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Review of the application of Cu-containing SSZ-13
in NH3z-SCR-DeNO, and NHz-SCO

Magdalena Jabtonska & *

The reduction of NO, emissions has become one of the most important subjects in environmental
protection. Cu-containing SSZ-13 is currently the state-of-the-art catalyst for the selective catalytic
reduction of NO, with ammonia (NH3-SCR-DeNO,). Although the current-generation catalysts reveal
enhanced activity and remarkable hydrothermal stability, still open challenges appear. Thus, this review
focuses on the progress of Cu-containing SSZ-13 regarding preparation methods, hydrothermal
resistance and poisoning as well as reaction mechanisms in NHz-SCR-DeNO,. Remarkably, the paper
reviews also the progress of Cu-containing SSZ-13 in the selective ammonia oxidation into nitrogen and
water vapor (NH3-SCO). The dynamics in the NH3-SCR-DeNO, and NHz-SCO fields make this review

rsc.li/rsc-advances timely.

Introduction

Nitrogen oxides (NO,, consisting of >95% NO and <5% NO,) are
one of the major atmospheric pollutant gasses emitted from
vehicle engines (e.g., automobiles, ships, etc.) and industrial
boiler processes. NO, are formed via different mechanisms
such as thermal-NO,, prompt-NO, and fuel-NO,."* Nitrogen
oxides affect human health (e.g., lowering the body's resistance
to bacterial infections, eye and respiratory system irritation,
causing problems with breathing, allergic diseases, etc.).
Furthermore, the hazards of NO, include the promotion of
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global warming and the formation of photochemical smog, acid
rain, atmospheric haze (fine particle pollution) and ozone
depletion, while the control of NO, emission remains a chal-
lenging task in the field of environmental catalysis."™ The
upcoming EU emission legislation challenges researchers and
engineers to keep the NO, emissions at a very low level under
various boundary conditions. The selective catalytic reduction
with ammonia (NH3-SCR-DeNO,: 4NH; + 4NO + O, — 4N, +
6H,0) is one of the most effective technologies for removing
NO, from diesel engine exhausts with an 80-95% removal effi-
ciency."? Catalysts - typically metal-oxides, noble metals, metal
exchanged zeolites or hybrid systems - are an integral part of
NH;-SCR-DeNO,..>” Much research has been done on Cu-
containing ZSM-5 catalysts since its discovery in 1986 by Iwa-
moto et al.® However, Cu-containing ZSM-5, beta or SAPO-34
suffer from poor hydrothermal stability.”*® Cu-containing SSZ-
13 (standard oil synthetic zeolite-thirteen, chabazite (CHA)-
type zeolite) catalysts have been commercialized in the US
and Europe since 2010 due to their efficient reduction of NO,
and enhanced hydrothermal stability.*»*> The CHA framework
is composed of four-, six-, and eight-membered rings arranged
to form a tridimensional system of channels perpendicular to
each other (0.38 x 0.38 nm; R3m (#166) space group).'***
Examples of morphology of SSZ-13 are given in Fig. 1a. SSZ-13
was first synthesized by Zones in 1985" applying the very
costly template N,N,N-trimethyl-1-adamantammonium
hydroxide (TMAdaOH). Nowadays, SSZ-13 can be synthesized
by applying a variety of cheaper templates, including choline
chloride,**"” N,N,N-dimethylethylcycloxexylammonium
bromide (DMCHABI),"® etc. Cu-SSZ-13 prepared via ion-
exchange showed improved activity and N, selectivity (ie.,
lower amounts of NO, by-products) compared to Cu-ZSM-5 and
Cu-beta (Fig. 1b)."* The activity of catalysts was maintained even
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Fig.1 (a) Examples of helium ion microscopy (HIM) images of SSZ-13.
Reproduced from ref. 14 with permission from Elsevier, copyright
2017; (b) NO, conversion over Cu-SSZ-13 (squares), Cu-beta (circles),
and Cu-ZSM-5 (triangles). Reproduced from ref. 11 with permission
from Elsevier, copyright 2010.

after severe hydrothermal treatment at 800 °C for 16 h.*»*>*
Still, some challenges remain for Cu-containing SSZ-13,
including broadening the reaction temperature window
together with improved (thermal) stability against chemical
poisons. Although some review articles on the Cu-containing
SSZ-13 were already published in 2015-2021,>** extensive
studies on the Cu-containing SSZ-13 catalysts concerning
preparations methods, hydrothermal stability and poisoning,
the reaction mechanisms as well as the determination of active
sites are of great interest. Thus, all these factors constitute the
present review, which covers the thorough literature of the last
ten years. However, this review did not include patents.

Preparation methods of Cu-containing
SS7Z-13

Kwak et al?® first suggested the presence of two different
cationic Cu sites in Cu-SSZ-13, while Giordanino et al.> first
reported the presence of [Cu(OH)]" species in Cu-SSZ-13. Cu-
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View Article Online

RSC Advances

containing SSZ-13 contains two active sites for NH;-SCR-
DeNO,, Cu®** in double-six-membered ring (D6R) cages and
[Cu(OH)]" in CHA cages, which are balanced by a pair of nega-
tive charges (2Z) and a single framework negative charge (Z),
respectively*®?* (Fig. 2a). The concentration of [Cu(OH)]" ions
within the eight-ring windows of Cu-SSZ-13 increases as the
n(Cu)/n(Al) ratio rises, unlike that of Cu®" ions on D6Rs.** The
dehydration of the [Cu(OH)]" ions may lead to the formation of
Cu" species ([Cu(OH)]" — Cu* + HO),** or [Cu-O-Cu]*" oxoca-
tions (-Al-O-Cu*-OH + -Al-O-Cu**-OH — -Al-O-[Cu-O-
Cu**-0-Al- + H,0).% Furthermore, Verma et al.***” suggested
that when the n(Cu)/n(Al) is above 0.2, Cu,O,, are also present.
Such aggregated copper oxide species catalyze ammonia
oxidation.*® Fickel and Lobo™ pioneered in the investigation
over Cu species in Cu-SSZ-13 with low n(Si)/n(Al) and 4.39 wt%
of Cu. They proposed that the Cu cations exist exclusively in the
form of isolated Cu®" ions and are located in the cages coordi-
nated with three oxygen atoms of the six-membered rings
(6MRs). Nowadays it is recognized that the location, as well as
the nature of the Cu cations, varies significantly depending on
the n(Si)/n(Al) ratio and also on the Cu loading. Thus, the copper
species can occupy four types of cationic sites in CHA, such as
site I — displaced from the six-membered-ring into the ellip-
soidal cavity, site II - located near the center of the ellipsoidal
cavity, site III - located in the center of the hexagonal prism, and
site IV - located near the eight-membered-ring window.*>** The
copper species can be introduced into the CHA structure via
different techniques, including ion-exchange, one-pot hydro-
thermal method, solid-state ion-exchange, etc. Table 1
summarizes the catalyst preparation, reaction conditions, and
NO, conversion in NH;-SCR-DeNO, above 80% and related by-
products in the range. The activity and selectivity of the Cu-
containing systems depend on multiple factors, particularly
catalyst composition (e.g., n(Si)/n(Al) ratio and copper species
loading) and treatment history (e.g., degreening and hydro-
thermal ageing). It is important to note that the reaction
conditions are generally different from each other, including
the feed gas composition, total flow, catalyst dosage, and even
measurement systems. Therefore, it is hard to compare the
activity of the various catalysts in detail. However, a rough
comparison is still feasible. Other transition metals have been
introduced to improve the activity of catalysts (e.g., Fe,**
Mn,***¢ etc.). In the current review, the focus is given mainly on
the Cu-containing SSZ-13.

