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Over the last few years, photocatalysis using solar radiation has been explored extensively to investigate the
possibilities of producing fuels. The production and systematic usage of solar fuels can reduce the use of
fossil-based fuels, which are currently the primary source for the energy. It is time for us to exploit renewable
sources for our energy needs to progress towards a low-carbon society. This can be achieved by utilizing
green hydrogen as the future energy source. Solar light-assisted hydrogen evolution through photocatalytic
water splitting is one of the most advanced approaches, but it is a non-spontaneous chemical process and
restricted by a kinetically demanding oxidation evolution reaction. Sunlight is one of the essential sources for
the photoreforming (PR) of biomass waste into solar fuels, or/and lucrative fine chemicals. Hydrogen
production through photoreforming of biomass can be considered energy neutral as it requires only low
energy to overcome the activation barrier and an alternate method for the water splitting reaction. Towards
the perspective of sustainability and zero emission norms, hydrogen production from biomass-derived
feedstocks is an affordable and efficient process. Widely used photocatalyst materials, such as metal oxides,
sulphides and polymeric semiconductors, still possess challenges in terms of their performance and stability.
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Recently, a new class of materials has emerged as organic—inorganic hybrid (OIH) photocatalysts, which have the
benefits of both components, with peculiar properties and outstanding energy conversion capability. This work

examines the most recent progress in the photoreforming of biomass and its derivatives using OlHs as excellent

catalysts for hydrogen evolution. The fundamental aspects of the PR mechanism and different methods of
hydrogen production from biomass are discussed. Additionally, an interaction between both composite
materials at the atomic level has been discussed in detail in the recent literature. Finally, the opportunities and
future perspective for the synthesis and development of OIH catalysts are discussed briefly with regards to

biomass photo-reforming.

