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Information-theoretical measures identify
accurate low-resolution representations of
protein configurational space†

Margherita Mele, a Roberto Covino b and Raffaello Potestio *ac

The steadily growing computational power employed to perform molecular dynamics simulations of

biological macromolecules represents at the same time an immense opportunity and a formidable

challenge. In fact, large amounts of data are produced, from which useful, synthetic, and intelligible

information has to be extracted to make the crucial step from knowing to understanding. Here we

tackled the problem of coarsening the conformational space sampled by proteins in the course of

molecular dynamics simulations. We applied different schemes to cluster the frames of a dataset of

protein simulations; we then employed an information-theoretical framework, based on the notion

of resolution and relevance, to gauge how well the various clustering methods accomplish this

simplification of the configurational space. Our approach allowed us to identify the level of resolution

that optimally balances simplicity and informativeness; furthermore, we found that the most physically

accurate clustering procedures are those that induce an ultrametric structure of the low-resolution

space, consistently with the hypothesis that the protein conformational landscape has a self-similar

organisation. The proposed strategy is general and its applicability extends beyond that of computational

biophysics, making it a valuable tool to extract useful information from large datasets.

1 Introduction

A celebrated quote attributed to Aristotle states that ‘‘the whole
is more than the sum of its parts’’. This statement effectively
encapsulates the defining characteristic of complex systems,
whose global properties generally cannot be traced back to
those of their individual constituents, but rather emerge from
the interplay of the latter.

Among those systems that most clearly show this behaviour, a
prominent example is represented by biological macromolecules
such as proteins: these, being composed of several thousands of
interacting atoms, display a rich and sophisticated phenomen-
ology over a broad range of length and time scales, which cannot
be naively predicted or anticipated from the knowledge of their
structure. In order to generate, inspect, and comprehend the
properties and behaviour of these systems, computational,
in silico methods have been developed, most notably molecular
dynamics1–4 (MD) simulations, that serve the purpose, among

others, of sampling the conformational space of the molecule.
Once a dataset of sampled conformations, or frames, is avail-
able, however, one faces the problem of extracting useful and
intelligible information out of it, separating the relevant feature
from the irrelevant detail.

This task can be carried out through dimensionality
reduction5 or clustering schemes. These methods rely on some
notion of similarity – usually a structural similarity – between
distinct conformations to group together those whose differences
are negligible, while a much larger discrepancy exists from other
frames or groups of frames. It might appear desirable to devise
these clustering schemes taking advantage of a preexisting knowl-
edge about the system, in order to steer the algorithm towards
physically sensible partitions of the sampled conformational
space. It can be the case, however, that an undesired bias is
introduced in the process, with potentially detrimental conse-
quences for the interpretation of the results; alternatively, one
might hope for a completely unsupervised procedure,6–8 so as to
let the system itself dictate how to cluster its data points, and
allow the intrinsic organisation of the conformational space to
emerge.

A recently developed information-theoretical approach, the
resolution-relevance framework,9,10 holds the promise to carry
out this task of identifying intrinsically informative low-
dimensional representations of the system in an unbiased
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manner. This approach relies on distinct measures of the
information content of a dataset to group the instances of the
latter in a way that optimally separates information from noise,
and allows the extraction of the largest amount of information
about the generative process that underlies the data points. The
method, however, operates on the basis of a predefined clustering
procedure, whose impact cannot be neglected in the assessment
of the resulting partition’s quality and physical soundness: in
fact, the values of these information metrics for a given
arrangement of the data points in clusters only make sense
relative to the strategy employed to perform the grouping.

In this work, we tackle the issue of investigating if, and to
what extent, different strategies to carry out the clustering of
protein MD trajectory frames affect the intrinsic quality of the
resulting partitions, and if the resolution-relevance framework
can be employed to make sense of these results. We apply this
strategy to a dataset of 12 structurally dissimilar proteins as
well as to a specific case study, making use of agglomerative
clustering strategies with 7 different linkage criteria. Our
results support the hypothesis that the resolution-relevance
analysis can select those linkage methods giving rise to low-
resolution representations of the protein conformational space
that reproduce the high-resolution reference with the highest
degree of fidelity; furthermore, we propose that this capacity of
performing a sensible clustering is a direct consequence of the
clustering method being capable of preserving the intrinsically
hierarchic structure and ultrametricity of the protein
conformational space.

2 The relevance-resolution framework
and the impact of the underlying
clustering method

The resolution-relevance framework, or critical variable selection,
is a recently developed method11 for identifying important
variables without any prior knowledge of, or assumption on,
their nature. The idea at the heart of the approach is that the
information on the generative model that underlies the elements
of an empirical sample is contained in the distribution of their
frequencies, that is to say, in the number of times different
outcomes occur in the data set. It can be shown12,13 that the
entropy of the outcome distribution, dubbed resolution, quantifies
the overall information content of the sample, while the entropy
of the frequency distribution, dubbed relevance, measures the
amount of important information. In this section we provide a
synthetic review of this approach, specialising the formulation for
the application in the context of computational biophysics.