Ion-exchange

In the most widely applied preparation method reported in the
literature - ion-exchange, the initial Na-SSZ-13 must also be ion-
exchanged with NH4;NO; and Cu®" salt solutions to obtain Cu-
SSZ-13. The NH,'-form has been reported to improve the
mobility of Cu®>" ions and promote the ion-exchange rates and
levels.”” However, the ion-exchange properties (thus, the nature
and location of copper species) are influenced by the synthesis
conditions of SSZ-13, such as silica source, aluminium source,
n(Si)/n(Al) ratio, organic structure-directing agent, water
content, alkalinity, ageing time, crystallization temperature or
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(a) The structure of Cu-SSZ-13, which contains four-membered, six-membered, and eight-membered rings. Reproduced from ref. 30

with permission from Elsevier, copyright 2022; (b) NO, conversion (ll) over Cu-SSZ-13 with n(Si)/n(Al) = 12 and n(Cu)/n(Al) = 0.13. Also included
are simulated curves assuming low- and high-temperature reaction routes. Reproduced from ref. 51 with permission from ACS Publications,
copyright 2017; (c) NO, conversion over (3.8 wt%)Cu-SSZ-13 under different GHSVs. Reproduced from ref. 67 with permission from ACS
Publications, copyright 2014; (d) NO, conversion over Cu-SSZ-13 prepared via solid-state ion-exchange (SSIE) and impregnation (IM). Repro-

duced from ref. 47 with permission from Elsevier, copyright 2022.

time,*** etc. Furthermore, ion-exchange variables such as the
copper precursor, temperature and time are also influencing
factors. For example, Gao et al.*® prepared SSZ-13 with different
n(Si/)n(Al) ratios (6, 12 and 35) by the traditional synthesis
method with N,N,N-trimethyl-1-adamantammonium hydroxide
as a structure-directing agent. They proposed that the location
of Cu®" ions and their redox properties can be adjusted through
the variation of the n(Si)/n(Al) ratio of Cu-SSZ-13. Moreover, the
isolated Cu®" ions in Cu-SSZ-13 are adjusted by the application
of different Cu precursors,* ie., in 6MRs for the catalysts
prepared with CuCl, and Cu(CH3COO), precursors and in 8MRs
for the catalysts prepared with Cu(NO3), and CuSO, precursors.
The presence of catalytic centers with different activities can be
visualized via the seagull profile, i.e., first, an increase in NO
conversion with temperature, followed by a decrease in
conversion at intermediate temperatures (ca. 250-350 °C), and
finally an increase again at higher temperatures®**> (Fig. 2b).
The seagull profile is often seen for Cu-SSZ-13 with low Cu
content (i.e., 0.5-3 wt%),**** NH;-SCR-DeNO, with high space
velocity, low oxygen concentration (e.g:, 2 vol%) as well as in the
presence of hydrocarbons.>

25242 | RSC Adv, 2022, 12, 25240-25261

The ion-exchange properties can also be varied for the
micro-/mesoporous materials.>>>” In the case of SSZ-13,*® mes-
opores with diameters of 2-10 nm were introduced into the
zeolite H-SSZ-13 after treatment with NaOH. Cu-containing SSZ-
13 with the support treated with an aqueous solution of 0.1 M
NaOH showed enhanced activity in NH;-SCR-DeNO,.. The use of
higher concentrations of NaOH led to a drop in activity. More-
over, lower activity was also reported for the steamed Cu-SSZ-13.
Further studies® proved Cu-containing SSZ-13, with the support
treated with 0.1 M aqueous solution to be the most active
catalyst in the series (0-0.3 M concentration of NaOH solution).
The copper species loading introduced via ion-exchange was
comparable for the catalysts with unmodified and post-
modified support; however, they varied significantly between
both studies. As can be seen from Table 1, pos. 12-50, the
amount of introduced copper species varies significantly among
the samples, i.e., it is uncontrollable. Furthermore, as the ion-
exchange requires successive washing, filtering, drying,
calcining and solute recycling procedures, many researchers
turn to alternative preparation procedures, e.g., the one-pot
hydrothermal method.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Zeolite hydrolysis process. Reproduced from ref. 77 with permission from ACS Publications, copyright 2015; (b) effect of copper

loading on the hydrothermal stability of Cu-SSZ-13. The hydrothermal stability test was conducted at several temperatures for 5 h in flowing air
containing 10 vol% H,O. The crystallinity of the solid product was calculated based on the areas on the peaks in the 26 range from 20° to 32° in its
XRD pattern, and Cu-SSZ-13 before hydrothermal aging was chosen as the standard for the crystallinity calculation. Reproduced from ref. 104
with permission from ACS Publications, copyright 2018; (c) (3.6 wt%)Cu-SSZ-13 (n(Si)/n(Al) = 6.5) degradation curve by XRD. The hydrothermal
stability test was conducted at several temperatures for 5 h in flowing air containing 10 vol% H,O; (d) proposed degradation scheme for Cu-SSZ-

