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Why does water in porous carbon generate electricity?
Electrokinetic role of protons in a water droplet-induced
hydrovoltaic system of hydrophilic porous carbon

The mechanism of electricity generation of partially wet
carbon is identified by multiphysics simulation combined

by governing equations of hydrodynamics, ion transport,
chemical reactions, and electrostatics. The protonation and
ionic dynamics are key to electricity generation, which leads
the asymmetric proton concentration gradient.
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Why does water in porous carbon generate
electricity? Electrokinetic role of protons in a water

1148 droplet-induced hydrovoltaic system of
hydrophilic porous carbony

Hyunseok Ko,? Wonkyeong Son,® Min Sung Kang,® Han Uk Lee,® Chan-Yeup Chung,?
Seungwu Han,® Changsoon Choi® and Sung Beom Cho & *d¢

As emerging technology, hydrovoltaics harvests energy from water by flowing it through nanostructured

materials. However, the poor understanding of the principles of hydrovoltaics has impeded its

advancement. The process is complex and involves multiple simultaneous physico-chemical steps, and

there has been extensive debate on aspects such as the streaming potential and ion flow. Herein, we
report the first multiscale and multiphysics model for hydrovoltaic phenomena to provide in-depth
interpretation and analysis of the working principles. Supported by experimental validation, this model

explicitly considers the hydrodynamics in unsaturated porous media, ion transport, chemical reactions,

and electrostatics. We found that protonation and ionic dynamics are the key factors for electricity

generation. The difference in electric potential is mainly driven by the asymmetric proton concentration
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gradient, with a relatively small contribution from the streaming potential. Furthermore, the parametric

effects of porosity, substrate geometry, catalytic activation energy, and room humidity were examined in

DOI: 10.1039/d2ta05281d

rsc.li/materials-a devices.

1. Introduction

Water covers 71% of the Earth's surface and is never still. Due to
the depletion of fossil fuels and accelerating global warming,
there is an urgent need to extract energy from the hydrosphere
in the form of tides,' seawater,” raindrops,®>™ etc.® Recent years
have witnessed the emergence of hydrovoltaic generators,
which generate electricity from the interaction between water
and materials,” utilizing water droplets®'® or moisture.”**
Hydrovoltaics produces electricity sustainably by the flow of
water/moisture through a nanostructured material and natural
evaporation in ambient environment. A strong advantage of
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detail. The results suggest a promising strategy to optimize the electrical performance of hydrovoltaic

hydrovoltaics is its capability to generate volt-level potentials
without any external force.'*' Porous carbon materials are
widely utilized for this purpose because they can absorb water
through capillary pressure in the nanochannels and have a large
carbon-water interface per unit volume.'*™® For instance,
carbon black (CB)*>' and porous carbon sheets (CS)**** were
reported to output voltages of up to 1 V when water evaporated
from them after passing through the micro- and nanochannels.
Recently, a voltage of 4 V and a current of 18 nA were measured
for a sandwich structure (CS-Al,O; nanoparticle layer-CS).**
However, despite these promising results, the applications of
hydrovoltaics are still at the conceptual stage and additional
research is needed to improve their performance for practical
blue energy applications.” In particular, the exact mechanism of
electricity generation from the interaction between water and
nanostructured materials remains controversial because it is
not easy to identify it with experimental measurements. The
proposed principles of electricity generation in hydrovoltaics
can be classified into two types,** i.e., water flow-induced (e.g.,
streaming potential®® and electron drag®) and ion flow-induced
(e.g, gradient of protons or ions'***). The water flow mechanism
is from the perspective of conventional streaming potential in
a nanochannel or a porous medium.**** The charged surfaces
in a channel interact with the intrinsic dipole of water mole-
cules and align the latter in specific directions. Either the

This journal is © The Royal Society of Chemistry 2023
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transport of charged species through a diffusive layer of electric
double layer (EDL) or the flow of aligned dipoles produces an
electric current, which is proposed as one of the major mech-
anisms.** The ion flow mechanisms are based on the ion
concentration gradient originating from the different diffusivity
between anions and cations, particularly protons and hydroxyls
in diluted water.** This type of concentration gradient can also
be induced either by the direct chemical interaction between
water and a substrate®” or the dissolution of water accompanied
by charge transfer between water and a surface.*® When the
protons and hydroxyl ions are spatially separated, they produce
an electric field, which leads to the generation of electricity.
However, the above-mentioned mechanisms are highly specu-
lative because experimental measurement is challenging and
there is a lack of quantitative theoretical models, and this
uncertainty hinders the optimization of hydrovoltaic devices.
Furthermore, reported experimental studies used different
setups (e.g., stationary immersion, cyclic immersion, and
droplets) and substrates differing in porosity, liquid conduc-
tivity (the conductivity depends on the medium but is rarely
considered), etc. Thus, to address these bottlenecks, recent
review articles on this topic considered it essential to perform
a comprehensive theoretical study of hydrovoltaics.>***