The output of a molecular dynamics simulation consists of a
collection of M configurations, or frames, ŝ = (s(1),. . ., s(M)); these
can be thought of as the realisations of a stochastic sampling
process, where each element takes the values of one of the
possible system states s = (s1,. . ., sn), with n c M. In spite of
absolute structural differences, two distinct configurations
might result equivalent for a practical purpose; for example,
if the relative position of a few atoms in two frames differs by

less than a given tolerance, they might be considered essen-
tially equivalently representative of the same overall organisa-
tion of the molecule. In analysing the outcomes of a simulation
it is thus crucial to filter out redundant details by grouping
together structures that can be safely associated to the same
state; hence, one has to perform a clustering.

The most trivial level of clustering consists in identifying
each frame as a distinct cluster (assuming that no pair of
exactly identical configurations exists in the sample). Such a
representation clearly allows the highest level of detail in the
description of the dataset, but it bears no use in making sense
of it; the number of clusters thus has to be reduced, and frames
that in principle describe distinct structural organisations have
to be grouped together if their distance (as quantified by an
appropriate measure) takes values below a predefined threshold.
In so doing, the number of clusters is reduced from K = M to
values K o M, which correspond to increasingly less resolved
representations of the system’s configuration space.

For each partition of the dataset it is possible to compute the
corresponding values of the aforementioned resolution and
relevance. Resolution is defined as (note that we employ
logarithms in units of M, or Mats, so that logM M = 1):

H½s� ¼ �
XK
s¼1

ks

M
logM

ks

M
(1)

where ks is the number of frames associated to the cluster with
label s, and ks/M is the empirical probability that a randomly
chosen frame from the data set belongs to cluster s. The
normalisation condition

P
s

ks ¼M ensures that ks/M is indeed

at most unity.
Since all frames in a cluster are indistinguishable at the level

of detail employed, the lowest resolution value H[s] = 0 is
obtained when all frames are gathered in the same cluster;
similarly, the largest value H[s] = logM M = 1 is attained when
each frame is a singleton cluster. Both extremes are equally
little informative: on one hand, when the resolution is too low,
potentially different conformations are grouped in the same
cluster; on the other hand, discriminating all M states as
distinct is equivalent to associate to each of them the same
probability, which does not provide useful information to infer
the underlying generative process. Hence, resolution alone is
not sufficient to pinpoint an optimal level of detail at which the
system should be inspected, and a second measure has to be
employed to this end. Such measure is the relevance H[k],
given by:

H½k� ¼ �
XM

k¼1

kmk

M
logM

kmk

M
(2)

where mk is the number of outcomes s for which ks = k, and kmk/
M is the empirical probability that a frame chosen at random
from the data set is associated to a state with (un-normalised)
frequency k.

The relevance is null for both extreme values of the resolu-
tion: in the case H[s] = 0 all frames are in the cluster with k = M,
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which gives mM = 1, mkaM = 0, and hence
kmk

M
lnM

kmk

M
¼ 08k;

in the case H[s] = 1 all clusters only contain one frame, hence

m1 = M, mka1 = 0 and
kmk

M
lnM

kmk

M
¼ 08k as well.

As the relevance is nonnegative and equal to zero at the
extremes of the resolution range, it follows that the relevance as
a function of the resolution has to have a maximum; thence,
there must be one representation, with intermediate resolution
and positive relevance value, that more than the others allows
an informative characterisation of the underlying probability
distribution.14 The partitions at the right of the maximum are
in what is called the under-sampling regime, M { n, in which the
statistics of the data is relatively poor and several frames
associated to distinct states can happen to appear the same
number of times. For a given value of the resolution in this
region, those partitions that maximise the relevance – the most
informative samples – feature a frequency distribution that
follows a power law, mk B k�m�1 with m 4 0, such that each
value of the frequency is associated to a distinct number of
clusters. In particular, the partition for which the quantity
H[s] + H[k] is the largest has m = 1: this corresponds to Zipf’s
law, mk B k�2, which is associated to the point of optimal
tradeoff between parsimony of the representation (low resolu-
tion) and its informativeness (high relevance).15,16 This is the
case, for example, for the frequency of the words in a
language,17 and the spike patterns of neuron populations18

(even though the occurrence of Zipf’s law in the latter case, e.g.
in neural data from the retina, might be a consequence of the
statistics of input – the underlying visual scene – rather than of
the neuronal dynamics itself19–21).

In a context of complete ignorance, i.e. in absence of any
information about the data except their empirical probability
k/M based on some pre-defined classification, the frequency is
the only label that can be employed to distinguish between
frames in distinct states.15,16 The frequency thus constitutes
a minimally sufficient representation, which, in absence of
additional information about the data, allows one to write the
resolution H[s] as:

H[s] = H[k] + H[s|k] (3)

where the information content of a given partition in states s
is decomposed in the relevance and a noise term, H[s|k].
The latter is larger for a partition based on the frequency than
for any other partition, and it constitutes a measure of the
degeneracy of the distinct classifications that produce the same
frequency distribution.16 In fact, different classifications that
preserve the number of elements in each state are fully equivalent,
as relevance and resolution solely depend on the partition’s
combinatorics: that is, how many clusters are there and how many
elements there are in each cluster; both quantities are blind to
which elements are included in a given cluster.