13. Reproduced from ref. 126 with permission from ACS Publications, copyright 2019.

One-pot hydrothermal method

Cu-containing SSZ-13 prepared by the one-pot hydrothermal
method shows higher content and dispersion of copper
species.®” Ren et al.®* designed a one-pot synthesis method for
Cu-SSZ-13 (with a low n(Si)/n(Al) ratio of 4) using low-cost
copper-tetraethylenepentamine (Cu-TEPA) as a template. The
catalyst exhibited superior catalytic activity with more than 80%
NO conversion at 150-450 °C. In addition, Martinez-Franco
et al.®® used Cu-TEPA and N,N,N-trimethyl-1-adamantamonium
(TMAdaOH) in one-pot prepared Cu-SSZ-13 with n(Si)/n(Al) of
14.2 and Cu loading of n(Cu)/n(Si + Al) = 0.059, i.e., controlled
ratios and a Cu loading. Furthermore, in another study,*
a n(Si)/n(Al) ratio of 15 was reported to guarantee enhanced NO
conversion among #n(Si)/n(Al) ratios of 6, 15 and 30. In other
studies, the authors mentioned n(Si)/n(Al) of 13.26 (among
6.54-33.12)** or 13 (among 10.6, 13.0 and 16.0)** for Cu-SSZ-13
prepared via the one-pot hydrothermal method, and investi-
gated its activity for the NH;-SCR-DeNO,.

One of the main drawbacks of the one-pot hydrothermal
method appears to be a high loading of copper species (i.e., 6.31-
11.27 wt% of Cu) as the result of a large amount of metal ions in
the corresponding structure-directing agent®>*>% (Table 1, pos.
57-62). Unfortunately, these copper ions cannot be completely
removed, even after an ion-exchange (i.e., reverse ion-exchange)
of Cu-SSZ-13 with an aqueous solution of 1 M NH,NO; for
several times,* limiting its control. Following these studies, the
synthesis was further optimized by decreasing the amount of

© 2022 The Author(s). Published by the Royal Society of Chemistry

template required and changing some post-treatment steps (e.g.,
with dilute HNO; solution or with HNO; followed by NH,NO;
solution)®®6667:110:114119 o1 even pig the introduction of a second
transition metal."! As a result, materials with a significantly
lower amount of copper species (e.g., <3.9 wt%) were achieved,
thus, enhancing its activity in NH;3-SCR-DeNO, (Fig. 2c). For
example, Liu et al.®® reported an effective strategy to regulate the
nature and distribution of Cu species of a one-pot synthesized
Cu-SSZ-13 zeolite via ion-exchange with an aqueous 0.1 M HNO,
solution (for 4, 8, 12 and 16 h) before removing the template. An
optimum time of 4 h guarantees enlarged specific surface area,
pore volume, n(Si)/n(Al) ratio and isolated Cu®* content, and thus
enhanced activity and N, selectivity over Cu-SSZ-13.

Solid-state ion-exchange

Relatively limited studies - compared to Cu-SAPO-34,"*° were
conducted on Cu-containing SSZ-13 prepared via solid-state
ion-exchange (SSIE, Table 1, pos. 63-67). However, it has been
reported that SSIE can be carried out either via the physical
mixture of CuO and H-SSZ-13 at 700-800 °C (reduction of Cu**
in CuO to Cu*/Cu’, and reoxidation at the ion-exchange sites of
the zeolites)”'** or ammonia-assisted SSIE (below 350 °C,
formation of the [Cu(NH;),]" complex via the interaction of
Cu,0(111) with H- or NH,'-SSZ-13)."* In the first approach,
framework deteriorations and inadequately reacted CuO, was
inevitable, while in the second approach the application of
ammonia may limit the commercialization of the NH;-assisted

RSC Adv, 2022, 12, 25240-25261 | 25249
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SSZ-13. Reproduced from ref. 88 with permission from Elsevier,
copyright 2020; (b) NH3-SCR-DeNO, activity regeneration after
stepwise desulfation at different temperatures based on rate constant
measured at T = 143 °C for Cu-SSZ-13 (n(Si)/n(Al) = 6), and T = 184 °C
for Cu-SSZ-13 (n(Si)/n(Al) = 30). Reproduced from ref. 137 with
permission from ACS Publications, copyright 2018.

SSIE. Moreover, the modification of HT-SSIE (e.g., after 150-
500 °C NH;-SCR-DeNO, due to movement of external CuO to
Cu*/*" ions inside the zeolite channels under reaction condi-
tions'*?), or LT-SSIE (e.g., application of the copper salts that
decompose below 300 °C),"** as well as the use of NO and NH;
for the generation of the [Cu(NH;),]" (=2),"** were reported.
Furthermore, Zhang et al.*’ claimed that the application of the
NH, "-form (rather than the H-form) led to the presence of more
Cu** ions and fewer CuO, species. The formation of
[Cu(NH,),J*" intermediates (x = 2 or 4) promotes the mobility of
Cu”" species, facilitating its introduction into ion-exchange
sites, which was favorable for NH;-SCR-DeNO, (Fig. 2d).

Hydrothermal stability and poisoning

NH;-SCR-DeNO,, catalysts used in diesel vehicles operate under
high temperature and humid conditions alongside poisons
derived from biodiesel and lubricant oil additives. The activity
and stability of respective Cu-containing SSZ-13 vary in NH;-SCR-
DeNO, depending on the applied hydrothermal aging treatment
(Table 1). Both the dealumination of the Cu-containing SSZ-13
catalysts, as well as the transformation of ZCuOH sites to Z,Cu,
coupled with the consumption of Brensted acid sites, were re-
ported during the rather mild hydrothermal aging treatment <