1. Introduction

In recent years, there has been a phenomenal improvement in
the standard of living for mankind with the advancements in
science and technology. Unfortunately, the rising energy
demand and a faster product life cycle have led to the depletion
of energy sources, along with environmental and waste issues.
To solve these issues, it is highly essential to look toward
sustainable and efficient energy sources. Photocatalytic
hydrogen production has received worldwide attention, as
hydrogen has the potential to evolve as a fuel for the post-fossil
fuel era. Solar energy conversion into chemical fuel is consid-
ered an effective alternative technology for addressing fuel
shortages and environmental concerns. Hydrogen has emerged
as an adaptable choice for carbon-free transportation, energy
source, and other sectors as countries around the world aim for
a carbon-free society driven by a sustainable economy.
However, almost all of the hydrogen produced comes from non-
renewable fuel sources, like coal, oil and natural gas.> More
than 96% of the H, produced globally is from the steam
reforming of fossil fuels. Furthermore, less than 2% of the
annual hydrogen production is from electrolysis using renew-
able electricity.® Non-renewable resources cannot be considered
feasible sources as they cannot be restored within the timescale,
and their carbon dioxide emission contributes to global
warming. Sustainable hydrogen generation from renewable
sources can be a promising and eco-friendly way to address
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global energy problems and minimize the reliance on fossil
fuels. This can only take effect by changing our strategy in
resource generation, usage, and disposal.* Currently, society
follows the fossil-based methods that could offer financial
benefits. However, in the long run, this will be a challenge for us
to conserve the limited resources and reduce the emission of
hazardous gases. To move towards a carbon-free society, there
should be a slow and steady turnaround in the production and
utilization of energy and materials. The energy domain, which
includes transportation, power and industry, is responsible for
more than 75% of greenhouse gas emissions.” To reduce the
emission of carbon into the atmosphere, a few methods are
used, such as using renewable energy sources instead of fossil
fuels, reducing the use of electricity and fossil fuels in indus-
tries and public sectors, and capturing CO, as a derivative of
fossil fuel combustion before entering the atmosphere.
However, these methods have their own limitations and they
cannot be considered as a long-term remedy towards a green
economy. Renewable energy sources, such as solar, wind, and
hydropower, are widely used for energy production, despite
their low conversion efficiency. In this aspect, green hydrogen
can be considered as an energy carrier for the future. To
produce hydrogen, solar energy should be considered because it
is the ultimate source of renewable energy.® More than 48% of
the sunlight spectrum consists of UV-visible radiation.” So, the
most effective and promising approach for resolving energy and
ecological challenges is the successful conversion of visible
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sunlight into chemical energy stored in hydrogen, which has
recently captured a lot of attention.® Green hydrogen is a clean,
flexible energy source that supports the zero carbon emission
norms. H, contains an approximate energy of 122 kJ g *, which
is considerably higher than gasoline (47 k] g "), coal (15 k] g7 ),
natural gas (40 kJ g~ *) or any other fossil-based fuels.’ Hydrogen
is light, flammable, and storable. It has high-energy content and
can be used for various purposes, such as carbon-free fuel
production, production of fertilizers, and metallurgy.'® There-
fore, it is necessary to produce green hydrogen from never-
ending sources to look towards a clean, sustainable society.
One of the most advanced approaches for hydrogen evolu-
tion is the photocatalytic water splitting using solar energy. The
reduction and oxidation of H,O to H, and O, occur simulta-
neously in this process.”® The burning of the hydrogen fuel
produced using solar radiation does not lead to the emission of
CO, gases, as the carbon cycled is closed. The photocatalytic
water splitting (WS) is being developed as a sustainable tech-
nology that can bring a change to offset the 830 Mt of annual
CO, emission due to the steam reform of fossil fuels by
producing clean hydrogen."”” Many large-scale photocatalytic
hydrogen production processes with decent yields have been
developed recently,**® which include the NiSCd,Zn, _,S catalyst
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and Na,SO; with scavenger yields of 10 400 pmol m > h™ .7
Another notable achievement was attained by the Cu/TiO,
photocatalyst with glycerol producing 1240 pmol L™ of
hydrogen.” The photooxidation process can be avoided by
using a hole scavenger (sacrificial agent), which scavenges the
holes before it undergoes oxidation. They are typical scavenging
agents, like ethyl alcohol, methanol, sulfides or thiosulfates. For
an effective functioning of the scavenger, the redox potential
should be above the oxidation level of the catalyst, which
facilitates the smooth transfer of the hole to the sacrificial
agents.” Even though it is widely encouraged, the large-scale
production of hydrogen still faces a few issues, such as reus-
ability of the photocatalyst, the use of expensive metals as
sacrificial agents, the separation of the O, and H, mixture, and
the inefficient use of visible light. WS is a non-spontaneous
chemical process [change in Gibbs free energy, (AG®) =
+237 k] mol " at 25 °C], and it is restricted by the kinetically and
energetically demanding oxidation evolution reaction.*® The
difference in energy is responsible for the maximum limit of
wavelength of the photons irradiated, which is responsible for
the initiation of the reaction. The energy can be calculated using
the equation AE® = AG°/nF, where n represents the number of
exchanged electrons and F is the Faraday constant. In the case
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of the water splitting reaction, ‘2’ has a value of 2, and AE® is
calculated as 1.23 V. This depicts that the photon should
possess a minimum energy of 1.23 eV with a wavelength shorter
than 1008 nm (A = hc/AE).** Those reactions having positive
Gibbs free energy values normally have high activation energy,
i.e., the thermodynamic barrier of WS is —1.23 V, so the elec-
trons require high energy to carry out the chemical reaction.
The overpotential is necessary to overcome the kinetic restric-
tions, which significantly increase especially on the half-
oxidation. The larger overpotential showcases the wider band
gap, which depicts a higher charge transfer, also leading to the
absorption of shorter wavelength radiation.”” Most of the pho-
tocatalysts are absorbed in the UV region but limited UV portion
(3-5%) in the solar spectrum, resulting poor photocatalytic
activity. To achieve a higher productivity for photocatalytic
reactions, it is critical to use visible radiation (44 percent),
which accounts for the majority of sunlight radiation.>® So, only
a few visible light absorbing photocatalysts are used for the WS
reaction.*