This is a crucial aspect, which shows that the implication
high relevance therefore informative representation is not neces-
sarily true. The concept of informative representation, obtained
as maximization of the relevance, is independent of what the

sample represents. Indeed, a random clustering of the system
may produce partitions with high relevance values that are
informative about some generative process but devoid of any
significant information on the specific model producing the
data under study (Fig. 1). Consequently, complementing the
relevance-resolution framework with a sensible strategy to
group elements into clusters based on the physical properties
(geometric, structural, energetic, etc.) of the sample, is crucial
to steer the generation of empirical probabilities that have
maximum relevance consistent with the imposed boundaries.

In the case of agglomerative clustering of molecular struc-
tures, the clustering procedure relies on the specific functions
defining the inter-frame and inter-cluster distance (Fig. 1). The
former defines the property in terms of which the similarity of
two configurations is quantified (structure, compactness,
energy, etc.), while the latter is the metric employed to measure
the distance between clusters. The latter, which is referred to as
linkage criterion, thus determines the protocol employed for
agglomerative clustering, and different choices result in different
partitions of the system. The ability of a given protocol to return
a meaningful partitioning naturally depends on the specific
dataset under examination. For example, in single linkage the
similarity of two clusters is equivalent to that of their most
similar members; this protocol is effective in identifying com-
pact and separate clusters, but it is strongly subject to the
chaining effect: two close-by points can form a bridge between
two clusters, causing them to merge and resulting in an elon-
gated cluster. Without any prior characterisation of the explored
configurational space, the goodness of the partition can be
assessed only a posteriori.

In this work, we employed various linkage criteria and
investigated the most informative partitions obtained with each

Fig. 1 Relevance-resolution curves obtained partitioning the simulation
data of protein 1DSL with two clustering protocols, average linkage and
single linkage. The two panels differ by the atom selection adopted: all
atoms on the left and Cb atoms on the right. In both panels the random
curve is also present, obtained by randomly partitioning the structures into
groups (see Methods). Each (H[s], H[k]) point corresponds to a fixed
number of clusters in which the frames of the whole trajectory are
grouped. The theoretical highest H[k] for given H[s] is also plotted (black
dotted line); specifically, the dotted lines show the upper and lower
bounds to the theoretical maximum.12,13 All curves show the expected
characteristic trend: zero relevance at the lowest (all frames in a cluster)
and highest (every frame in a single cluster) resolution values.
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of them, with two objectives: first, to identify those linkage
methods that are most appropriate for a meaningful and
physically sound clustering of molecular structure data; second,
to infer general properties of the configurational space explored
by proteins in molecular dynamics simulations. In the next
section we report the results of our study; the list and definitions
of the employed distance measures and linkage criteria are
provided in the Appendix.

3 Results

We investigated the impact of choosing seven different linkage
methods on the relevance-resolution curves obtained clustering
protein structures sampled in molecular dynamics simulations
(see Methods). To this end, we employed two sets of systems: a
dataset of 12 structurally distinct molecules, and a specific
protein, adenylate kinase,22,23 that was taken as a case study.
The similarity of configurations was quantified in terms of the
root mean square distance (RMSD) between frame pairs, after
the removal of global translations and rotations, and we
analysed configurations at three levels of structural resolution:
all-atom, which accounts for all heavy atoms of the molecule;
alpha carbon (Ca); and beta carbon (Cb). The last two consist in
reduced representations with a single coarse-grained site per
amino acid. Resolution-relevance curves were computed in all
aforementioned cases, however the overall informativeness of a
given representation was assessed in terms of the multi-scale
relevance24 (MSR), i.e. the area under the relevance curve: this is
a global measure of how a specific clustering scheme performs at
all levels of resolution.

The data in Fig. 1 suggest that it is possible to characterise
the ability of a clustering method to identify informative
partitions across various levels of structural detail. Indeed, it
can be seen that, although all the curves in the figure were

obtained by clustering the same trajectory frames, the MSR
values obtained are rather different. In particular, the selection
of atoms drastically influences the MSR value obtained through
a given clustering protocol. The results of this analysis, carried
out for 7 linkage criteria and 12 proteins at varying levels of
structural resolution (all, Ca, and Cb atoms), are summarised in
Fig. 2, where the deviation of the MSR relative to the random

reference (MSR, see eqn (4)) is plotted against the mean value
of the RMSD matrices used for the clustering procedure. Fig. 2
additionally allows comparison of the obtained MSR values with
the optimal one, namely the area under the theoretical curve
maximizing relevance at each level of resolution (the colored
region marks the upper and lower limits of the theoretical

maximum12,13). For some linkage criteria, the MSR values are
always positive (i.e. larger than the random value MSRR) and
close to the optimal one regardless of the system and structural
selection employed; for other methods, the performance
depends on the system or its representation. In particular, the
plot shows that the performance of some methods correlates
with the mobility of the protein as quantified by the average
RMSD. The linkage criteria can be divided in two groups: those
for which the MSR value correlates with the mean value of
the RMSD matrix (‘centroid’ and ‘median’) and those for
which it does not (‘average’, ‘complete’, ‘weighted’ and ‘ward’).
Consequently, it can be argued that the former are less effective
and reliable than the latter: in fact, their ability to identify
simplified but meaningful representations strongly depends on
the specific data under examination, and their applicability is
restricted to high-resolution (all-atom) descriptions. This repre-
sents a substantial shortcoming, in that these methods are not
adequate for the analysis of all-atom data in less detailed terms.