25250 | RSC Adv, 2022, 12, 25240-25261
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700 °C (ZCuOH + ZH — Z,Cu + H,0;**7*#*°*12 confirmed via DFT
calculations;® promoted by other transition metals***). Water
molecules tend to attack the aluminum sites (i.e., Bronsted acid
sites, -Si-(OH)-Al-), which causes dealumination and conse-
quently structural amorphization (decomposed to SiO, and
Al(OH);, Fig. 3a).”7'***>> Al(OH); possesses a kinetic diameter of
0.503 nm, which means that it cannot escape from the SSZ-13
pores during hydrothermal treatments. Thus, it can be inserted
back into the framework during cooldown (i.e., reversible deal-
umination) to maintain the integrity of the zeolite structure.” The
aluminum sites can be protected by adjusting the n(Si)/n(Al) ratio
accordingly, thus accommodating the highly hydrothermally
stable Cu**-2Z sites. The Cu-SSZ-13 catalysts (n(Si)/n(Al) = 6-11,
<3 wt%) are reported to be resistant to hydrothermal aging with
10 vol% H,0 at 800 °C for 16 h (i.e., comparable to the exposure of
a 135 000-mile vehicle-aged catalyst****?), which is influenced by
the copper species loading (Fig. 3b).*** A high copper loading is
attributed to the abundancy of [Cu(OH)]"-Z sites that tend to
gradually transform to CuO, upon hydrothermal aging, which
further destabilizes the zeolite framework.?*#*°* However, the
onset of zeolite-framework occurs above 800-900 °C *"**¢ (Fig. 3c).
During the hydrothermal aging (>700 °C) of Cu-SSZ-13,
[Cu(OH)["-Z (rather than Cu®'-2Z) convert to CuO, clusters via
[Cu(OH)'}-Z — Cu(OH), — CuO, sequence, where [Cu(OH)]"-Z is
first hydrolyzed to Cu(OH),, and then the latter agglomerates to
form CuO, clusters.’>**”*® Furthermore, CuO, can interact with
Al species without the formation of defined structures.” CuO,
clusters lower NH;-SCR-DeNO, selectivity by catalyzing the NH;
oxidation side reactions, as well as actively promoting the
degradation of SSZ-13 during aging. It was observed that hydro-
thermal aging at 800 °C for 16 h led to a significant increase in
mesopores = 4 nm, which is believed to result from increased
CuO, formation.*>*>**” The hydrothermal treatment causes the
zeolite structure to contract in the ¢ direction which then leads to
the collapse of the 4MRs"* (Fig. 3d). Despite this, some of the
isolated copper species are still protected in the larger rings.
Prodinger et al.** reported higher hydrothermal stability over sub-
micron Cu/SSZ-13 compared to Cu/SSZ-13 with particle sizes 10
times bigger.

Co-cation modification

The introduction of second metal ions into the Cu-containing
SSZ-13 catalyst is a facile way to improve its hydrothermal
stability. Sodium is a common element found in Cu-SSZ-13 as
aresult of a strong basic environment provided by NaOH during
SSZ-13 synthesis and incomplete exchange between Na-SSZ-13
and NH,NO; solutions (before Cu-exchange). For example,
Gao et al.”” demonstrated that the presence of certain amounts
of Na* (1.78 wt%) or Li" (0.40 wt%) enhanced the hydrothermal
stability of low-Cu loaded (0.87 wt%) Cu-SSZ-13 (n(Si)/n(Al) = 6).
Further studies confirmed an optimal loading of 1-1.5 wt% of
Na" in the materials with preserved NO, activity (Fig. 4a).®® The
optimized Al-rich (2.7 wt%)Cu—(1.7 wt%)Na-SSZ-13 (n(Si)/n(Al)
= 4) catalyst exhibits >80% NO conversion between 200-650 °C
in NH;-SCR-DeNO, after hydrothermal aging at 750 °C.** The
Na' cations were reported to compete with Cu ions for catalytic

© 2022 The Author(s). Published by the Royal Society of Chemistry
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exchange sites and provide NH; adsorption function as Lewis
acids, as well as neutralize Brgnsted acid sites (-Si-(OH)-Al-;
thus preventing dealumination during hydrothermal aging).””**
The K’ cations show effects similar to those of Na’ and the
optimal low-temperature activity for Cu, K-SSZ-13 is also found
at n(K)/n(Cu) = 0.7.°> Cu®>" ions occupy windows of 6MRs and
co-cations occupy windows of 8MRs.'> Furthermore, the
hydrothermal stability of (3.4-4.1 wt%)Cu-SSZ-13 was remark-
ably enhanced through loading with a small amount of cerium
(i.e, ca. 0.2-0.4 wt%, optimum ca. 0.35 wt%)."** This can be
achieved either via ion-exchange or solid-state ion-exchange.
Cerium ions can serve as an oxygen reservoir that can store
and release oxygen via the redox shift between Ce*" and Ce**
under oxidizing and reducing conditions, which presumably
stabilize the zeolite framework. Also, Ce*" ions tend to fill defect
sites of zeolites, where they attract water molecules, reducing
the probability of them attacking the aluminum sites. Other
cations, like Ca®", are detrimental at any loading,'* according to
the order of poisoning effect: Mg > Ca > Na > K."** The hydro-
thermal stability of Cu-SSZ-13 can be further improved via its
modification with Fe,***' Y,'°* Sm"*>'%* or Zn,"'* as well as by the
passivation of its surface with Al,O3 * or ZrO,."*® Furthermore,
the hydrothermal stability of the composite samples, e.g., Cu-
SSZ-13 + Fe-SSZ-13,"** H-SAPO-34, Cu-SSZ-13,% Cu-SSZ-13 and
Cu-SAPO-34,">"%¢ was significantly improved compared to that
of the single Cu-SSZ-13.

Sulfur poisoning

Thus, in addition to their excellent catalytic activity, hydrothermal
stability and high resistance against chemical poisons are also
highly required properties for these catalysts. As it also happens
with hydrothermal stability, [Cu(OH)]"-Z is more susceptible (than
Cu**-2Z) to SO, poisoning (coming from the burning of sulfurous
species in fuel). Sulfur species adsorb on the ZCuOH sites (in the
presence and absence of NH3), and exist in bisulfate form
(zCuOH + SO, — ZCuHSOj3). Moreover, ammonium sulfate
((NH,),S0,) blocks the Z,Cu sites along with Cu sulfate species -
CuHSO, (in the presence of NH; and SO,) and Cu sulfate (in the
presence of only SO, in the feed).”*” The lower mobility of sulfated
Cu species compared to non-sulfated Cu species led to a drop in
catalyst activity.* Ammonium sulfate can be removed at
350 °C,”®™ while in the case of other species temperatures
higher than 550 °C were needed (i.e., can be removed via regen-
eration of the diesel particle filter).”*”*** Non-decomposed sulfate
species block the pore of Cu-SSZ-13, thus decreasing its catalytic
activity. However, many researchers showed that NO, conversion
can reach its original level after the removal of SO, and/or H,0O
from the feed gas, i.e., reversible inactivation.®*** A combination
of other metals (e.g:, Zn,"*" Ce,'*>'** Fe,**151¢ e¢f) with Cu-
containing SSZ-13 can adequately protect active sites from
sulfur poisoning. Furthermore, Cu-SSZ-13 becomes more robust
against sulfur as a result of hydrothermal aging.*