2. Scientific analysis of
photoreforming

To bring in a solution, photocatalytic reactions with AG® < 0 are
studied. These total reactions involve hydrogen production on
one electrode, while hole scavengers such as triethanolamine,
methanol, and lactic acid are used. They work on the other
electrode, and offer a faster rate than the oxygen evolution
reaction.”® Photoreforming (PR) is an alternative method for
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hydrogen production from water and organic substrates, which
has the potential to overcome the outstanding constraints.*® In
PR, the photocatalyst absorbs radiation from the solar spec-
trum. Electrons in the lower energy level (valence band) are then
excited to the highest energy level (conduction band). Conse-
quently, an electron and a hole are evolved. Most of these pairs
will recombine without any further reaction. If not, these holes
and electrons are carried to the surface of the photocatalytic
material. Strategies, such as heterojunction design, construc-
tion of intramolecular donor acceptor system, spin polarization
regulation and excitation dissociation regulation, are used to
inhibit the charge transfer recombination in photocatalysts.
The formation of a heterojunction facilitates an efficient charge
separation and charge carrier transfer through the interface.
The D-A system allows for high speed charge transfer within the
photocatalyst. The free electrons increase by regulating the
dissociation of the electron-hole pair into free carriers. The
charge recombination decreased and the efficiency of the elec-
tron transfer increased via controlling the electron spin polar-
ization. Even though these strategies exhibit the ability to
inhibit the recombination of excitons, these strategies have
their own limitations. The incorporation of electron donors or
electron acceptors with organic linkers may reduce the length of
the conjugated system, making it difficult for the migration of
the electron between the donor and acceptor. Defects like
a lattice mismatch can exist between the two semiconductors
that make up the heterojunction photocatalyst, and the defects
become the recombination center of the photogenerated
carriers. The exciton dissociation and electron spin polarization

Dr Karthikeyan Sekar currently
works as an Assistant Professor
at the SRM Institute of Science
and Technology, India. Previ-
ously, he worked as a Special
Researcher at the University of
Tokyo. He received the presti-
gious Royal Society Newton
International alumni grant in
September 2021, the Japan
Society for the Promotion of
Science, Japan (2018 to 2020),
and the Royal Society Newton
International Fellowship at Aston University (2016 to 2018), UK.
His research interests aim to develop biomass-derived carbon-
based materials used as a catalyst for energy and environmental
remediation. In particular, he focuses on the elimination of
refractory organic chemicals from wastewater, and also controlling
the size and morphology of metal/metal oxides at the molecular
level for clean energy and clean environment. He was awarded the
Fellow of Higher Education Academy, United Kingdom (2018) and
Malaysian International Scholarship (MIS, 2015), Malaysia. He
has published 70 research articles, and four patents (one inter-
national), which has transferred many industries in India and
abroad.

© 2022 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2na00119e

Open Access Article. Published on 19 2565. Downloaded on 14/8/2567 16:52:08.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

Biomass source

Fig. 1 Plausible schematic diagram for photocatalytic hydrogen
production from various biomass sources.

regulation have not been explored much, and the mechanism
needs to be further studied.”” The electrons and holes reduce
water to hydrogen and oxidize organic substrates into small
molecules, respectively.”® These substrates can be plastic waste,
food materials, and biomass. This can effectively aid in avoiding
the use of costly sacrificial agents, while offering effective
conversion of waste materials.> PR can be implemented at
room temperature with solar energy as the external energy
source to produce clean hydrogen fuel. PR brings forward
a different approach of both introducing a method for waste
disposal and producing useful organic materials. The thermo-
dynamic energy barrier of the PR mechanism for most of the
organic substrates is energetically neutral. For example, the
photoreforming of ethylene glycol needs AG® of +9.2 k] mol ™"
(standard electrode potential — 0.01 V) at room temperature.>®
PR prefers substrates having minimal complexity, high polarity/
hydrophilicity, water solubility, and functional groups that
adsorb to the surface of the photocatalyst, according to studies
with simple molecules (Fig. 1).>