The single linkage criterion shows a peculiar pattern, and
deserves to be discussed separately. Here, the distance between
clusters is the minimum pairwise distance between their

Fig. 2 Performance of clustering algorithms, as quantified by the relative MSR, related to the protein mobility, given by the mean value of the RMSD

matrix RMSD
� �

. Each point corresponds to one of the 12 proteins of the dataset. The coloured region highlights the range of MSR values associated to

the relevance-resolution curves falling between the theoretical limits to the curve of maximal relevance. The three panels differ by the atom selection
adopted for clustering: all atoms on the left, Ca atoms in the middle, and Cb atoms on the right. The colours and the markers identify the linkage criterion
used in the clustering procedure as shown in the legend.
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elements. Hence, in the all-atom case, as the matrix elements
are widely spread, this algorithm manages to form differently-
populated clusters. Conversely, the Ca and Cb selections imple-
ment a coarse-graining that ‘‘blurs’’ the structural differences
from the outset; therefore, the algorithm tends to form highly
populated clusters by putting together even frames that
are relatively different from each other (chaining effect), and
provides a rather uninformative representation of the system.

It can be shown25 that some of the hierarchical clustering
algorithms induce a monotonic hierarchy, i.e. the values in the
inter-cluster distance matrix increase monotonically during
agglomerative clustering. Algorithms that induce a monotonic
hierarchy lead to an ultrametric in the cluster space:26 this
implies that the metric distance satisfies an inequality stronger
than the triangular one.27,28 In our analysis, it turns out that
clustering protocols that satisfy these qualities coincide with

those showing a consistently positive MSR; the only exception
to this trend is single linkage, which, although inducing an

ultrametric in cluster space, still shows negative MSR values
when coarse-grained representations of the system are
employed. In this case, however, the clustering protocol is
severely limited by the chaining effect, plausibly producing
uninformative partitions of the system and consequently
obtaining a lower or comparable MSR value with respect to
the random case. Taken together, these results suggest that
protein structures sampled in the course of a molecular
dynamics simulation populate the configurational space
according to an ultrametric structure, which is consistent with
the self-similar organisation of the free energy landscape
observed in previous works;29–33 additionally, the MSR appears
to be capable of capturing, in a parameter-free and unbiased
manner, the effectiveness of a clustering method in finding
informative representations of a biomolecule’s configurational
variability at different scales of resolution, in that MSR corre-
lates with the method’s capacity to preserve the ultrametric
structure of the reference configurational space.

Since relevance and resolution are not sensitive to the
features of the elements gathered in the clusters and their
relative similarity, it is crucial to validate a posteriori that
partitions with a higher relevance are indeed more informative
than the others. This task can be achieved through dimensionality
reduction techniques. In particular, we use diffusion maps,34–36

which project the high-dimensional trajectory of the molecule in
Cartesian coordinate space onto a low-dimensional manifold of
collective coordinates called diffusion coordinates (DCs). We thus
performed a comparison of the distribution of points (frames or
cluster centroids) in the space spanned by the first two DCs
obtained from the high-resolution (HR) or low-resolution (LR)
representation of the system (see Methods). It is reasonable to
expect that a meaningful partition gathers, in the same cluster,
frames close in the HR space, and that the distribution of
centroids resembles the HR distribution, thus allowing the same
information to be extracted. In order to assess and compare
the goodness of partitions we resort to the decomposition of
the covariance matrix in its inter- and intra-state contributions
(see eqn (5)–(7) in the Methods section). In fact, a key property of

an informative LR representation of a system is to capture more
information in the retained data than what is left in the discarded
ones; we thus expect that the trace of the inter-cluster covariance
will be significantly higher than the intra-cluster one.

We thus proceeded to investigate in greater detail the
relationship between linkage method and informativeness of
the resulting LR representation of a protein’s conformational
space. To this end, we focused on a specific case study, that of
adenylate kinase: the configurations obtained from a 800 ns
long simulation, reduced to the positions of the sole Cb atoms,
were grouped with the single, average, and random clustering
methods at various levels of cluster numbers, corresponding to
22 different resolution values in the range [0,1]; the spacing in
resolution between the first 7 representations is B0.06, for the
remaining ones is B0.04. For each LR partition we computed,
and reported in Fig. 3, the resolution-relevance plots (left panel),
the trace of the inter-state and intra-state matrix (middle panel),
and the value of the Pearson correlation coefficient (PCC)
between the first two DC in the HR and LR space (right panel);
the last two sets of quantities are plotted against the number of
clusters K employed in the representation.

It is possible to observe that, at a fixed level of resolution, the
LR representations obtained through the average linkage are
simpler and more informative, as the corresponding number of
clusters K is lower and the relevance value higher than those
obtained by single linkage; the latter also produces a relevance
curve that lies very close to that of the random partition, while
the average linkage curve closely approaches the lower bound to
the maximum. This hierarchy in performance is also confirmed
by the trends of the trace of the covariance matrices and PCC:
already with a small number of clusters (K B 10) average linkage
identifies LR representations in which the inter-cluster contribu-
tion is significantly higher than the intra-cluster one. In contrast,
at the same number of clusters the single linkage algorithm
produces partitions for which the two terms are of the same
order of magnitude, or even ranked oppositely (the intra-state
contribution is larger than the inter-state).

