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Spectroscopic signatures of nonpolarons: the case
of diamond†

Joao C. de Abreu, *a Jean Paul Nery,b Matteo Giantomassi, c Xavier Gonzecd

and Matthieu J. Verstraete a

Polarons are quasi-particles made from electrons interacting with vibrations in crystal lattices. They

derive their name from the strong electron-vibration polar interactions in ionic systems, that induce

spectroscopic and optical signatures of such quasi-particles. In this paper, we focus on diamond, a non-

polar crystal with inversion symmetry which nevertheless shows interesting signatures stemming from

electron-vibration interactions, better denoted ‘‘nonpolaron’’ signatures in this case. The (non)polaronic

effects are produced by short-range crystal fields, while long-range quadrupoles only have a small

influence. The corresponding many-body spectral function has a characteristic energy dependence,

showing a plateau structure that is similar to but distinct from the satellites observed in the polar

Fröhlich case. We determine the temperature-dependent spectral function of diamond by two methods:

the standard Dyson–Migdal approach, which calculates electron–phonon interactions within the lowest-

order expansion of the self-energy, and the cumulant expansion, which includes higher orders of

electron–phonon interactions. The latter corrects the nonpolaron energies and broadening, providing a

more realistic spectral function, which we examine in detail for both conduction and valence

band edges.

1 Introduction

Interactions between electrons and vibrational modes of solids
(phonons) create composite bound states known as polarons.
Most of the attention in the field has quite naturally been
focused in systems where these effects are expected to be
strong, e.g. polar materials,1 their vacancies,2 molecular
crystals3 or 2D-materials.4 In these systems the electrons inter-
act among others with long-range (LR) dipole fields induced by
displaced ions. Although covalent materials have no dipole
moments, one could expect long-range quadrupole fields to
contribute to the formation of polarons, as inferred from their
significant impact on the carrier mobility in Si.5,6

Some covalent systems with strong electron–phonon (e–ph)
interactions show conductivity induced by hopping of small
polarons, e.g.: disordered systems such as chalcogenide
glasses,7 molecular crystals such as S8,8 rare gas solids such as
Xe,9 or 2D phosphorene and arsenene,10 where the polaron is

localized in lone-pair orbitals. Large polarons in covalent
materials have been historically neglected, and were dubbed
‘‘nonpolarons’’ by Emin.11 We note that polaronic signatures
were found in doped diamond with a hydrogen-terminated
surface having a negative electron affinity.12 In the present
paper we study polaronic effects in intrinsic diamond, to find
whether the long- or short-range (SR) potential binds phonons
to electrons, and to quantify from first-principles the binding
and spectral signatures of polarons in non-polar materials.

The detection of polarons in a crystal often relies on angle-
resolved photoemission spectroscopy (ARPES), which measures
the kinetic energy and angular distribution of electrons excited
by incident light. These quantities are directly related to the
number of states available, as a function of energy and momentum.
Signatures of polarons in ARPES experiments can be found
in cuprate superconductors,13 ionic 3D14–17 and 2D15,18 crystals,
ferromagnetic materials,19 and interfaces.20 In the simplest model,
neglecting surface effects, ARPES can be related to the one-electron
spectral function, which is the central property of interest here.

Besides (non)polaron binding and the renormalization of
the direct electronic band gap,21 the effects of phonons in non-
polar materials can also be seen in the optical excitation of
carriers in indirect band gap semiconductors.22 The scattering
of carriers by phonons dominates transport mechanisms at
high temperature, hence an appropriate description of the
spectral function is essential to calculate transport properties
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including many-body effects. Important experimental observables
are the thermoelectric conductivity,23 the charge carrier mobility/
conductivity,24 or superconductivity.25