The present work aimed to develop an in-depth theoretical
model of hydrovoltaics by incorporating multi-physics
phenomena to emulate realistic energy harvesting devices. We
designed a carbon-coated hydrophilic surface that harvests
electricity from a single water droplet. This model includes four
physico-chemical processes including water flow in an unsatu-
rated porous medium, chemical reactions, transport of dilute
species, and electrostatics. We employed realistic parameter
values, where those for the chemical reactions were obtained
from first-principles calculations, and the others were ambient-
condition values or literature values. We used theoretical and
computational methods to obtain and analyze the output
characteristics of the hydrovoltaic device, which agreed well
with the experimental observations both quantitatively and
qualitatively. The developed base model revealed that the elec-
trokinetic effect induced by the proton gradient is dominant
compared to the conventional streaming current. Proton flow is
governed by the competition between diffusive and electro-
phoretic fluxes. We also performed a parametric study of the
hydrovoltaic performance upon varying the porosity, substrate
geometry, catalyst effect, and room humidity. Based on these
results, we suggest a strategy to maximize the voltage output.

2. Theoretical model for hydrovoltaic
device

2.1. Multiphysics model

The finite element method (FEM) was used to model a hydro-
voltaic device (Fig. 1) using a carbon-coated porous sheet with
dimensions close to that of real devices. The model incorpo-
rates four different types of physics, as follows: (i) flow in the
unsaturated porous medium, (ii) chemical reactions, (iii)
transportation of ions, and (iv) electrostatics. FEM calculations
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View Article Online

Journal of Materials Chemistry A

under open-circuit conditions were carried out using the
COMSOL Multiphysics software. The following modules
provided by COMSOL were employed: porous media and
subsurface flow, chemistry, transport of diluted species, and
electrostatics. The application built from the model is provided
in the ESL{ Table 1 presents the nomenclature for the param-
eters used in this study.

The substrate is assumed to be a surface coated with carbon
black (CB), which is a material that has been extensively studied
before.*® The surface of CB is treated as hydrophilic and
assumed to be mostly hydroxylated (further discussion in 2.1.2).
The thickness of the substrate (0.2 mm) is set much smaller
than its width and length (3 and 9 cm, respectively). At the
beginning of the simulation, a water droplet falls on one side of
the CB sheet (left side in the model), followed by water disper-
sion on and through the porous CB. The relative humidity (RH)
of 60%, temperature of 20 °C, and ambient atmospheric pres-
sure (1 atm) were set as the standard conditions. The geometry
and domains can be found in ESI1{ and Fig. S1.

2.1.1 Flow in unsaturated porous media. The model is
based on the flow of water in porous media, which resembles
the well-known civil engineering problem of water infiltration
through the soil.***” Based on the great theoretical progress
made in that field, we introduced the hydrodynamic equation
and retention model in this framework.

A porous substrate greatly facilitates water transport through
its abundant channels and vaporization in the surrounding air.
Because the pores contain both air and water, the unsaturated
zone is generally referred to as a two-phase (air-water) porous
medium system. The hydrodynamics is governed by Richard's
equation,®® a general partial differential equation describing
water movement in unsaturated non-swelling soils. For
a medium with a porosity of ¢, Richard's equation for the fluid
flux () can be written as follows:

%(ep p) + V-(pu ) = On (1)

In this mass balance equation, the rate of change in a pore
(first term in eqn. (1)) plus the rate of change of the total flux in
and out of that volume (second term in eqn. (1)) equals the mass
source Q.

To describe the water occupation in the pores, we adopted
the water retention model proposed by van Genuchten.*” The
van Genuchten equation defines saturation similar to when the
fluid reaches atmospheric pressure (i.e., H, = 0). It also defines
parameters in terms of the effective saturation (S.), which is
evaluated in each domain as follows:

1
RRTECTANK ?

S. can also be expressed as [( — 6,)/(6s — 6,)], where @ is the
water content, 6, is the residual water content, and 6 is the
saturated water content. ¢ is set to the substrate porosity in the
model. The other parameters in the van Genuchten model as
a function of S, are explained in ESI 2.} Here, «, ,, and m are
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Fig. 1 Schematic illustration of the multiphysics model for water droplet-based hydrovoltaic system. (i) Flow of water through porous carbon
black, (ii) chemical reactions involving the surface species on carbon black, (iii) transportation of diluted species, and (iv) electrostatics to evaluate

the potential difference across carbon black.