Phosphorus poisoning

Besides poisoning by sulfur-containing species, Cu-containing
SSZ-13 is also affected by phosphorus and zinc (coming from

© 2022 The Author(s). Published by the Royal Society of Chemistry
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engine lubricating oil, e.g., zinc dialkyldithiophosphate (ZDDP)
as an additive), alkali and alkaline earth metals (e.g., Na, K, Ca,
and Mg, coming from engine lubricating oil), noble metals
(coming from the upper stream emission abatement compo-
nents, e.g., diesel oxidation catalysts (DOC), etc.'*’~**°). Lezcano-
Gonzalez et al.™*® gave an overview of the key deactivation
mechanism observed for Ca, Zn, (1-2 wt%) Pt and P. Doping of
Cu-SSZ-13 with P (2.2 wt%) fully suppressed the catalytic activity
as a result of site blocking of the zeolite framework, CuO
formation coupled with the reduction in the number of isolated
Cu”" ions, between other phenomena. In other studies, the
catalyst's activity with higher P loading of 0.4-1.0 wt%, was
significantly lower than that without P between 100 to 300 °C.*®
The N, selectivity was not affected by phosphorus at low
temperatures. However, the introduction of Ca and Zn (1.3-5.4
and 2.2-8.8 wt%, respectively) led mainly to pore-blocking/
filling together with the formation of CuO species. It has been
widely reported that Pt species promote N,O and NO, forma-
tion.'*”1**15 Regarding the P-poisoning studies, Dahlin et al.>
investigated the activity of Cu-SSZ-13 exposed to exhaust
generated by a biodiesel burner. Cu-SSZ-13 was deactivated at
low temperatures, and could not be regenerated until temper-
atures up to 550 °C when the phosphorous content in the
catalysts was above 0.1 wt%. As the main approaches for
introducing P into Cu-containing SSZ-13, impregnation with
H;3PO,, (NH,),HPO,,'*>"**"® or synthesis of SSZ-13 by using
trimethyladamanthylammonium hydroxide (TMAdaOH) and
tetramethylphosphonium hydroxide (TEPOH) as dual-template
agents''®**> are reported. Further studies on the influence of
phosphorus on the catalytic properties of Cu-SSZ-13 for NH;-
SCR-DeNO,, can be found in ref. 95, 108, 153 and 154. Several
researchers suggest that phosphorus tends to poison ZCuOH
more easily than Z,Cu.’***® To regenerate the P-poisoned Cu-
SSZ-13 catalysts, phosphorous species in the catalysts should
be removed. As an example of that approach, Chen et al”
successfully applied the combination of washing with hot water
(90 °C) and hydrothermal treatment (800 °C for 12 h) to recover
the activity of the phosphorous-poisoned Cu-SSZ-13.

Hydrocarbons poisoning

The other aspect associated with the application of NH;-SCR-
DeNO, is poisoning by hydrocarbons (HCs). The limited DOC
activity leads to HCs slipping over the SCR component, which
negatively affects its NO, reduction activity. Therefore, few
works regarding the HCs poisoning (carbonaceous deposit,
including formed aliphatic compounds: acrolein, acetate and
acetone, and aromatic compounds: hydrogen-deficient) effect
on Cu-SSZ-13 were reported mainly over C;H, (a representative
low-chain HC in the exhaust).”*** For example, Ma et al.”® found
that Cu-SSZ-13 deactivated in the presence of C;Hg, due to the
competitive adsorption of NH; and C3;He on the catalysts as well
as blockage of coke in the pore channels. In the case of the aged
materials, Wang et al.** found that Cu-SSZ-13 (aged at 700 °C)
displayed a more severe NO, conversion decline than the fresh
sample in the presence of C;Hg. On the other hand, Zhao et al.”’
found that less carbonaceous deposit forms in the
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(a) The influence of hydrothermal aging on the NH3-SCR-DeNO,

mechanism. Reproduced from ref. 106 with permission from Elsevier,
f LT-RHC over the Two-P. Activation energies and Cu'" reduction are

Cu"(OH)(NHs)3] stands for the Two-P configuration. Reproduced from ref. 163 with permission from ACS Publi-

cations, copyright 2021; (c) Schematic representing the redox of Cu sites during standard NHz-SCR-DeNO,. x represents temperature and Cu"
speciation-dependent NHs solvation of Cu' sites. x range: {1-2}. y represents Cu'" speciation-dependent H,O produced upon the reduction of
two NHz-solvated Cu'" sites. y range: {2—-4}. z represents Cu'" speciation-dependent H,O produced upon the reduction of one NHz-free Cu'' site.

z range: {1-2}. Reproduced from ref. 185 with permission from ACS Pu

hydrothermally aged samples of Cu-SSZ-13 (due to the lower
content of Brgnsted acid sites). The presence of aromatic
compounds increases with higher HTA temperatures (700, 750,
and 800 °C) due to a greater generation of mesopores. Based on
these studies, aged Cu-SSZ-13 can prevent the deactivation of
Cu-containing SSZ-13 due to HCs poisoning, and thus, main-
tain its NO activity and stability. Other approaches like hybrid
catalysts (e.g., Cu-SSZ-13 with CeO,-Sn0,)"*® were also reported.

25252 | RSC Adv, 2022, 12, 25240-25261

blications, copyright 2022.