First-principles calculations of the spectral function at the
valence band maximum (VBM) and conduction band minimum
(CBM) for (polar) LiF and MgO were examined by Nery et al.26

within a zero temperature formalism. In this paper, we expand
their approach by studying a non-polar material, diamond, and
including finite temperature effects. We will focus on the
renormalization of electronic energies at T = 0 K (the zero point
renormalization, or ZPR), their temperature dependence, and
the emergence of nonpolaronic signatures. Vibrational properties
and e–ph matrix elements are obtained using density functional
perturbation theory (DFPT)27,28 while the interaction between
electrons and phonons, which leads to the formation of a quasi-
particle (QP), is treated using many-body perturbation theory
(MBPT).29

The article is organized as follows. Section 2 summarizes the
most important theoretical aspects of the e–ph problem with
particular emphasis on the different approaches that can be
used to compute spectral functions and QP energies. More
specifically, we compare the standard Dyson equation in the
Migdal approximation (DM)30,31 with the cumulant-expansion
(CE) method,32–34 which includes higher order diagrams in the
self-energy. The CE was previously shown to provide accurate
results for e–e interactions35 and also to improve plasmonic
polaron satellite energies.36,37 In Section 3, we describe spectral
signatures in diamond and show that the CE gives better results
relative to DM. In addition, we show that LR quadrupole fields
do not contribute strongly to the spectral signals; the latter are
mostly created by local crystal fields. We also include an ESI†
which summarizes the basic equations of density functional
theory (DFT) (used for ground-state calculations) and DFPT.
ESI† also includes analyses and clarifies important aspects of
numerical convergence, analytical transformations for the
cumulant expansion, and finite temperature effects. Atomic
units are used everywhere unless explicitly noted.

2 Methods

We study the interaction between bare electrons and bare
phonons by assuming that it can be treated with MBPT techni-
ques. It is important to note that for polarons this is not always
possible. In strongly interacting cases, small localized polarons
can be formed, which cannot be treated perturbatively.

In ESI† S1, we summarize the DFT and DFPT methods. In
this section, we detail the MBPT formalism and explain how to
split the LR and the SR from the total DFPT potential.

2.1 Self-energy

Following ref. 26, we refer to the lowest order e–ph self-energy
(second order in the atomic displacements) as the Fan–Migdal
(FM) self-energy.31 It includes two terms, the static Debye–
Waller (DW)38 and the dynamic Fan39 term,

Snk(o) = SDW
nk + SFan

nk (o). (1)

where

SDW
nk ¼

1

Nq

X
jq

g
DW;jq;j�q
nnk 2njqðTÞ þ 1

� �
(2)

and

SFAN
nk ðoÞ ¼

1

Nq

X
m

X
jq

g
jq
nmk

�� ��2

� njqðTÞ þ fmkþqðTÞ
o� emkþq þ ojq þ iZ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S�

þ njqðTÞ þ 1� fmkþqðTÞ
o� emkþq � ojq þ iZ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sþ

0
BBB@

1
CCCA:

(3)

with Z a positive infinitesimal (retarded self-energy).40 In the
equations above, we use emk to denote the energy of the
electronic state with band index m, wavevector k, and Fermi-
Dirac occupation number fmk. The phonon frequencies are
denoted as ojq, with j the mode index, q the phonon wave
vector, and njq the Bose–Einstein occupation number. Finally,
the symbol gjq

nmk denotes the first order e–ph matrix element.
In principle, the DW matrix element gDW should be computed

as the second-order derivative of the self-consistent potential
with respect to the phonon displacement. In practice, we use the
acoustic sum rule, together with the rigid-ion approximation,41

to express gDW in terms of the first order e–ph matrix
elements.40,42 Inside the parentheses of eqn (3), there are two
terms with the Bose Einstein factors n and n + 1, which we label
S� and S+. Each term represents in turn two separate scattering
events, into and out of state nk, which correspond to absorption
and emission of phonons, pairing with the appropriate electron
or hole state.