These results show that the LR representations obtained
with single linkage clustering do not fully capture the information
contained in the data and destroy a comparable, or even larger,
amount of information than what is maintained. In general, the
inter-state (resp. intra-state) contribution to the covariance for
average linkage is always significantly higher (resp. lower) than
that obtained with single linkage, and the outcomes of the two
linkage methods are comparable only when more than half of the
frames are retained. Results from dimensionality reduction also
support the observation that the average linkage identifies more
informative LR representations than those produced by single
linkage in that, coherently with the trend of MSR, the PCC value is
consistently higher in the former case than in the latter.

In the three panels of Fig. 3 the yellow stars indicate the
representations that, for each method, maximise the relevance.
Interestingly, in both the graph of covariance matrices and of
the PCC, these representations are at the elbow of the curve.
Further analyses in support of this interpretation, specifically of
the location of the point of slope m = 1 and of the inter-cluster
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distance as a function of the cluster number, are provided
as ESI.†

The observed behaviour is thus suggestive of the fact that
further increases in resolution lead to an increased model
complexity that is no longer balanced by information gain:
the tradeoff between complexity and informativeness turns in
favour of the former, consistently with the interpretation of
relevance as a measure of useful information content. The
resolution-relevance framework allows for the identification
of optimally chosen representative configurations of the data-
set; any observable can be computed on these configurations,
provided that their statistical weight, proportional to the size of
the corresponding cluster, has been accounted for. This results
in a significant gain in computational cost: in fact, assuming a
linear scaling with respect to the size of the dataset, for the
computation of the observable in question there will be a gain
proportional to the ratio of the number of data and that of the
clusters; in the case of the representation identified by average
linkage, this ratio is B50. We note, in passing, that the
aforementioned strategy is insensitive to any temporal ordering
of the data points, if any; hence, in order to perform any
measure that relies on such order (e.g. diffusion and transport
coefficients) one has to explicitly include this information in
the clustering procedure, specifically associating a time stamp
to the representative frames and keeping track of the identity of
particles.

To gain further insight in the statistical significance of these
results, we compared the data obtained for average and single
linkage with those of the random clustering. The latter has a
very close relevance curve to that of single linkage, and the MSR
values associated with single linkage (MSRS = 0.235) and
random clustering (MSRR = 0.233) differ only at the third
decimal place; in spite of that, the usefulness of the partitions
obtained with an information-driven protocol is incomparably

greater than that returned by random clustering: the trace of
the inter-cluster covariance matrix of the latter is always lower
than the intra-cluster one until we consider representations in
which about 2/3 of the original frames are preserved, and the
PCC between reference and random partition DC is almost zero
at any level of resolution. These observations further support
the idea that the relevance alone cannot be taken as an absolute
measure of the informativeness of a given low-resolution repre-
sentation, however this quantity in combination with the
appropriate classification method proves extremely effective
in identifying protocols that maximise the emergence of useful
information.

We then looked in detail at the three representations that
maximise the relevance for each of the clustering methods
under examination. In the right-hand side of Fig. 4 the dis-
tributions of centroids in LR representations are compared
with the frame distributions in the HR ones, as the points in
each panel are coloured according to the value taken from the
first DC in the LR representation. A visual inspection of these
data shows that the distribution of average linkage centroids in
the LR DC space is consistent with that of the HR frames; in
both graphs it is possible to recognise a colour gradient along
the x axis, showing that neighbouring frames in the HR space
are grouped together in the LR space. As for the linkage
criterion, the LR representation maximising the relevance
produces a slightly different distribution of points than that
of the HR frames; furthermore, looking at the colour of points
in both spaces it appears that distant frames in the diffusion
space are associated to the same cluster. This is even more
evident when correlating the values assumed by the DCs in the
HR and LR representation, as shown in the bottom-left corner
of Fig. 4. For both linkage measures (average and single) it is
possible to identify a strong correlation between the first DCs in
LR and HR: the Pearson correlation coefficient is 0.95 for

Fig. 3 Comparison of the different LR representations obtained from clustering the MD trajectory of adenylate kinase using the average linkage (blue),
single linkage (red), and random clustering (black). The system was analysed using a coarse representation in which only Cb atoms are considered. Left
panel: Relevance-resolution curves drawn by the different protocols; the square points mark the 22 low-resolution representations under examination.
The theoretical limits of the maximal relevance curve are also shown as dotted lines for comparison. Middle panel: Traces of the inter-state (circles) and
intra-state (triangles) correlation matrix plotted against the number of clusters K. Right panel: Pearson correlation coefficient (PCC) between the first two
DCs in the HR and LR representation, plotted against the number of clusters K. The yellow star in each of the graphs indicates the representation that
maximises the relevance for the corresponding clustering method (K = {901, 5511, 200} for average, single or random protocol respectively).
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average linkage and 0.85 for single linkage; nevertheless, in the
case of single linkage, some clusters contain frames with a wide
distribution of HR diffusion coordinate values, i.e., frames
carrying very different information are mistakenly lumped in
the same bin. Last but not least, we observe, as expected, a total
lack of correlation – both in terms of point distribution and
cluster composition – between the DCs of the random partition
and the reference HR DCs.