Reaction mechanisms

NH;-SCR-DeNO, (4NH; + 4NO + O, — 4N, + 6H,0) over Cu-
containing SSZ-13 can proceed through the adsorption stage
of NH; and/or NO, according to the Eley-Rideal (E-R; i.e., the
gaseous NO reacts with pre-adsorbed NH; to produce N, and
H,0) and/or Langmuir-Hinshelwood (L-H; both the adsorbed
NO and NH; simultaneously participate in the reaction)
mechanisms.**?**'*¢ For example, the L-H mechanism was

© 2022 The Author(s). Published by the Royal Society of Chemistry
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proposed over calcined Cu-SSZ-13, while the E-R mechanism
was proposed over its aged form (based on in situ DRIFTS
analysis). The amount of surface CuO species increased after
hydrothermal aging treatment, while the Lewis sites and
Brgnsted sites (i.e., surface nitrates adsorbed sites and NHj;
capacity) decreased, thus, limiting the formation of interme-
diate products NH,NO;/NH4NO, (below 350 °C) or NO,(NH,"),
(above 350 °C), which in turn led to the loss of NH;-SCR-DeNO,
activity'®® (Fig. 5a).

Specifically, NH;-SCR-DeNO,  on Cu-SSZ-13 follows a redox
reaction mechanism, consisting of a reduction half-cycle (RHC;
Cu** — Cu") and an oxidation half-cycle (OHC; Cu* — Cu*").
The detailed reaction mechanism is still under debate, indi-
cating the complexity of both RHC and OHC.*”

Reduction half-cycle

When NH; is present in the feed, solvation of Z,Cu with NH; is
preferred rather than with H,0,"**"% leading to the formation of
Cu-amine coordination complexes, i.e., the principal active sites
in the redox cycle.>*'** The NH; solvation of ZCuOH sites (or
[Cu,0,]*" in their O, activated form**?) may lead to the formation
of dimeric or two-proximate Cu-amine complexes (ie.,
[Cu"(OH)(NH;);]" units).’* NH;-solvated Z,Cu sites can hydrolyze
to NH;-solvated ZCuOH sites in the presence of H,O.'** Further-
more, the complexes containing a mixture of NH; and NO, ie.,
[Cu™(OH)(NHj),,_;(NO)]", were evidenced for the first time by the
application of rapid-scan FT-IR spectroscopy and two-
dimensional correlation spectroscopy (2D COS) analysis.'*
These solvated Cu moieties were suggested to be active sites in
low-temperature NH;-SCR-DeNO,, (<250 °C).***** The neighboring
NH; and NO ligands rearrange to create N-N bonds via the
formation of nitrosamide (NH,NO) or ammonium nitrite
(NH4NO,) intermediates.**** Subsequently, NH,NO and NH,NO,
decompose into N, and H,O to complete the reduction part of the
NH;-SCR-DeNO,. As an alternative mechanism, Chen et al.'**'%”
proposed the formation of Cu(H,NNO)** and Cu(OHNO)**
intermediates that decompose over neighboring Brensted acid
sites to complete the catalytic cycle. The formation of the HONO
intermediates was reported also by Usberti et al.,'*® who found
that activated NO reacted with the NH; adsorbed on the Lewis
sites (verified also by DFT calculations). This mechanism consists
of two sequential NO oxidative activation processes, consisting of
NO oxidative activation to HONO catalyzed by [Cu"(OH)(NH,),]",
HNO reacting with one NH; ligand to NH,NO,, and NH,NO,
decomposition to N, and H,0" (eqn (1)-(6)):

NO + [Cu"(OH)(NH3)5---Cu"(OH)(NH3);] — HONO +

Cu'(NHj3); + Cu™(OH)(NHj;);; structure A, Fig. 5b (1)
HONO + Cu'(NH;); — Cul(NH;), + NH,NO, (2)
NH4NO, — N, + 2H,0 3)

NO + Cu'(OH)(NH;); — HONO + Cu'(NHj;);; structure E,
Fig. 5b (4)
HONO + Cu'(NH3); — Cul(NH;), + NH4NO, (5)

© 2022 The Author(s). Published by the Royal Society of Chemistry
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NH4N02 i N2 + 2H20 (6)

Summing up the above steps results in a global reaction (eqn

(7))

2NO + [Cu(OH)(NH;)5---Cu(OH)(NH3);] —
2Cu!(NH;); + 2N, + 4H,0 7)

Thus, Hu et al.**® and Gramigni et al.'® proved (based on
kinetic experimental and DFT calculations) a second-order
dependence, suggesting that binuclear reactions between two
Cu species could occur during RHC.

The decomposition of NH,NO; (NH,NO, can be oxidized
into NH,NO;) allows also the side reaction leading to undesired
N,O (<300 °C).* On the other hand, Feng et al.’® claimed that
the formation of N,O resulted from the H,NNO decomposition
over Cu-OOH-Cu complexes, which explains the enhanced N,O
formation with increasing Cu loading. This was further sup-
ported by the studies of Xi et al,”” who claimed that N,O
formation occur over Cu-oxy species, such as [Cu-O,-Cu]*".
However, N,O formation has also been reported to mainly occur
over [Cu(OH)'] located in CHA cages.***”**”* The high-
temperature N,O production (>300 °C), on the other hand,
takes place because of unselective ammonia oxidation. The N,O
production profiles of the different types of SCR catalysts differ
considerably.*"”

Below 250 °C, a linear SCR rate versus (Cu loading)* corre-
lation was reported, suggesting that the reaction limiting step
involves the participation of two Cu ions.*»'®* The activation
energy for NH;-SCR-DeNO,. over Cu-containing SSZ-13 varies in
the range of 32,'° 40-41 kJ mol *,5** to 43-57 k] mol *,"¢ also
depending on the temperature, i.e., 175-250 °C - 130 kJ mol ,
and 250-300 °C - 60 k] mol '.*> Thus, at temperatures above
350 °C, the active sites of Cu-SSZ-13 change from mobile Cu
ions coordinated by NH; into immobilized Cu ions, thus, giving
a seagull profile for NO conversion (based on the Gao et al.*?
assumptions). Fahami et al.** attributed the activity decrease at
around 350 °C to a more localized structure of mono(p-0xo)
dicopper complexes. At high temperatures (above 350 °C), the
activity has instead been measured to have a first-order
dependence on copper loading, indicating that the reaction
can proceed with other possible Cu sites.*