2.2 Dyson–Migdal approach

The interacting Green’s function G can be expressed in terms of
the initial bare propagator G0 and the exact self-energy via the
Dyson equation.43 In the diagonal approximation,44 the off-
diagonal matrix-elements of S in the Bloch basis set are
assumed to be negligible, and the Dyson equation reduces to

GnkðoÞ ¼
1

G0
nkðoÞ

� ��1�SnkðoÞ
: (4)

Finally, the spectral function A is given by

AnkðoÞ ¼ �
1

p
=mGR

nkðoÞ: (5)

where GR is the retarded Green’s function. From eqn (4) and (5),
one obtains40

AnkðoÞ ¼ �
1

p
=SnkðoÞ

ðo� enk �<SnkðoÞÞ2 þ=SnkðoÞ2
(6)

At this point, it is worth stressing that in practical applications
it is customary to evaluate eqn (6) using the lowest order
FM self-energy, eqn (1), evaluated with bare electron/phonon
quantities (one-shot method). This approach, which neglects
self-consistency effects and vertex corrections,26,40 will be referred
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to as the Dyson–Migdal (DM) approximation in what follows.
According to previous studies in polar materials,26 the DM
approach usually yields poor QP energies and spectral weights
when compared with high-quality Monte Carlo calculations for the
Fröhlich model.45 Moreover, the position of the DM satellite relative
to the QP peak is often inaccurate and far from the expected value,
which should match the phonon frequency oLO of the LO mode.
A promising route for going beyond the DM approximation is the
cumulant expansion detailed in the next section.

2.3 Cumulant expansion

The Green’s function in the time domain can be rewritten in an
exponential form (cumulant expansion) using Kubo’s formula32

Gnk(t) = G0
nk(t)eCnk(t), (7)

where

CnkðtÞ ¼
X1
i¼2

C
ðiÞ
nkðtÞ (8)

is the sum of the cumulants of the i-th order. The cumulant
function in eqn (8) can achieve accurate results46 for our
problem using just i = 2, and is exact for a (fully localized) core
electron interacting with a phonon.47

The cumulant functions can be determined by expanding
the exponential in eqn (7) and comparing powers with the
standard Feynman expansion of the Green’s function.35 Using
the Fan–Migdal self-energy (Fan and DW terms), one obtains

CnkðtÞ ¼
ð
dobnkðoÞ

e�iot þ iot� 1

o2
(9)

where

bnkðoÞ ¼
1

p
=mSFan

nk ðoþ enkÞ
�� �� (10)

while the DW self-energy appears as a pure shift of the QP
energy,

GnkðtÞ ¼ �iyðtÞe�i enkþSDW
nkð ÞteCnkðtÞ: (11)

The three terms in eqn (9) have different effects on the spectral
function. The first one gives rise to satellites, the second term
shifts the QP peak, while the third term corrects the QP weight.
The second term is calculated using the Kramers–Kronig relations.
Further details can be found in Section S3 of the ESI.†

The spectral function is obtained by applying the Fourier
transform to the Green’s Function in the time domain, eqn (11),
and inserting it into eqn (5). It can be shown that the CE Green’s
function is exact to second order, and all higher order terms are
included, though in an approximate way, while DM only includes
the exact second order terms.48,49 In the long time limit, the
cumulant has an affine asymptotic behaviour which contains its
contributions to the lifetime and lineshape of the QP state,

Gnkðt!1Þ � G0
nkðtÞ exp �wk þ �Gnk þ iLnkð Þt½ � (12)

where wk is a constant,46 Gnk = |ImSnk(o = e0
nk)| is the decay rate,

Lnk = <eSnk(o = e0
nk), and G0 depends on t through an exponential

with the bare electron energy.

2.4 Energy renormalization

In this section, we summarize three commonly used approx-
imations to compute the QP energy from the e–ph self-energy.
If we ignore the frequency dependence of the imaginary part of
the self-energy, one obtains that the main peak of the DM
spectral function (eqn (6)) is located at the energy eNL

nk that
solves the non-linear (NL) QP equation

eNL
nk = e0

nk + <eSnk(o = eNL
nk ). (13)