Finally, a detailed analysis of the relevance-resolution curve,
in the upper left corner of Fig. 4, shows that the relevance

obtained from average linkage is significantly higher than that
obtained from single linkage; additionally, it is comparable
with its theoretical maximum. Indeed, the average linkage
curve lies close to the area enclosed by the upper and lower
limits to the theoretical maximum of the relevance.12,13 Since
relevance proved capable of capturing the informativeness of
representations, one might think of modifying the clustering
outcome by shifting points between neighboring groups to
further increase the relevance value. In this respect, the results
obtained through average linkage would represent an ideal

Fig. 4 Detailed analysis of the highest-relevance partitions of adenylate kinase trajectory data obtained with single linkage, average linkage, and random
clustering. Upper left-hand panel: Relevance-resolution curves obtained from clustering the MD trajectory of adenylate kinase via average linkage (blue),
single linkage (red), and random clustering (black). The system was analysed using a coarse-grained representation in which only the Cb atoms are
considered. The yellow stars indicate the position, on the corresponding curve, of the low-resolution representations maximising the relevance obtained
by partitioning the system into K clusters. The dotted lines show the theoretical upper and lower bounds to the maximal relevance curve. Right panel:
Trajectory frames or cluster points projected onto the space spanned by the first two diffusion coordinates obtained by diffusion maps. The panel’s left
column shows the low-dimensional manifold resulting from high-resolution (HR) representation where each point is a frame of the MD simulation; the
right column shows the two-dimensional manifold resulting from the low-resolution (LR) representation, where each point is the centroid of a cluster. All
HR diffusion maps were calculated using the RMSD between configurations as a distance. For the LR manifold, instead, the distance between points is the
linkage measure that produced the partition for the information-driven clustering (average linkage in the first row and single linkage in the second row),
or the RMSD between the clusters centroid for the random clustering (third row). In both HR and LR spaces, the points are coloured according to the
value taken by the first diffusion coordinate in the LR space as reported in the colour bar at the top. Lower left-hand panel: Scatter plot of the first (left)
and second (right) diffusion coordinates of the LR space plotted against the corresponding coordinates of the HR space; in each graph, we report the
points of the representations obtained through random clustering (black), single linkage (red), and average linkage (blue). Note that the compared LR
representations display close resolution values (H[s]) but significantly different numbers of clusters (K).
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starting point; indeed, being already so close to the theoretical
maximum, it would allow to further increase the relevance with
perturbative changes that, while violating the rules of the
clustering, would preserve its general structure.

4 Conclusions

The steady increase of available computational power offers
impressive opportunities in the investigation of biological
macromolecules; at the same time, the corresponding growth
of the pile of data produced by in silico studies requires the
application of coarse-graining and dimensionality reduction
techniques that allow one to discriminate between signal and
noise in the dataset, and extract simple, useful, and intelligible
information out of it. In fact, whatever the aim of the analysis of
a dataset, it is of ever growing importance to have access to a
synthetic representation of it, that retains the salient general
features while reducing the weight of the unimportant details;
this compression allows at a time the storage of a smaller
amount of data and a faster analysis of the latter, as well as the
extraction of global properties of the system in the process, as
we have shown in this work.

To this end, the resolution-relevance framework represents a
novel, powerful instrument to construct informative simplified
representations of a molecule’s conformational space; however,
a blind and black-box application of this approach bears the
risk of giving high-relevance partitions more credit than they
deserve, in that the quality of said partitions cannot be disen-
tangled by the specific classification method employed to
construct them.

In the present work we have tackled this issue through the
systematic, dataset-wide application of the resolution-relevance
framework to a number of structurally distinct proteins, making
use of state-of-the-art agglomerative clustering methods. Our
results show that the clustering strategies, and more specifically
the particular definitions of inter-cluster distance, employed to
group together ‘‘similar’’ frames into structurally homogeneous
clusters return different values of the multi-scale relevance, a
global measure of the relevance at various levels of resolution.
We find that the partitions having higher values of the MSR are
those that produce the most physically sensible partitions, as
quantified in terms of intra- and inter-cluster covariance, as well
as the correlation between the collective diffusion coordinates
computed in the reference, high-resolution space and those of
the low-resolution representation. Most interestingly, a positive
correlation emerges between high values of MSR and the efficacy
of a clustering method in reconstructing a low-resolution repre-
sentation that features an ultrametric structure: this observation
is suggestive of the fact that the configurational space spanned by
a protein in the course of a molecular dynamics simulation is
intrinsically organised in a hierarchical manner, which is consis-
tent with the hypothesis, proposed and verified in the literature,
that the free energy landscape of proteins is effectively self-similar.

In conclusion, we propose that the clustering method
employed in the dimensionality reduction of a dataset could

be not only employed as a tool to preprocess the data in order to
analyse them, but also treated as an analysis tool itself: in fact,
through the joint usage with the general, parameter-free
resolution-relevance framework it is possible to discriminate
among partitioning approaches that produce low-resolution
models more or less representative of the salient qualities of
the high-resolution reference. The combination of these algo-
rithms can thus pave the way to an even more fruitful deployment
of clustering approaches in computational biophysics, bringing
further insight in the behaviour of complex macromolecules.