Table 1 Nomenclature

Symbol description Units

Qm mass source of water

u flux of water [kg (m™>
S. effective saturation —

Cnm specific moisture capacity (as a function of Se) [m™]

H,, hydraulic pressure [em

K; relative permeability [ms™
Pvs partial pressure of water on CB film [Pa]

¢ electrostatic potential \4|

Ji ionic flux of species i [mol m™?]
¢; concentration of species i [mol m 7]
D; diffusion coefficient of species i [m>s™]
z; charge of species i —

py charge density em?

empirical parameters, and their values were taken from the
study of soil with sub-millimeter particle size (resembles the
pores of cotton fabric) under unsaturated condition.***
Subsequently, the first term in eqn (1) becomes:

d C,\ op
Y (6p p) = p(SeS + E) o (3)

where § is the storage coefficient, which is evaluated as § = e x¢
+ (1—¢p)xp with effective compressibility of water (x;) and
carbon (x;) available in the COMSOL Materials database, and
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C,, is the specific moisture capacity (ESI 2t for details). The
second term in eqn (1) describes the mass change due to the
permeating fluid behavior, which is also known as Darcy's law.
The mass flux of water () is:

u=—" (V) @

where Kj is the hydraulic permeability, 7 is dynamic viscosity of
the fluid, and K; is the relative permeability and a function of S..
The negative sign in eqn (4) indicates fluid flow from regions of
high pressure to low pressure.

Evaporation is an important part of the hydrovoltaic opera-
tion. Under ambient conditions, liquid water vaporizes spon-
taneously because the vapor pressure above the water surface
(pvs) is always higher than the partial pressure of water in the
surrounding air (pv.). Thus, evaporation strongly depends on
the vapor pressure difference between the atmosphere and the
water surface,® and the evaporation rate (E,, kg m > s ) is
computed from the water vapor transport equation® as follows:

E, = —Xgepp-(pvs — Pva) (5)

where X is a scaling factor of the dynamic evaporation resis-
tance of a CB sheet (s m™ '), which couples porosity with the
evaporation rate. Xg influences the remaining water in the CB
sheet, and its value is chosen within a reasonable range by
cross-referencing the experimental voltage profile. The RH value

This journal is © The Royal Society of Chemistry 2023
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is converted to py, by the relation pya = RH X py,, where py, is
the saturated water vapor pressure at 25 °C and 2.5 kPa. In
general, the evaporation rate is greater for a more porous
substrate and a wetter area (i.e., higher water concentration).
2.1.2 Chemical reactions. Two protonation reactions were
considered in the model. Firstly, the natural self-ionization of
water produces proton (ie., hydronium ion, H;0") as a ubiqui-
tous ionic species in any water including DI water. The reaction
of water protonation (denoted by R1) can be written as follows:

R1: H,O < H;0" + OH™ (6)

The natural dissociation of water occurs at pH = 7, and the
equilibrium constant is 1 x 10~

Secondly, protons can be transferred between water and
functional groups on the substrate surface. The surface of
carbon materials often contains functional groups, commonly
oxygen, nitrogen, sulfur, phosphorus and halogens, originating
from their synthesis or naturally. In the case of carbon black, its
surface includes considerable amounts of oxygen-containing
functional groups, which frequently become hydroxylated, as

Table 2 Parameters and their values used in the hydrovoltaic model
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confirmed by XPS analysis (ESI 3t) and previous study.*’ In
principle, acidic functionals such as carboxylic, lactones, and
phenolic groups, which can easily release protons in aqueous
condition, can be considered for the above-mentioned mecha-
nism, but here we only focus on hydroxyl functionals for CB
case. The hydroxyl on carbon surface can easily transfer
a proton to water*>* via the deprotonation process (R2):

R2: (C-OH) + H,0 © (C-0)” + H;0" 7)

The total areal concentration of surface functional groups was
set as 60 UM m™ 2, which is approximately 25% of the surface
atomic density, which were assumed to be hydroxyl functionals
given that they are the dominant species on CB,* as shown in
Table 2. Density functional theory (DFT) was used to calculate the
binding energies of hydroxyl and deprotonated (C-O)~ on gra-
phene (0.45 and 0.88 eV, respectively*?) to obtain the activation
barriers for the forward and backward reactions of eqn (7).

The above discussion shows that abundant charge carriers
can be generated when a bulk material enriched with surface
groups is exposed to moisture. Combined with a gradient in