This equation must be solved numerically using, e.g., root-
finding algorithms that require the knowledge of Snk(o) for
several frequencies. The problem can be significantly simplified
if we assume the QP correction eNL

nk � e0
nk to be small. In this case,

one can expand the self-energy to linear order around the KS
energy e0

nk to obtain the linearized QP equation

elinear
nk = e0

nk + Znk<eSnk(o = e0
nk) (14)

with the renormalization factor Znk given by

Znk ¼ 1�<e@Snkðo;TÞ
@o

����
o¼e0

nk

 !�1
; (15)

that is approximately equal to the area under the QP peak of the
spectral function. Finally, in Rayleigh–Schrödinger perturbation
theory, also known as the on-the-mass-shell (OMS) approach, the
energy correction is just given by the self-energy evaluated at the
KS energy40

eOMS
nk = e0

nk + <eSnk (o =e0
nk). (16)

The evaluation of the energy correction is also carried out for
the CE approach. The effective CE self-energy is determined by
inverting eqn (4) after inserting the CE and non-interacting
Green’s functions. Then the NL equation is used to obtain
eigenenergies. Further details over the effective CE self-energy
are described in S5 (ESI†).

In Section 3.1, we will check the results of the different
approaches for the band edges of diamond, showing that the
OMS approximation using DM produces QP shifts very close to
the CE-NL (as already observed for polar materials26).

2.5 Long-range and short-range potentials

Converging e–ph calculations requires very dense q-grids that
are prohibitively expensive for DFPT. For this reason, we
employ the Fourier-based interpolation scheme, initially
proposed by Eiguren,50 to interpolate the e–ph scattering
potentials on arbitrarily dense q-meshes. The potential inter-
polation scheme has an important advantage for the e–ph
matrix elements of high unoccupied states, which are very
delicate to access accurately with Wannier Function based
interpolation methods.51

The e–ph scattering potential presents a non-analytical
behaviour52 in the long wave-length limit (q - 0) associated
to a LR behaviour in real-space, which requires a specialized
numerical treatment. Over the past decade, this problem has
been subject to several investigations that lead to a well
established procedure: the dipole fields for q - 0 are treated
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using a Fröhlich-like potential,53,54 which depends on the Born
effective charges and diverges as 1/q. Recently,5,55,56 the treatment
of LR contributions has been generalized to include contributions
generated by dynamical quadrupoles.57 As the Born effective
charges of diamond are zero, in what follows we focus on the
treatment of the quadrupole interaction.

In non-polar materials, the Fourier interpolation of the e–ph
potentials proceeds by first removing the non-analytical long-
range contribution induced by the displacement of the k-th
atom along the Cartesian direction a using the generalized
quadrupole model

VL
ka;qðrÞ ¼

4p
O

X
Ga�q

ðqb þ GbÞðqg þ GgÞ
ðqd þ GdÞe1dd0 ðqd0 þ Gd0 Þ

� 1

2
Qbg

kae
i qZþGZð Þ rZ�tkZð Þe

�
qþGj j2

4a ;

(17)

where O is the unit cell volume, Q is the dynamical quadrupole
tensor, G are the reciprocal lattice vectors, sj is the position of
the atom in the unit cell, and eN is the electronic dielectric
tensor in Cartesian coordinates (repeated indices are implicitly

summed over). The last exponential term, e
�
qþGj j2

4a , is a
Gaussian filter55 with a variance of

ffiffiffi
a
p

. The resulting short-range
potentials, which are smooth and analytic in q space, are then used
to build the scattering potential Wk,a(r, R) in the real-space supercell
(see, e.g., eqn (12) in Brunin et al.55). The short-range W is Fourier-
interpolated on a much denser q-grid and the non-analytic LR
terms are finally added back to get the total scattering potential.
Interestingly, one can use this interpolation technique to compute
e–ph matrix elements in which only the LR (SR) part of the
scattering potential is included. In Section 3.2, we will analyze
the separate contributions from the SR and LR potential and their
effect on self energies and spectral functions.

3 Results

All calculations in this work are performed using the
ABINIT58,59 software. Convergence studies are presented in this
section, followed by an analysis of spectral functions and
ARPES spectra. All calculations use the full DFPT potential,
albeit at the end of this section, we split the scattering potential
into LR and SR contributions and check their respective effects on
the QP. Further details on ground-state and DFPT calculations,
such as the lattice constant, band gap and phonon band struc-
ture, can be found in ESI† S2.