Oxidation half-cycle

The [Cu(NH;),]" complexes become the intermediate starting
the oxidation half-cycle. The two [Cu'(NH3),]" intermediates and
an oxygen molecules then combine to form [Cu'(NH;),]"~0,-
[Cu'(NH;),]" intermediates (2[Cu'(NH;),]" + O, — [Cu'(NH;),]"-
0,-[Cu'(NHj,),]").5+1%%*7 The mobility of the Cu ions (i.e., one
[Cu'(NH;),]” must migrate to the vicinity of another; enhanced
in the presence of H,0'*"7%) guarantees the formation of these
dimeric Cu species,®**® thus improving the NH;-SCR-DeNO,
activity. The 1Al-Cu species (located at isolated single Al sites,
i.e., ZCuOH) can form dimeric Cu intermediates more easily
than the 2A1-Cu (located at two adjacent Al sites, i.e., Z,Cu)."7***
The ratio of n(1Al-Cu)/n(2Al-Cu) can be controlled through the
catalyst's hydrothermal aging.*® Krishna et al.*®' suggested their

RSC Adv, 2022, 12, 25240-25261 | 25253
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perspective that spatial proximity of active Cu sites is required
in the redox cycle of Cu®*/Cu*. Such proximity assists the
oxidation of NH;-solvated Cu® ions to form dimeric Cu inter-
mediates [Cu'(NH;),]"~0,-[Cu'(NH;),]".** The structure of
mobile dicopper(i) complexes vary depending on the n(Si)/n(Al)
ratio of the zeolite host.'® Finally, the newly formed
[Cu™(NH;),]**-O-[Cu™(NH,),]*" hydrolyzes in the presence of
H,O0, restoring two [Cu'(OH)(NH3),]" adducts. O, dissociation
and NO, formation occur on complexes in the presence of NO
([Cu'(NH;),]"-0,-[Cu'(NH;),]” + NO — [Cu"(NH;),]*-0% -
[Cu™(NH;),]*" + NO,). Negri et al'*® proposed (based on
combined spectroscopic and DFT studies) that these interme-
diates are Cu",(NH;),0, complexes with a side on p-n*n-peroxo
diamino dicopper(u) structure. Besides that, the intermediates
were approved via DFT calculations and their formation was
spectroscopically approved via fiber-optic DR UV-Vis spectros-
copy during NH3;-SCR-DeNO, over Cu-containing zeolites.'®*
However, the mechanism associated with the reduction of
Z,Cu,(NH;3),0, complexes is still unclear. As mentioned above,
Paolucci et al® claimed that the [Cu"(NH;),]*"-O-
[Cu™(NH;),]*" hydrolyzes in the presence of H,0, restoring two
[Cu'(OH)(NH;),]" adducts, thus completing the low-
temperature SCR catalytic cycle. However, upon exposure of
Z,Cu,(NH;3),0, complexes to NH;, the formation of unreactive
superoxo amino ZCu(NH;);00* complexes was observed'®*'s>
(Fig. 5¢). Furthermore, the reaction mechanism changed over
field aged (including hydrothermal aging and sulfur aging) Cu-
SSZ-13, i.e., lower mobility of the Cu ions coordinated to sulfur-
related species led to decreased formation of Cu-dimers
necessary for the OHC. The field aging has a minimal impact
on RHC.”?

Selective ammonia oxidation
(NH3-SCO)

To achieve the desired NO, conversion, a stoichiometric or even
an excess quantity of NH; is required, which can result in
unreacted NH; (also known as NHj; slip). Thus, oxidation cata-
lysts (ASC, guard catalysts, AMOX) are usually employed to
selectively oxidize the unreacted NH; (from NH;3-SCR-DeNO,)
into nitrogen and water vapor. Some researchers investigate
NH;-SCO (4NH; + 30, — 2N, + 6H,0) as a side process of the
NH;-SCR-DeNO,, while, there are not many publications dedi-
cated separately to the ammonia oxidation over Cu-containing
CHA.?%186187 Gimjilar to NH;-SCR-DeNO,, NH;-SCO is enhanced
over Cu-containing catalysts, including zeolite-based catalysts
(e.g., Cu-ZSM-5, Cu-Y, Cu-Beta, etc.).**'*® The aggregated CuO,
species lead to higher NH; oxidation,"** thus, across investi-
gated catalytic systems, mainly 10 wt% of Cu loading was found
as the optimal.’®*'® Progress on selective catalytic ammonia
oxidation over Cu-containing zeolite-based catalysts was already
published by Jablonska in 2020.>® Furthermore, NH3-SCO over
different catalysts, including proposed reaction mechanisms
were reviewed.'®**%° Thus, in this chapter, there is a focus on the
Cu-containing SSZ-13 based-catalysts prepared via different
techniques i.e., containing different amounts of Cu species.
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Table 2 lists representative results of NH;-SCO over Cu-
containing SSZ-13 reported in the literature. For example, Gao
et al.** found that NH; conversion increases with higher Cu
loading (exchange level 23-90%), which possibly arises from the
weaker interactions between Cu®" ions and the SSZ-13 frame-
work (i.e., more facile Cu”* < Cu’ redox-cycling) or higher
amount of Cu”" ions placed closer to the pore openings (being
more accessible to reactants). Similar to the NH3-SCR-DeNO,,
the authors observed the seagull profile of NH; conversion,
which was later also approved by Olsson et al.***** These two
regimes, below and above 250 °C (400 °C in ref. 191) with
different values of activation energy over Cu-SSZ-13 were
attributed to the change in the catalytic centers resulting in
a different activity. Cui et al.®® reported a higher activity for Cu/
SSZ-13 with increasing Cu loading up to 5 wt% (Fig. 6a). After
hydrothermal aging (at 800 °C for 16 h) the full NH; conversion
is shifted about 50 °C higher (Table 2, pos. 10). In another
example, NH; oxidation activity decreases with increasing HTA
temperature (550-900 °C). The activity decrease was assigned to
the loss of active isolated Cu*" species (active below 400 °C)
during aging, and a decrease in NH; storage capacity.”* Both
Cu”* ions and CuO coexist in Cu/SSZ-13 (n(Si)/n(Al) = 16-24)
prepared by impregnation.” Enhanced activity over Cu/SSZ-13
with n(Si)/n(Al) = 20 (activation energy of 68 k] mol ') resulted
from the highest content of CuO species and acid sites (Fig. 6b).
Contrary to that, Han et al.*® reported no significant changes for
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Cu-SSZ-13 with a n(Si)/n(Al) ratio of 5.5 (among 11, 21) in NH;
conversion for the whole temperature range. However, the NO,
conversion slightly increased from 10 to 20 ppm at 625 °C after
hydrothermal aging at 800 °C. Based on the in situ DRIFTS, the
authors claimed that NH3;-SCO over Cu/SSZ-13 follows the in
situ/internal SCR (i-SCR) mechanism, consisting of two steps. In
the first step, NH; was oxidized to NO, by surface CuO. Subse-
quently, NO, was reduced to N, and H,O by unreacted NH; on
isolated Cu*" sites (i.e., NH3-SCR-DeNO,).**® Thus, Cu-SSZ-13
revealed higher NH; oxidation than CuO/SSZ-13 (CuO
mechanically mixed with SSZ-13).*” A similar conclusion about
the reaction mechanism was given over Cu-SSZ-13 (prepared by
one-pot hydrothermal synthesis) treated with dilute HNO;
solution.*® The reaction mechanism was assigned based on the
in situ DRIFTS studies, excluding the hydrazine mechanism (as
the N,H, species were not observed in the spectra). Details on
the reaction mechanisms can be found elsewhere.'®*'*'** The
one-pot synthesized Cu-SSZ-13 treated with dilute HNO;
possessed added Cu®* ions that accelerated low-temperature
NH;-SCR-DeNO,. (second step of NH;3-SCO). Thus, enhanced
activity and N, selectivity over this catalyst were reported
(Fig. 6¢) compared to non-modified zeolite-based catalysts. One-
pot hydrothermally prepared Cu-SSZ-13 (n(Si)/n(Al) = 6.5-12.5,
1.8-3.5 wt% of Cu) did not show significant changes before and
after the hydrothermal aging treatment (Table 2, pos. 12) in the
whole temperature range.'*® However, Luo et al.”* have shown
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(@) NH3z conversion over degreened Cu/H-SSZ-13. Reproduced from ref. 88 with permission from Elsevier, copyright 2020; (b) NHz