5 Methods
5.1 Protein selection

For the exploratory analysis it was essential to employ a set of
structurally distinct and uncorrelated proteins, in order to draw
general conclusions. To this end, a dataset of 107 proteins,
including many of the known folds and structure classes, was
constructed and clustered based on their dynamics.37 For each
protein, the first 10 normal modes of fluctuation were analysed
using an elastic network model,38 and superimposed by means
of the ALADYN39 protocol, which performs a hybrid structural/
dynamical alignment. The similarity between the essential
spaces spanned by the first 10 normal modes was quantified
by means of the root mean square inner product40 (RMSIP). The
distance between the essential dynamics of two aligned pro-
teins was defined as dij = 1 � RMSIPij; this distance was
employed to perform a hierarchical clustering. The resulting
dendrogram allowed us to identify 12 clusters, each of which
contains proteins whose dynamics are similar (RMSIP above
0.5). The 12 proteins used in this work are the centroids of
these clusters, and their PDB codes are: 1DSL, 1NOA, 1SNO,
1UNE, 1XWL, 1IGD, 1HYP, 2FGF, 1KNT, 1QKE, 2EXO, 1KOE.

Two specific proteins were used for the second part of the
analysis. The protein adenylate kinase (PDB code AKE4)
because of its relatively small size and the possibility to observe
conformational transitions over time scales easily achievable by
means of plain MD. The second system is the humanised IgG4
monoclonal antibody (PDB code 5DK3). This system was chosen
because of its large size and higher structural and dynamical
complexity.41 As the results obtained in the two cases are
consistent, for the sake of clarity we only reported the data
pertaining the adenylate kinase in the main text, while those of
the antibody are provided as ESI.†

5.2 Simulation setup

For all simulations, the Gromacs 201842,43 software was employed,
and the topology was defined through the AMBER99SB-ILDN44

force field. The simulations were performed in explicit solvent, the
latter being TIP3P water;45 Na+ and Cl� ions at the concentration
of 0.15 M were added to neutralise the global electric charge
and mimic physiological ion concentration in the cell. Energy
minimisation was performed until the maximum force reached a
specific value, Fmin = 1000 kJ mol�1 nm�1 for the 12-protein
dataset and Fmin = 500 kJ mol�1 nm�1 in case of the adenylate
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kinase protein and the humanised IgG4 monoclonal antibody.
NVT and NPT equilibrations were performed using the velocity-
rescale thermostat46 and the Parrinello–Rahman barostat.47 With
respect to the interaction, a cut-off was used for van der Waals
interaction and for the short-range component of the Coulomb
one. The long-range component of the Coulomb force, instead,
was computed with the Particle Mesh Ewald algorithm. The
LINCS algorithm48 was employed to define the constraints on
the hydrogen-containing bonds and allows an integration time of
2 fs. The dynamic of each system in the 12-protein dataset has
been simulated for 300 ns; regarding the adenylate kinase and the
humanised IgG4 monoclonal antibody their dynamic were simu-
lated for 800 ns and 2 ms, respectively.

5.3 Clustering

For each protein the RMSD matrix was computed49 for three
atom selection: all atoms, Ca only, Cb only. From each of these
matrices, 7 dendrograms were constructed exploring the 7
different definitions of inter-cluster distance supported by the
python module Syipy,50 employed for the clustering analysis.
Each dendrogram was cut at different levels, ranging the
number of clusters from 1 to the number of frames M by
steps of 10. For each resulting partition, the corresponding
resolution and relevance values were computed following
eqn (1) and (2). In this way, for each system 21 different curves
are obtained: 3 representations of the system (all, Ca, Cb) times
7 measures of distance between clusters.

5.4 Multi-scale relevance and random curves

In addition to information-driven clustering, random clustering
is also possible. Given a number of clusters K, a label vector can
be randomly generated by iteratively sampling M elements from
a list containing all integers from 1 to K. For a given K, 104

vectors of labels were generated, and for each of them the
corresponding values of relevance and resolution were calcu-
lated. The points on the random curve were obtained by aver-
aging the relevance and resolution values obtained for a given
number of clusters K, and varying the number of clusters from
1 to M by steps of 10. The MSR value associated to this curve was
used to normalise the MSRs resulting from the hierarchical
clustering algorithms:

MSRi ¼
MSRi �MSRR

MSRR
(4)

where MSRi is the area under the relevance-resolution curve
drawn by algorithm type i, and MSRR is the one obtained by the
random procedure.

5.5 Diffusion maps

Diffusion Maps is a nonlinear dimensionality reduction
method.34–36 The algorithm was employed to compare the
manifold obtained from the whole trajectory (high-resolution
representation) and those obtained considering only the
centroids of some partitions (low-resolution representation).
In the high-resolution representation, the inter-frame distance
is the RMSD matrix, as for the clustering. In the low-resolution

one, each cluster is represented by its centroid and the distance
between clusters is given by the linkage measure adopted.
The terms high-resolution and low-resolution are used here in
connection with the number of frames retained and not to the
selection of atoms, which is the Cb atom selection in both
scenarios. The algorithm also requires a threshold parameter
to determine what is near or far in the source data set. To be
consistent in its approach, the quantile of order 0.1 of the
distribution of distances was always chosen. It is possible to
relate the points of the HR space to those of the LR one, since on
one side there are the elements of the clusters, and on the other
the centroids. To make this visual inspection easier, data were
rescaled so that all points were contained in the square [�1,1]2.