Classification Symbol Description Value [units]
Global ks Boltzmann constant 8.617 x 107° [eVK ]
F Faraday's constant 9.649 x 10°[C mol ']
e Charge of an electron 1.602 x 107" [C]
T Temperature 298.15 [K]
) Molar weight of water 18 [g mol ']
£ Permittivity of vacuum 8.854 x 10" [Fm™ ']
& Relative permittivity of water 80
Flow Dy,o Diffusivity of H;0" in water 8.24 x 10 °[m? s ]
Doy~ Diffusivity of OH™ in water 4.51 x 107% [m?s™]
Dy,o Diffusivity of H,O in porous medium 1.5 x 1077 [m?*s ]
Viwater Initial volume of the droplet 0.3 [mL]
K Hydraulic permeability (value for water-soil) 5.79 x 107 [m s ']
Hp, droplet Initial pressure head of droplet 50 [cm]
Hycs Initial pressure head of carbon —90 [cm]
Retention & evaporation a van Genuchten parameter 1.15 [m ']
m van Genuchten parameter 0.50
n van Genuchten parameter 2.03
N Storage coefficient 5.25 x 10" ° [Pa ']
Xg Scaling factor for evaporation rate 2.0 x 107°
0, Porosity (minimum unsaturated pores) 0.01
p Porosity of CB film 0.5
RH Relative humidity 60 [%]
Pua Partial pressure of vapor in saturated air at 298K 3.13 x 10°[Pa]
Pva Partial pressure of vapor in air at given RH RH X py,
K Specific conductivity of distilled water 80 [uS m ™)
¢ Zeta potential of carbon surface —50 [mV]
n Dynamic viscosity of water 8.9 x 10 *[Pas]
k Dynamic resistance 2.3 x1077[s7"]
Chemistry Csurf, total Total areal density of surface species 6.3 x10°° [mol m’Z]
Csurf, ou Initial concentration of C-OH Csurf, total X fsurf
Csurf, = Initial concentration of C=0 Csurf, total X (1 — fourf)
f;urf Fraction of Csurf, C_gH/Csurf, total 0.8
H, Forward reaction barrier for R2 43.42 [k] mol ']
E Backward reaction barrier for R2 84.90 [k] mol™"]
Xro Reaction frequency factor for R2 3.9
Xr1 Reaction frequency factor for R1 3.9
Keq Equilibrium constant for R1 1.0 x 10 ™

This journal is © The Royal Society of Chemistry 2023
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water concentration, a gradient in H;O' concentration is
established, giving rise to proton diffusion in the material as
well as an electric current. In this study, DI water was used to
elucidate the fundamental mechanism of hydrovoltaic genera-
tors in general by avoiding complications due to the ions.
Therefore, H;0" and OH are the only mobile charge carriers
considered in this model. Other ions and their interactions with
the substrates can become crucial**** especially for harvesters
utilizing natural water sources (e.g., Na' ions on surface can
have equivalent effect of p-doped carbon and plausibly impose
electron gradient®), but the present study only focused on the
case of diluted water.

2.1.3 Transportation of dilute species (TDS). The mass
transfer equations account for the transport of chemical species
by diffusion (Fick's law), by convection (coupled to fluid flow in
a porous medium), and by electrokinetics (coupled to an electric
field). The model calculates the dynamics of three species (H,O,
OH ™, and H;0"), while the functional groups on the substrate
are considered immobile.

In the absence of species generation and ionic drift, the
concentration of an ionic species i (¢;) is described by the
conservation of mass through the Nernst-Planck equation, as
follows:

aCi

vy =0 8
o (8)
The ionic flux (J;) can be expressed as:

V4

L ©)

Ji =~ —uci+ DV
uci + C‘+kBT

where D; is the diffusion coefficient of chemical species i, z; is
the valence charge of i (+1 and —1 for H;0" and OH™, respec-
tively), and ¢ is the electrostatic potential. The three terms on
the right-hand side of eqn (9) represent the convective, diffu-
sive, and electrophoretic fluxes, respectively. (a) For convective
flux, because H;O" and OH ™ are dissolved in water, these ions
are transported with the overall fluid convection. The flow field
vector u was computed using Richard's equation. (b) The
diffusive flux moves ions by the concentration gradient. Despite
their low concentrations, the H;0" and OH™ ions are the major
charge carriers, and their migration is related to the origin of
electricity generation in hydrovoltaic systems. In a porous
structure, the diffusion coefficient of water through capillary
motion (Dy,c) is difficult to define, given that various parame-
ters such as pore distributions can alter it significantly. There-
fore, we assumed a reasonable value of Dy o = 1.5 x 10’ m*
s~ ' based on the reported experimental values measured for
very coarse sand,*® which is expected to be on a similar order to
D in porous media. The diffusion coefficients of the proton and
hydroxyl in water are taken from quantum mechanical calcu-
lations,” which are in the order of 1 x 107® m? s '. Ions
(solutes) are only mobile in the wetted region with non-zero H,O
(solvent) concentration. (c) The electrophoretic flux refers to
ionic motion induced by a potential developed across the
material. The electrical mobility equation based on the Einstein
relation was used, and the electrostatic potential was

47
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determined by charged species in the model (i.e., H;0', OH™,
and (C=0)").