3.0 Convergence studies

3.0.1 Zero-point renormalization. Accurate ZPR calculations
require a careful convergence study with respect to the BZ
sampling and the finite value of Z. Fig. 1 shows the results of
such a convergence study for the CBM of diamond. A uniform
16 � 16 � 16 q-grid sampling with Z = 10 meV gives converged
values for the ZPR, but we will see that other quantities are
more sensitive. Throughout the paper, we will refer to a q-grid

of size N � N � N using just N. The ZPR of the VBM converges
with the same parameters as that of the CBM, giving a total ZPR
for the band gap of �0.325 eV within the OMS equation. The
ZPRs of the VBM, CBM, and the band gap obtained with the
three approximations, discussed in Section 2.4, are summarized
in Table 1. At this level of theory, we expect OMS to provide the
most accurate results by analogy with polar materials, where
OMS is in good agreement with high-quality Monte Carlo
methods.26 This might occur due to a fortuitous cancellation
between the errors coming from the lack of higher order e–ph
interactions, and the evaluation of the self-energy at the KS
energy, a non-self-consistent calculation of the QP energy.

The ZPR of polar materials, such as LiF and MgO, is largely
dominated by the Fröhlich interaction.26 In diamond, there are
no dipole contributions, yet the ZPR is similar to that of LiF and
MgO in relative terms. The Fröhlich ZPR of MgO26,60 and LiF26,61

for the CBM is approximately 4% and 1%, respectively, of the
experimental band gap. Similarly, the ZPR of diamond62 is about
4%. This shows that accurate computations of band gaps require
the inclusion of e–ph interaction even in homo-polar crystals. It
should be noted, however, that electron–electron interactions
beyond the KS-DFT mean-field approximation are absent in our
calculations. These corrections may vary depending on the wave-
vector, e.g., for the indirect band gap of diamond the GW
correction is around 0.02 eV while it is about 0.2 eV for the
direct band gap.21,63 We also ignored thermal expansion, zero-
point lattice expansion,64,65 and further anharmonic effects. Other
calculations including these phenomena are detailed in Table 2.

3.0.2 Interplay between ImR and g. In this subsection,
we analyze the convergence of the imaginary part of the e–ph

Fig. 1 ZPR for the CBM as a function of the number of divisions in the
q-mesh and different values of Z. The data was fitted with a linear model
and extrapolated for 1/N - 0. Calculations were done with the OMS
approach eqn (16) (circles), the linear approximation eqn (14) (triangles)
and the non-linear approach eqn (13) (squares). The values obtained with
Z = 10 meV and Z = 1 meV are indistinguishable on the scale of the graph.

Table 1 Converged ZPR values [eV] for CBM, VBM and band gap at T = 0 K
using the OMS approach eqn (16), the linear approximation eqn (14)) and
the non-linear approach eqn (13)

CBM VBM Band gap

OMS �0.196 0.130 �0.325
Linear �0.177 0.118 �0.295
NL �0.180 0.119 �0.299
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self-energy with respect to the q-sampling and the broadening
parameter Z. This convergence study is needed because the CE
is rather sensitive to the quality of the input FM self-energy as
detailed in the next section. According to our numerical tests,
indeed, the real part of the self-energy at the KS energy
converges with relatively coarse q-meshes and large Z provided
that enough empty states are included in the calculation. On
the contrary, the imaginay part requires much denser q-grids
and smaller Z. To elucidate this point, we compare finite-Z
results with those obtained with the more accurate linear
tetrahedron method66 that we considere as a reference value.

Fig. 2 shows the convergence of the imaginary part of S at
the CBM using the tetrahedron scheme. Above 5 K, ImS(e0

CBM)
converges at N = 160, and from 5 K to 60 K, there is a steep
increase of ImS(e0

CBM) from 6 � 10�8 eV to 10�5 eV, respec-
tively. At 300 K, ImSCBM(e0

CBM) reaches 10�4 eV and at 1500 K it
is almost 10�2 eV. In Fig. 3 and 4, we compare finite Z results
with the converged tetrahedron values.