The photoexcited condition of the semiconductor is used for
the photo-reforming of the biomass at ambient temperature
and pressure. The photocatalyst will absorb the light radiation
with energy higher than its band gap, through which the
valence band electrons jump into the conduction band upon
absorbing the proper energy. Electrons in the conduction band
have reducing property, so it can facilitate the hydrogen
formation (HER, mentioned in eqn (1)). The hole in the valence
band, on the other hand, can accelerate the biomass oxidation
reaction (BOR). Eqn (2) represents the BOR for glucose. The
hydrogen evolution through water splitting is challenging, as it
has a high thermodynamic barrier and produces H, and O,
mixture (eqn (3) and (4)). Eqn (5) gives the overall reaction
involved in the PR of the biomass, which is energy-neutral.
Thus, it requires only low energy to overcome the activation
barrier. So, the PR of the biomass can be carried out using
photons with lower energy levels, which are largely available in
the solar spectrum.?
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2H'" +2¢” 2 Hy, E° =0V vs. RHE (1)
Ce¢H 504 + 6H,0 2 6CO, + 24H" + 24e~, E° = —0.001 V vs.
RHE (2)

1
H,0=2 ﬁ+2H+ +2 , E°=+4123 V vs. RHE (3)

2
1

H,0=H, + 50, AE"=-123 V (4)

CeH 204 + 6H,0 2 12H, + 6CO,, AE” = +0.001 V  (5)

A desirable substrate for PR should contain as many of these
characteristics as feasible, and also be generated from non-
recyclable waste materials. H, is currently in the growing
stage and because it has a low market value, alternative PR
products are sought after. Furthermore, the specific photo-
catalytic processing of renewable feedstocks into lucrative
organic valuables is a seriously debated topic.**

2.1 Photo-reforming feedstock

On a global basis, there is increasing attention in developing
waste-to-energy resolutions for municipal solid waste (MSW),
fueled by ecological concerns regarding inadequate disposal
techniques.*> Waste produced by industries largely exceeds
those produced at the municipal level. However, due to the
shortage in the availability of global statistics on the production
and disposal of industrial wastes, we will concentrate mainly on
the MSW statistics. Every year, about 2 billion tonnes of MSW
are produced around the world. By 2050, global garbage
production is expected to increase by 70%, which is estimated
to 3.4 billion tonnes. More than 70% of MSW is sent to landfill
sites or disposed of by open dumping.** Recycling accounts for
13% of the world's municipal solid trash. Every year, 93.9
million tonnes of MSW are recycled or composted.** The
absence of an appropriate waste management has a significant
impact on public health and society. It is estimated that
implementing trash prevention, recovery and recycling
measures may cut global carbon emissions by 20 percent.**
Food waste and biomass (46%), paper products (17%), and
plastic (12%) make up the majority of MSW globally, with
textile, metal, leather, and other trash accounting for the
remaining 25%. There is 75% of MSW components that contain
organic substrates and can be potentially used for the PR. This
review will focus on producing clean hydrogen and organic
substrates from waste materials, and thereby evaluate the
possibility of fuel production and waste management
simultaneously.

The most suitable waste component available for PR is
biomass, which includes sucrose, glucose starch and wood.**
Around 4 Gt of biomass waste is annually produced from
various sources, like farming and industry residues. The
biomass-derived substrates like carbohydrates and alcohols can
be used to produce hydrogen from sewage food, beverages, and
paper industry waste materials. Lignocellulose, a combination
of cellulose, hemicellulose, and lignin, is the main component

Nanoscale Adv., 2022, 4, 2561-2582 | 2565
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of biomass.”® Hardwoods have more cellulose and hemi-
cellulose content (78%) compared to softwoods (70%), whereas
softwoods have higher lignin content (29.2%) than hardwoods
(21.7%).%” Cellulose and hemicellulose are long chain carbohy-
drates (CgH;,06 or CsH;40s) that can undergo PR because of the
polarity and hydroxyl functional group present.*® The hydro-
phobic nature of lignin makes it difficult for photo-reforming.
Around 55-95 wt% of the chemical content can be reformed
from various biomass sources, depending upon the photo-
catalyst used.*