2.1.4 Electrostatics. The electric field caused by static
charges is coupled with the concentration distribution of ions.
The influence of charge density on the electrostatic potential
and electric field in the material can be calculated using Pois-
son's equation, as follows:

Pv
€08

Vi =— (10)
where &, is the vacuum permittivity (8.854 x 10"> Fm™ %), ¢, is
the unitless relative permittivity, and py is the charge density. In
this model, we assumed that the only charge carriers were ions,
and that the solvated ions and electric field did not alter the
permittivity of the medium. The effect of relative saturation
(position-dependent) on permittivity was tested and determined
to be negligible, and thus not considered in the present model.
The mobile ions were limited to H;0" and OH™ given that DI
water was used. For the ionic charge carriers, their space charge
density can be evaluated as follows:**

pv = EZieci (11)

where the concentration of ions (¢;) is coupled to the TDS and
updated at each time step. At each time step in a discretized
finite element, the electrophoretic flux is determined by the
electrostatic potential (V). The electrophoretic flux determines
the electrophoretic mobility of charged ions, where the solution
of PDE for ion dynamics affects the space charge distribution.

The streaming potential is an electric current generated
during the development of an electric double layer (EDL) on the
wall when there is fluid flow driven by pressure. In this study,
the streaming potential was analytically solved from time-
dependent partial differential equations using the Helmholtz-
Smoluchowski equation,* as follows:

eosr:

Ve = AP oK, (12)
where AP is the hydraulic pressure difference between the
droplet head and the tail, { is the zeta potential of the carbon
material obtained from experimental measurements, 7 is the
dynamic viscosity of the liquid, and K] is the specific conduc-
tivity of the liquid.

The open-circuit voltage (Vo) was calculated by taking the
difference of the average electrostatic surface potentials (¢)
between the left end (adjacent to the droplet, “head”) and the
right end (away from the droplet, “tail”) of the substrate, as
illustrated in Fig. S1.f The right boundary was grounded to
avoid numerical instability.

3. Mechanism and principles of the
hydrovoltaic model
3.1. Model validation and the mechanisms

In the previous section, we described the physics necessary for
modeling the hydrovoltaic generator. The default values for the
key parameters in the base model (Table 2) are from either

This journal is © The Royal Society of Chemistry 2023
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theoretical or experimental studies to match the practical
applications. Herein, we first validate the model output with
experimental results, and then discuss the time evolution of the
model in detail.

Fig. 2A shows the open-circuit voltage from the droplet
hydrovoltaic model. The calculated Vo has a maximum value of
381 mV, which agrees with the range from previous studies on
droplets.”>**** The measured current and calculated power are
illustrated in ESI 4.1 To further validate the model, we designed
a surrogate experiment. A fabric 3 cm x 9 cm x 0.2 cm)
composed of cotton fibers was used as the pristine substrate
and coated with CB (inset of Fig. 2A). A coating solution was
prepared by dispersing CB powder (0.5 g) in DI water (60 mL)
with sodium dodecylbenzenesulfonate (SDBS) (0.2 g) surfactant,
followed by sonication for 30 min to ensure the uniform
dispersion of CB. After dip coating and drying, the CB powder
was uniformly coated on the fabric surface. The CB-coated
cotton fabric had a resistance of 1 MQ,** which was suffi-
ciently high to measure the saturated voltage. Due to the high
resistivity of the CB coating (lacks percolation at low concen-
tration®), electron transport is highly unlikely. Likewise, the
charge transfer along the surface or through CB is assumed to
be negligible. Fig. 2A shows the experimental Vi profile (black)
and prediction from the base model. In the experiment,
a 0.3 mL water droplet was placed on the negative electrode of
the CB-coated fabric, and the measured maximum voltage was
387 mV. It is worth noting that hydrophilic porous materials
such as the CB film contains the water in their pores under
ambient humidity, empowering the ionic flux even in the early
stage®* (though electrodes are connected to materials). The
voltage profile predicted by the model using appropriate
conditions agrees well with the experimental results. However,
there is a discrepancy in the time required to reach the
maximum voltage, which is attributed to the difference in the
area set for Voc measurement. In our laboratory-scale experi-
ment, the jigs were connected to a small area, whereas the
model calculation used both ends of the rectangular substrate.
We believe that the latter setup is more reasonable for higher
power production, although it takes longer to reach the
maximum voltage.

400
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3001
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b=
o
i
iy
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The validity of the developed model can be further verified by
comparison with previous studies. Yun et al.>* used a CB-coated
hydrophilic cotton fabric, on which a 0.25 mL droplet generated
a voltage of ~350 mV. These experimental conditions are
similar to our model, and their measured Vo is also in good
agreement. Moreover, we found that a slower evaporation rate
results in a lower calculated Vo (see ESI 71 for details), which is
consistent with the tendency observed in previous experiments.
For example, Xue et al.® found that the induced Vo was
significantly suppressed at a higher humidity (i.e., a diminished
evaporation rate), and similar behaviors have also been re-
ported elsewhere.>?***"5* In addition, Qin et al.** showed that the
Voc increased from 280 to 400 mV when the temperature
increased from 20 °C to 65 °C, which was attributed to faster
water flow through the nanochannels driven by accelerated
evaporation at elevated temperatures. Thus, this agreement
with various CB-based experimental studies demonstrates the
validity of this model.