5.6 Covariance matrix

The covariance matrix of the positions of the Cb atoms along
the trajectory can be subdivided in two contributions: inter-
and intra-clusters.29,51,52 The correlation between two elements
of the system (in this case two atoms Cb) is given by:

Cij = Cintra
ij + Cinter

ij (5)

Cintra
ij ¼

X
l

ol ~ri � ~rih il
� �

~rj � ~rj
� �

l

h iD E
l

(6)

Cinter
ij ¼

X
l

ol ~rih il� ~rih i
� �

~rj
� �

l
� ~rj
� �h i

(7)

where l runs over a cluster Cl; ol is the weight of the state l,
which is the fraction of simulation time spent by the system in
it; hil denotes the average over the conformations belonging to
the cluster l. The decomposition is performed in analogy with
the ‘‘jumping among minima’’ model.52 The first term in the
decomposition of the covariance matrix is the contribution
arising from structural fluctuations within clusters. The second
term arises from the structural differences of the clusters
centroids. Consequently, a good partition will have a high
inter-cluster term and a low intra-cluster one.
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Appendix

� Single linkage: the distance between a pair of clusters is
determined by the two closest objects belonging to the different
clusters.

D(Ci,Cj) = min{d(xi,xj) for xi A Ci and xj A Cj} (8)

Single linkage clustering tends to produce elongated clus-
ters, which causes the chaining effect. Two points that form a
bridge between two clusters cause the single-link clustering to
join these two clusters into one.
� Complete linkage: it consider the distance between two

clusters to be equal to the largest distance from any member of
one cluster to any member of the other cluster.

D(Ci,Cj) = max{d(xi,xj) for xi A Ci and xj A Cj} (9)

This procedure tends to form smaller and more compact
clusters.
� Average linkage: it considers the distance between two

clusters as the average distance between all pairs of points
coming from the different groups.

D Ci;Cj

� �
¼ 1

Cij j Cj

�� ��
X
xi2Ci

X
xj2Cj

d xi; xj
� �

(10)

where |.| stands for the cardinality of set, i.e. the number of
items pertaining to it. This approach can cause the splitting of
elongated clusters and the merging of portions of neighbouring
elongated clusters.
� Weighted linkage: also in this case, the protocol takes as

cluster distance the average distance from any member of one
cluster to any member of the other one. The difference is that the
distance between the new cluster and another is weighted with
respect to the number of data in each cluster. Consequently, the
distance between the cluster Ck = Ci,Cj and a third cluster Cl,
not involved in the definition of Ck, is:

D Ck;Clð Þ ¼ 1

2 Cij j Clj j
X
xi2Ci

X
xl2Cl

d xi; xlð Þþ

þ 1

2 Cj

�� �� Clj j
X
xj2Cj

X
xl2Cl

d xj ; xl
� � (11)

� Centroid linkage: in this case, two clusters are merged
based on the distance of their centroids. The definition of
centroids is:

mi ¼
1

Cij j
X
xi2Ci

xi (12)

Consequently, the distance between clusters results the
Euclidean distance between the centroids:

D (Ci,Cj) = 8mi� mj82 (13)

The centroid of the resulting cluster Ck = Ci,Cj is recom-
puted according to eqn (12) considering all the points
belonging to it.

� Median linkage: the procedure is similar to the centroid
linkage, except that the centroid of the resulting cluster mk is the
average of the centroid of the merged ones:

mk ¼
1

2
mi þ mkð Þ (14)

This is equivalent to giving the same weight to merged
clusters regardless of the number of elements in them.
�Ward linkage: the methods aims to minimise the increase

of the intra-cluster sum of squared errors:

E ¼
XK

k¼1

X
xi2Ck

xi � mkk k22 (15)

where K is the number of clusters and mk is the centroid of the
cluster Ck (defined by eqn (12)). Merging clusters Ci and Cj

produces an increase in variance of

DE ¼ ninj

ni þ nj
mi � mj
		 		2

2
: (16)

Consequently, the distance between the new cluster Ck = Ci,Cj

and an unused cluster Cl is given by the recursive equation:

D Cl ;Ckð Þ ¼ Cij j þ Clj j
Cij j þ Cj

�� ��þ Clj j
D Cl ;Cið Þþ

þ
Cj

�� ��þ Clj j
Cij j þ Cj

�� ��þ Clj j
D Cl ;Cj

� �
þ

� Clj j
Cij j þ Cj

�� ��� �2D Ci;Cj

� �

(17)

All definitions of distance between clusters can be summarised
by the recursive relation proposed by Lance and Williams:53

D(Cl,Ci,Cj) = aiD(Cl,Ci) + ajD(Cl,Cj) +bD(Ci,Ci)
+ g|D(Cl,Ci) � D(Cl,Cj)| (18)

where ai, aj, b and g are coefficients that takes different values
depending on the protocol used.

Acknowledgements

The authors are indebted with Thomas Tarenzi for valuable
help in the construction of the protein dataset, and with Luca
Tubiana for a critical and insightful reading of the manuscript.
R.C. acknowledges the support of the Frankfurt Institute for
Advanced Studies and the LOEWE Center for Multiscale Mod-
elling in Life Sciences of the state of Hesse. This project
received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and inno-
vation program (Grant 758588).

References

1 M. Karplus and G. A. Petsko, Nature, 1990, 347, 631–639.
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