conversion over Cu/SSZ-13 with different n(Si)/n(Al) ratios. Reproduced from ref. 193 with permission from Elsevier, copyright 2020; (c) NHs
conversion over Cu-SSZ-13 post-modified with a solution of HNOs. Reproduced from ref. 186 with permission from ACS Publications, copyright
2018; (d) NHz conversion over fresh and P-poisoned Cu-SSZ-13. Reproduced from ref. 96 with permission from ACS Publications, copyright
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that NH; oxidation activity of commercial Cu-SSZ-13 (detail of
composition or preparation not shown) decreases with
increased temperature up to 800 °C. Cu-SSZ-13 - prepared via
the solid-state ion-exchange method at 700-800 °C, did not
reach full conversion."® On the other hand, the enhanced
activity of bifunctional catalysts was reported, with single
examples given as mixed, dual-layer and hybrid layer designs
composed of Pt/Al,0; and Cu-SSZ-13,"°°*** or Ru/Cu-SSZ-13.**°
Similar to Cu-containing SSZ-13 applied in NH3;-SCR-DeNO,,
also the catalysts applied in NH;-SCO lost their activity after
poisoning, e.g., with P**'** (Fig. 6d). Catalyst activity decreased
remarkably with P loading (0.26-1.21 wt%) and especially above
300 °C, because of the interaction between phosphorus with
oligomeric Cu,Oy species inside the large cages. As these species
are not active in NH3-SCR-DeNO,, the effect is less pronounced,
as reported before.'*

Conclusions and perspectives

This review summarizes recent progress in the NH;-SCR-DeNO,,
and the NH;-SCO over Cu-containing SSZ-13 catalysts, con-
cerning their preparation methods, hydrothermal stability and
poisoning, as well as their reaction mechanisms. Various
preparation methods have been applied to manipulate the
nature and distribution of Cu species in the materials, with
continuous efforts aiming at improving the (hydrothermal)
stability of the Cu-CHA catalysts. Minimizing [Cu(OH)]"-Z sites,
which are more susceptible to hydrothermal aging, sulfur or
phosphorus poisoning than Cu®*-2Z, will be a challengeable
task in the following years. Determining the effect of (new)
dopants on catalyst stability is a promising research direction.
Furthermore, more work should be spent on the application of
the degreening and treatment/poisoning strategies closely
related to the industrial applications (i.e., degreening at 700 °C
in 10 vol% O,, 5 vol% of CO, and H,O0, followed by the aging at
800 °C for 50 h for diesel exhaust applications).*” Besides
enhanced activity and stability, N, selectivity also indicates the
commercialization of catalysts. Despite recent findings, an
accurate and experimentally established standard NH;-SCR-
DeNO, reaction mechanisms at low temperatures including
field aged materials is still missing. Thus, more detailed in situ
and operando studies, transient kinetic investigations, as well
as molecular-scale computational models, are required to
further understand reaction mechanisms.

Furthermore, compared to NH;-SCR-DeNO,, the studies of
NH,-SCO are rather scarce. Mainly, ammonia oxidation is
considered as the side process of NH;-SCR-DeNO,. above 350-
400 °C. The catalytic experiments have been conducted under
conditions, which differ far from the ones existing in the diesel
aftertreatment system, i.e., minor NH; slip (O, excess), pres-
ence of H,O, CO, or SO,, etc. Besides, key requirements
comprehend high activity and N, selectivity up to 600-700 °C
(in the cycle of diesel particulate filter regeneration) and
stability under application-relevant reaction conditions. A
limited amounts of studies focus on the investigation of the
reaction mechanisms. Furthermore, there are no systematic
studies on the development of bifunctional catalysts. As NH;-

© 2022 The Author(s). Published by the Royal Society of Chemistry
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SCO proceeds mainly according to the i-SCR mechanism (i.e.,
with NH;-SCR-DeNO, as the second step), similar reaction
paths can be potentially ascribed for a description of the
activity of Cu-containing SSZ-13. Thus, more effort must be
spent on studying NH3-SCO reaction mechanisms in the
future. Systematic studies (i.e., careful design, appropriate
coupling techniques, etc.) should also cover bifunctional
catalysts composed of Cu-containing SSZ-13 (NH;3-SCR-DeNO,
function) and noble metal-based catalyst (NH; oxidation
function). A collective understanding of reaction and deacti-
vation mechanisms of both components allows for the design
of high-performing NH;-SCO catalysts with appropriate cata-
lyst promotion strategies. Thus, the development of such
hybrid catalysts (in monolith form) for diesel exhaust after-
treatment systems is a topic of interest.
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