thirdly, collaborative efforts empower the
development of predictive models that can uncover hidden
associations, predict outcomes, and contribute to the identi-
cation of potential genetic markers or targets. We believe that
meeting the demand for collaboration will fortify the applica-
bility of ML in achieving ultra-rapid, accurate, and high-
throughput capabilities in DNA sequencing.
8.6. Conclusions and outlook

In this perspective, a summary of the research progress of ML-
guided next-generation DNA sequencing is provided. The
existing NGS nanoarchitectures include eld-effect-transistor-
based nanopore, nanogap, and nanochannel devices utilizing
ionic current and transverse-tunneling current approaches. ML
has tremendous potential for extensive integration into DNA
sequencing devices. Resolving the current signal overlapping
issue of DNA nucleotides with classication algorithms and
identication of key signatures of DNA nucleotides through
regression algorithms are two major breakthroughs in ML-
aided DNA sequencing applications. Despite the exciting
breakthroughs, the usage of ML in DNA sequencing is still in its
preliminary stage. For widespread adoption of ML in real DNA
sequencing, a signicant number of challenges must be
addressed, such as efficient training of machines, real-time
efficient data, fast processing of electronic data, etc. So far,
various alternatives have been proposed to achieve single-
nucleotides resolution, such as two-dimensional molecular
electronics spectroscopy,25 different edge functionalization,77,78

labeling of DNA nucleotides,79,80 different device architec-
ture,81,82 nucleobase analogs,82,83 heterostructure,84,85 hybrid
nanopore,55,86 and so on. However, the potential of integrating
ML with these methods to accelerate the DNA sequencing
process has not yet been fully explored. By combining ML
algorithms with these advanced techniques, one can potentially
improve the accuracy, speed, and efficiency of DNA sequencing,
paving the way for signicant advancements in genomic
research and medical diagnostics. The signicant ongoing
efforts from various science disciplines, e.g., material science,
articial intelligence, biology, and chemistry, among others,
can revolutionize the eld of DNA sequencing. The overlapping
of electric signals is a major bottleneck in decoding the genetic
12186 | Chem. Sci., 2024, 15, 12169–12188
code and we foresee that a viable solution lies in seamlessly
integrating next-generation DNA sequencing with articial
intelligence.
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M. Brucher, M. Perrot and É. Duchesnay, J. Mach. Learn.
Res., 2011, 12, 2825–2830.
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