3.2. Underlying principles of hydrovoltaic electricity
generation

We mentioned earlier that there is an ongoing debate about the
exact mechanism of hydrovoltaic for evaporation-driven elec-
tricity generation because the corresponding experimental
exploration is not trivial. Two types of mechanisms have been
proposed, namely water flow- or ion flow-induced. Although
both are expected to contribute to energy generation, their
contribution ratio has not been quantitatively determined.
Using the theoretical model developed here, we quantitatively
evaluated contributions from the streaming potential and ion
flow for the first time.

In Fig. 2B, the voltage profile calculated from the droplet-
based base model is broken down into contributions from
the streaming potential (V) and from ion flow (Vien). Vs iS
evaluated by solving the partial differential equation at every
step. Vion is the combined effect from mobile ions (H;0" and
OH ), with the contribution of H;O" always at least one order
of magnitude higher than that of OH . V, is dominant in the
early stage of water transport and evaporation because the

400
T e e L e
_. 300 #
> ,’
é ,’ Vlolal
% 2001 ¢ === Vion
T‘; I' - Vstreaming
> i
1001,
YA
P e B
0
0 500 1000 1500 2000

Time (s)

Fig.2 (A). Comparison of the experimental voltage profile (black dots) and the model prediction (orange line). In the experiment, a 0.3 mL water
droplet was placed on the left side of the carbon black-coated cotton fabric (inset). (B.) Voltage (defined as the potential difference between the
head and tail ends of the substrate) predicted from the model (orange) and its decomposition into contributions from ions (navy) and streaming

(red).
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water flow rate is relatively fast under the highly anisotropic
initial condition. However, the contribution of V., to the total
voltage is only up to 17%, indicating that ion transportation
dominates electricity generation in the droplet-CB film
hydrovoltaic device. Although previous studies hypothesized
that ions play a key role,”*** this is the first theoretical
evidence that ion flow is the main contributor to hydrovoltaic
electricity generation. This is mainly due to the strong water-
surface interaction. Thus, it is suggested that ions, specifi-
cally protons from the carbon surface, are important in the
design of hydrovoltaics.

In the case of ion flow, the entire picture is more sophisti-
cated than it seems, where the ion flow is not merely accom-
plished by diffusion, it involves fluid flow in a porous medium,
electrostatic field, and most of all, material-water interactions.
The charge transfer between a material and water is considered
in our model as charged functional groups, and these surface
functional groups continuously give/take charges, while inter-
acting with water. Together with ions, these surface functional
groups contribute to the space charge, which appropriately
account for the electrostatics across the CB film. In the
following section, we present the analysis of the time evolution
of ions and the driving forces for the ion flow across the CB film.

To investigate how the system changes with time, we
analyzed the time evolution of ion concentrations, chemical
reaction rates, and proton fluxes. Fig. 3A displays the concen-
trations of each chemical species (note that the range for the
colormap varies in each frame for better visualization purpose,
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also see ESI Videot). The maximum value marked under the
scale bar corresponds to the maximum value at ¢ = 10 s because
the concentrations always decrease with time. Once the droplet
was deposited on the CB surface, water immediately spread out
towards the unwetted regions, and water flow toward the tail
continued up to 1500 s. It is noteworthy that the wetting occurs
immediately, where it approximately takes 1.1 s to reach the
opposite electrode in our simulations (also consistent with our
experiment (0.5 < ¢ < 1.0 s) and another CB study (~1.0 s)*"). The
concentrations of H;O' and OH™ also increased with the
dispersion of water droplets till ¢ = 10 s and propagated along
the direction of water movement to ¢t = 2000 s.

For t = 200 s, cy o is greater than coy by 1-2 orders of
magnitude, which can be explained by the chemical reaction
rates, as shown in Fig. 3B. In the initial stage, both R1 and R2
are active due to the high H,O concentration. As time passes (¢
= 200 s), R2 (reaction with CB) becomes dominant over R1
(dissociation of water) at a distance from the droplet. The
amount of generated H;O" is greater at the front of water
movement because R2 is more active with the “unreacted
surface”, while R1 only depends on cy,o but not on the location.
Although the distribution of protons (whether released from R1
or R2) is also determined by the diffusion or ionic flow along
with water, it is clear that the surface reaction R2 is the domi-
nant protonation mechanism, which is accompanied by move-
ment of the water front. The functional groups in R2 can
redistribute across the CB as time passes, and when the
gradient in the functional groups and water become minute,
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Fig. 3 Temporal evolution of physical variables during simulation. (A.) Surface concentrations of chemical species. Note that the scales are
adjusted for better visibility at each timestep. Values below the scale bars indicate the maximum values throughout the simulation time. (B.)
Reaction rates and C. decomposed HzO™ fluxes according to the driving force in the droplet-based hydrovoltaic model.
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H;0" saturates across electrodes, and then electricity produc-
tion ceases.