Fig. 3 shows that ImScG(e0
cG), where cG means bottom of the

conduction band at G, converges towards the tetrahedron value
for large N and small Z. Using N = 128, ImScG(e0

cG) differs from
the tetrahedron method by values in the 34 meV to 6 meV
interval when varying Z from 50 meV to 1 meV, respectively.
Increasing the q-mesh density to N = 192, the interval is even
smaller, going from 6 meV to 1 meV when varying Z from
50 meV to 1 meV.

The convergence of the imaginary part at the CBM is more
problematic (see Fig. 4): the value of ImSCBM(e0

CBM) at T = 300 K
with the tetrahedron method is very small, around 10�4 eV, i.e.
smaller than the values of Z. Further convergence would
require Zr 10�4 and even denser grids, which are not practical
or indeed necessary. Selecting Z = 5 meV and N = 128 (values
that will be used later on), ImSCBM(e0

CBM) is within an order of
magnitude of the very small tetrahedron value. Lowering Z
systematically decreases ImSCBM(e0

CBM), but it also increases
numerical noise as detailed below.

The effect of increasing the density of the q-mesh in the
imaginary part of the dynamical self-energy can be observed in
Fig. 5: as the q-mesh increases, the noise decreases. We choose
a q-mesh of N = 128 for all the following calculations, which
produces low computational noise and a convergence error of
0.6% on the value of the self energy at the CBM.

Table 2 Diamond indirect band-gap ZPR calculations found in the literature.
Meaning of the abbreviations: All calculations were done within first-
principles (FP), except the last one * which used a semi-empirical
exchange-correlation functional (Semi-Emp.); Allen, Heine and Cardona
approach (AHC); Supercell (SC) calculations; thermal expansion of the crystal
(TE); calculations with electron–electron (EE) interactions; frozen-phonons
approximation (FP); harmonic approximation (HA); anharmonic effects
(AnHA); (?) not explicitly clarified in the references, but presumably harmonic

ZPR
(meV) Calc./exp. DF(P)T/MC SC/AHC (Non-)A EE TE (An)Ha

�36470 Exp
�325 FP (This work) DFPT AHC Non-A No No Ha

�31563 FP MC SC A No Yes ?
�32044 FP DFT SC A No No AnHa
�33042 FP DFPT AHC Non-A No No Ha
�33763 FP MC SC A G0W0 Yes ?
�36644 FP DFPT AHC Non-A No No Ha
�37244 FP DFPT AHC A No No Ha
�38042 FP DFPT AHC A No No Ha
�43644 FP DFPT SC A No No Ha
�43944 FP DFT SC A No No Ha
�46271 FP DFT SC A No No Ha
�61972 Semi-Emp* DFPT AHC A No Yes Ha

Fig. 2 Convergence with N of the imaginary part of the self-energy at the
CBM evaluated at the KS energy as a function of temperature. Calculations
are done with the DM approach and the tetrahedron method. The lowest T
considered is 5 K. Each curve has been extended to negative T to better
visualize the convergence. The y-axis is in logarithmic scale.

Fig. 3 Convergence of ImScG(e0
cG) using the DM approach with N for

different values of Z = 50, 20, 10, 8, 5, 3, 2, and 1 meV (indicated in the
legend) at 300 K. The black line denotes the reference value obtained with
the tetrahedron method and N = 160.

Fig. 4 Convergence of ImSCBM(e0
CBM) using the DM approach with N, for

different values of Z, at 300 K. Exactly at the CBM, the standard method
converges slowly down to the tetrahedron value, as the value of S is very
small and comparable to the ‘‘infinitesimal’’ Z itself. The tetrahedron value
is calculated with N = 160. The y-axis is in logarithmic scale.
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In Fig. 5, we also display the density of states (DOS). The
imaginary part of the self-energy can be seen as a similar sum
over accessible electronic states at m, k + q, but weighted by
finite e–ph matrix elements, Bose–Einstein factors at finite T,
and shifted by phonon frequencies. Another observation is
a linear departure of ImSCBM(o) at oLO from the value
ImSCBM(e0

CBM). The DOS shows a similar behavior. This is at
variance with the case of Fröhlich model and polar materials,26

in which the e–ph matrix elements diverge at small q. This
results in a peak in the self-energy at the LO phonon frequency,
which is not present in the corresponding DOS.