The practicality of biomass-derived substrates has been
carried out using different carbohydrates, organic acids, and
other derivatives. The amount and type of the substrate, the
reaction media, and temperature all influence the yield of
hydrogen. The position of lower and higher energy bands of the
photocatalyst has a major role in the selectivity of the product.
Band gap engineering is widely carried out to obtain the desired
product as chemicals and reaction pathways, as the oxidation
half is controlled by the holes of the photocatalyst.*® X-ray
photon spectroscopy is used to obtain the band gap of the
photocatalyst used.** Various methods have been carried out for
band gap engineering, such as vacancy creation, quantum dots,
heterojunctions, and solid solutions. This allows for the
exploitation of the band gap of the catalyst to improve its
activity and efficiency. Cocatalyst loading is also an effective
method to improve the photo-oxidation. The loadings of
cocatalyst such as (Pt, Au, Ag) boost the electron transportation
and charge separation. By boosting the photoinduced electron
and hole separation, the inserted metal species can speed up
the reaction process.”® These metals contain active sites for the
electrons, which are photogenerated, thereby inducing a charge
separation. To improve the biomass functionality of the cata-
lyst, procedures like enzymatic exfoliation, acid/base addition,
and increased ionic liquid solubilization have been utilized
with photocatalysis.*>** The initial step in converting biomass
to hydrogen is to use TiO,, with Pt and RuO, serving as the
reduction and oxidation co-catalysts, respectively. The starch
and cellulose yields 320 umol/20 h and 244 pmol/20 h of
hydrogen, respectively, using the RuO,/TiO,/Pt photocatalyst.**
The photocatalytic fuel production has been carried from this
pioneer work, but most of the studies are based on TiO,
materials. Even though TiO, is responsive and of low cost, its
large band (3.2 eV) hinders it from absorbing solar radiation to
only UV light. CdS has also been considered as the conventional
photocatalyst in PR of biomass, but its toxic nature and
vulnerability to corrosion is considered as drawbacks.*>*¢

2.2 Methods of hydrogen production from biomass

Hydrogen evolution through biomass can be classified as
thermochemical and biological processes. The former can be
described as the four processes of (i) combustion, (ii) pyrolysis,
(iii) liquefaction, and (iv) gasification (Fig. 2). The thermo-
chemical process involves the decomposition of biomass ther-
mally, with or without the aid of a catalyst. The product
obtained in thermal decomposition such as biomass gasifica-
tion is usually carried out with the help of external heat
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(combustion). It is controlled by major parameters, such as the
temperature, rate of heat, time for reaction and used catalyst.
The process of biomass gasification includes the partial oxida-
tion of the substrate that produces gaseous products.

The formation of tar and ash formation during the process is
the major disadvantage of gasification. With the use of some
additives such as dolomites, char can be used to resolve the
former problem, and fractionation and leaching can be used to
avoid the formation of ash in the reactor. Its advantages include
low-cost production and better yield. Coal gasification is widely
and efficiently used, but it is highly dependent on hazardous
fossil fuels. The high installation and maintenance cost is also
a drawback for coal gasification. Steam methane reforming is
also a relatively stable and efficient form of hydrogen produc-
tion, but the production of CO, and high operating temperature
are the main challenges.

On the other hand, biological processes are mainly classified
as (i) direct and indirect bio-photolysis, (ii) hybrid system, (iii)
dark fermentation, and (iv) photo-fermentation, as they are eco-
friendlier and less energy-consuming. Hydrogen-producing
microbes, like nitrogenase and hydrogenase, carry out these
operations. Direct bio-photolysis of producing hydrogen is
a process that converts sunlight into chemical energy stored in
hydrogen, using microalgae photosynthetic systems. Even
though the consumption of the substrate is high, the efficiency
is very low. Indirect bio-photolysis involves the conversion of
solar light by multiple steps mechanism and the yield obtained
is comparatively higher than the direct bio-photolysis.
Fermentation can be carried out to produce hydrogen in the
presence of light and dark conditions by bacteria at 30-80 °C.
Methane fermentation under aerobic conditi