To analyze the driving forces for the transportation of H;0",
the total flux in the x-direction (¢or1) is decomposed into
diffusive (¢q), convective (¢), and electrophoretic (¢.) fluxes, as
shown in Fig. 3C. It should be noted that ¢, in a porous medium
is negligible compared to ¢. and ¢4, given that the latter two
driving forces (gradients in charge and concentration, respec-
tively) are much stronger in the x-direction. Because of the
highly focused ¢y, in the initial stage, ¢ increases and
reaches the maximum at 100 s. Before reaching the maximum
voltage (¢ = 350 S), Prorar iS governed by ¢q, which is driven by
a concentration imbalance. A negative flux of ¢. is developed at ¢
= 10 s. R2 leads to a higher concentration of immobile C=0",
whose reaction is more active at the front of the flow, and
therefore electrostatically attracts protons. At 350 s, when Voc
reaches the maximum, the contributions of ¢. and ¢4 become
comparable with the opposite signs, and Vo decreases after-
ward. From this point (¢ = 350-1500 s), the total flux is notably
reduced compared to the initial stage. The slightly higher value
of ¢. compared to ¢4 favors H;0" movement in the x-direction.
Consequently, the concentration gradient and V,. decrease
gradually. Theoretically, considering the high diffusivity of
protons in water, the proton gradient should become small
quickly, and the electrical output only lasts for seconds.” The
unique presence of immobile C=0" on carbon-based materials
slows down the proton flux via electrophoresis to enable
durable electricity generation.

Briefly, the time-dependent voltage profile can be explained
by the change in the distributions and fluxes of H;0'. The
production of H;0" is governed by surface reaction between
water and the CB film, and its transportation is closely related to
the flow of water induced by either capillary force in a porous
medium or evaporation. Because ion flow contributes > 80% of
the total V¢ (Fig. 2B), our results firmly suggest that protons are
the key to voltage generation in a hydrovoltaic device. In
a recent study, it was shown that natural evaporation from
nanostructured carbon films can produce a sustainable volt-
level potential free from the streaming potential, i.e., an evap-
orating potential, which is directly generated by carrier transfer
driven by evaporation of polar molecules.>

4. Effects of various parameters on
hydrovoltaic performance

It is known that hydrovoltaic energy harvesters can be driven by
multiple factors, such as nano-channels of the porous
substrate, chemical interaction between the substrate and
water, and anisotropic vaporization of water. Nevertheless, it is
unclear how these factors influence the output and how much
impact they have in experimental studies. This is mainly
because of the difficulty in decomposing the total effect into the
contributions from individual parameters, as well as the
different experimental setups used in previous studies. The
parametric effects can serve as a guideline for rational design to
maximize the electrical output. A basic understanding of the

This journal is © The Royal Society of Chemistry 2023
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output characteristics of the hydrovoltaic model will allow us to
analyze influence of the most important design parameters.
Herein, we investigated four crucial factors, namely, the
porosity,®>® substrate geometry," chemical reactions,**” and
evaporation.*®

The sensitivities of each parameter were assessed and
summarized in Fig. 4A-E. Most of the parameters showed
a monotonous relationship with Voc. The parameters can be
ranked by the sensitivity in the order of catalytic activation
energy (E,) > porosity () > relative humidity (RH). The catalytic
activation energy showed the highest sensitivity by exhibiting
the steepest change when E, changed by + 5% (Fig. 4A).
Accelerated protonation reaction leads to a higher concentra-
tion of H;O" and a greater electrostatic potential difference
across the CB film (ESI 5t). The porosity was also found to be
a crucial parameter. A higher porosity leads to a lower Voc
(Fig. 4B) and a change in ¢}, by + 20% caused Vo to change by ~
+ 20%. The water can settle without severe evaporation and
develop a maximum proton concentration difference between
the head and tail (ESI 67). It should be noted that the micro-pore
distribution is crucial in the determination of hydrovoltaic
performance, and although the mean-field approximation is
applied in the current model due to the computational cost and
sophistication, the effect of pore distribution was not treated as
trivial. V¢ is also sensitive to the humidity, where it increases
when the RH at the right half of the CB substrate (RH,) is
reduced (i.e., a drier atmosphere), and a consistent tendency
had been observed experimentally.***> A lower RH, stimulates
evaporation at the tail end, and thus enhances the gradient of
water concentration (Fig. S9B+t). This causes enhanced proton-
ation in the CB film (R2), given that the dispersed water mole-
cules encounter “fresh” CB with a higher C-OH concentration
(ESI 71). The geometric parameters (Fig. 4D and E) also have an
effect but are considered relatively less relevant compared to the
other considered parameters because larger geometric param-
eters always diminish Voc. The corresponding discussion is
available in ESI 8.1 In summary, the V¢ is the most sensitive to
protonation through the chemical reaction between water and
functional groups on the CB surface, followed by the porosity
and the room humidity.