For a fixed, accurate, q-mesh size (N = 128), we show the
effect of Z in Fig. 6. At very low Z = 1 meV, there are strong
oscillations in the satellite features of the spectral function. The
width of the QP peak also increases with Z, such that a
numerical compromise must be found. Above the CBM QP
energy of �0.180 eV, there are two plateaus in the spectral
function: a small one starting at zero frequency, and a more
important one starting at the highest phonon frequency, oLO,
(dot-dashed line), analogous to the peak observed in the Frölich

self energy form for polar materials. To avoid computational
noise, and very dense q-meshes, we select for the rest of the
paper a N = 128 q-mesh and Z = 5 meV. Analysis of the plateaus
and the spectral function will be detailed in Section 3.1.

Other convergence to consider in the self-energy is the sum
over m bands in eqn (3), which includes unoccupied states and its
numerical convergence over empty bands becomes burdensome.
An alternative is to replace high-energy bands with the solution
of a non-self-consistent Sternheimer equation.67 Study of this
convergence can be found in Section S4 (ESI†).

The calculation of the cumulant function at low temperatures
is complicated by the very small value of ImSCBM(e0

CBM).
ImSCBM(e0

CBM) is related to the decay of the QP and its lifetime:
the smaller it is, the longer it takes the QP to decay. The range of
the time mesh can be estimated through eqn (12), which is an
envelope of the Green’s function, which can be used to determine
the time at which the QP decays and reaches a given tolerance tol,
tmax = � (ln(tol) + w)/G.

At low temperatures, e.g. 40 K, ImSCBM(e0
CBM) is �4.95 �

10�6 eV and the number of frequency points required is huge.
The grid size can be estimated as Do/do, where Do is the
frequency range, and do is the spacing between points, which
can be otained as do = 2p/tmax. We get tmax E 918 ps for a tol of
10�3, and for a range Do of 20 eV (the convergence of Do is
explained in S3, ESI†), we obtain 5.3� 106 points. Therefore, we
limit the calculations to room temperature and above, where
considerably fewer frequency points are required.

At T = 300 K, ImSCBM(e0
CBM) =�1.51 � 10�4 eV gives a tmax E

20 ps with a tolerance of 10�3, leading to 174.7 � 103 frequency
points. Increasing the temperature, ImSCBM(e0

CBM) increases,
which means shorter QP lifetimes and a lower number of
frequency points.

In Fig. 7, the cumulant function is shown for T = 300, 900,
and 1500 K. The linear behavior of the cumulant at infinite
time is present both in the real and imaginary parts. The large
time slope of the real part is ImSCBM(e0

CBM) and the slope of the
imaginary part is <eSCBM(e0

CBM). The intercept of <eC(t), wk,
originates from the asymmetry46 of the denominator of S when
summing over all jq states, both elements described in eqn (12)
and its convergence is examined in more detail in the S3 (ESI†).

Fig. 5 The (a) density of states and (b) self-energy at CBM and 300 K
calculated using DM and Z = 5 meV for N = 32, 64, 128 and 192 at CBM.
The DOS is plotted as a reference, showing its similarity with the imaginary
part of the self-energy. Self-energy becomes smooth and converged at
N = 128 in green (difficult to visualize) with very small oscillations around
the N = 192 data in red (easy to visualize).

Fig. 6 The (a) spectral function and (b) self-energy at the CBM and 300 K
calculated using DM and a N = 128 for different values of Z = 50, 10, 5 and
1 meV. The first vertical line is at 0 energy (CBM) and the second at the
highest phonon frequency. The finite temperature allows for absorption of
acoustic phonons, which produces a small plateau between the QP peak
and the main (optical) satellite feature.