The above-mentioned findings suggest the great potential to
improve hydrovoltaics under realistic conditions by controlling
the surface reaction rate and porosity. Because the reaction rate
follows the Arrhenius equation (o exp(—E,/ksT)), lowering the
catalytic activation barrier (which can be a separate challenge to
engineer) or increasing temperature can increase the reaction
rate by hundreds of times even at room temperature. A previous
first-principles calculation also demonstrated that a more
reactive carbon nanotube surface can produce approximately 50
times more electrons.*® Hence, materials with a reactive surface
are desirable for enhancing electricity generation. Alternatively,
porosity governs the capillary flow, which dominates the
transportation behavior of ions together with water. A lower
porosity means slow but steady water flow (i.e., permeation and
evaporation), which results in a higher voltage profile and
longer lifetime. Meanwhile, an extremely low porosity will
hinder water flow and transportation of charged species.
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output voltage according to the base model and optimized model.

Therefore, the porosity also should be controlled at an optimal
level. Overall, the priority in material design will be finding
materials that promote proton release, while having satisfactory
porosity.

Fixing CB as the substrate material and the volume of water
droplet, we tried to improve the output voltage by adjusting
other parameters in the hydrovoltaic model. A maximum V¢ of
~1.5 Vwas achieved at ¢, = 0.4,a =3 cm, b = 3 cm, RH = 30%,
and B}, = 0.41 eV, as depicted in Fig. 4F. Compared to the base
model, this represents an ~350% improvement in Vo without
employing any special material or complicated geometry. The
amount of protonation induced by water-surface reaction was
found to be the most influential parameter. Therefore, the
hydrovoltaic performance may be enhanced by maneuvering
the film properties and environmental conditions in an
appropriate generator setup.

Based on our developed model, it can be further extended to
other hydrophilic systems. However, its extension will require
brute force, which is beyond our scope, and thus the inference
of the current study is stressed here. For systems in which
adsorption—-desorption exchange at the interface is
controlled,”** including our model, the water and the proton
concentration along the material will play a key role in its
mechanism. When the surface reactivity with water is modified
on carbon materials or equivalent hydrophilic materials, i.e.,
engineered surface functional groups,”*” the reaction rate
becomes crucial and the proton gradient will be determined
accordingly. Hence, other systems can be simulated by adjust-
ing the variables of the present model, with appropriate exper-
imental references. Alternatively, for hydrophobic systems
including graphene surfaces, the electrokinetics at the surface
governs the hydrovoltaic output (e.g., sliding droplet'®*® and
evaporation through nanochannels*). In fibrous biofilms with
a porous structure,® the biofilms contain many amphiphilic
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surface groups, and these groups repel charged ions, and the
streaming potential is likely to be the dominant mechanism in
the immersion/evaporation-based  hydrovoltaic  device.
However, the application of the present model is limited in
hydrophobic systems given that it does not describe the
geometrical charges in water.

5. Conclusions

A theoretical study of droplet-based hydrovoltaic energy
harvesters was performed to not only provide fundamental
principles of electricity generation but also useful design
strategies. After experimental validation of the hydrovoltaic
generator model, analysis suggested that the ion concentration
gradient (especially that of proton) is responsible for the output
voltage in a porous carbon material. Proton production is gov-
erned by surface reaction between water and the CB film, and its
transportation is closely related to the water flow induced by
either capillary motion in a porous medium or evaporation.
These complex interactions create a proton concentration
gradient, which generates electricity. Besides the working
principles, we also discussed in depth the influence of porosity,
geometry, chemical reactions, and evaporation. Given that the
chemical reaction between water and surface functional groups
is the most important factor, our theoretical calculation clearly
indicates that increasing the rate of protonation through this
reaction can improve the voltage output. Finally, simple
adjustments to the surface chemistry, porosity, substrate
dimension, and relative humidity can enhance the output
voltage by approximately 400% under the optimized conditions.
It is noteworthy that this model can be further improved with
more precise parametrizations, given that some parameters
such as dynamic evaporation resistance and water retention of
CB films are inevitably taken from the most relevant empirical
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references. This work is the first in-depth theoretical investi-
gation on the working principle of a hydrovoltaic generator. By
developing the current model for other types of hydrovoltaic
systems, the underlying physics can be revealed for other
hydrovoltaic applications (different types of materials (e.g:,
porous and hydrophilic), type of water source (e.g., immersion
and vapor), frequency of water source (e.g., wave and
stationary)). The proposed design criteria serve as a guideline
for maximizing the electrical output.
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