Fig. 7 The cumulant function for CBM between 0 and 32 ps, for different
temperatures: 300, 900, and 1500 K. The solid and the dashed lines are the
real and imaginary parts of the cumulant function, respectively. The inset
shows the non-linear behaviour of <eC(t) at small t.
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The increase of the <eC(t) at t -N accelerates the decay of the
QP and determines its lifetime t = 1/2G.

3.1 Spectral function and ARPES at finite temperature

After converging the self-energy, we can evaluate the spectral
function at finite temperatures using the DM and the CE
approaches. In Fig. 8, the ZPR can be observed by following the
shift of the renormalized band gap to T = 0 K (the bare band gap is
set to zero). The ZPR can be determined experimentally by
extrapolating the linear regime at high temperatures to 0 K. Using
a Pässler fit68 to the measurements of Clark et al.69 gives a ZPR of
�0.259 eV. Using also the difference in renormalization for
isotopes 12C and 13C, the obtained ZPR is �0.364 eV.70 Table 2
shows a range of calculated ZPR that go from �315 meV to
�619 meV.

The fast convergence of the real part of the self-energy allows
to determine the renormalization of the band gap in Fig. 8 at a
coarse N = 64 q-mesh and at a Z of 10 meV. The slope of the DM-
OMS energy is very close to the CE-NL slope, �0.409 meV K�1,
giving an extrapolated ZPR from high temperatures of �0.281 eV.
This value differs from the CE-NL calculated at T = 0 K by
�0.066 eV. This discrepancy emerges from two factors: the linear
extrapolation should be made above diamond’s high Debye
temperature (2246 K),73 and the non-adiabatic self-energy,
eqn (3), includes a plus and minus term of the phonon energy
that is not present in the adiabatic self-energy (an adiabatic self-
energy yields the same ZPR when calculated at T = 0 K and when
extrapolated from high temperatures). The very similar behaviour
with temperature for DM-OMS and CE-NL derives from the
cancellation of errors of the former between the exclusion of
higher order e–ph interactions and the evaluation of the self-
energy at the KS energy. The behavior of DM-NL is erratic, since
it is not linear at high temperatures, as opposed to CE-NL and
DM-OMS. If one attemps a linear extrapolation for temperatures
above 2500 K, where it becomes almost linear, the ZPR gives
�0.092 eV with a discrepancy of �0.207 eV from the ZPR
calculated at T = 0 K, three fold the CE-NL discrepancy. Note that

in the NL approach we use the value of the highest point of the
main peak in the spectral function (as it will be seen later on) and
should be the one taken into account. The fortuitous coincidence
with DM-OMS has been found in other works.26

Going further by evaluating the dynamical part of the
spectral function at the CBM in Fig. 9 for T = 300, 900, and
1500 K, one can observe a temperature-dependent offset in the
QP peak (the KS energy is o = 0) which corresponds to the
DM-NL energy. Unlike the Fröhlich polaron in simple polar
materials, where there are well defined satellite peaks, here the
signature of a nonpolaron is a plateau. As the temperature
increases, more states become available; in particular, S� starts
to contribute to the presence of another plateau with states
below the KS energy. Similar to polar materials, the DM
approach overestimates the energy distance between the main
QP and the high plateau, giving 2.4 oLO at T = 300 K.

The energy shift of the QP relative to the KS energy at both the
CBM and VBM reduces the band gap, as shown in Fig. 10 and 11,

Fig. 8 Variation of the indirect band gap of diamond with respect to
temperature. The bare band gap was set to zero. The calculations of the
band gap using DM-NL (blue points) do not produce a strictly linear
behaviour, and the DM-OMS (green squares) produces the same values
as the CE using the NL approach (yellow points). Pässler fit68 (solid red line)
to the experimental points by Clark et al.69 (black points) and measured
ZPR by isotope shift70 (black dashed line). The calculations were done with
N = 64 and Z = 10 meV.

Fig. 9 (a) The DM spectral function and (b) the real and imaginary parts of
the self-energy at the CBM for T = 300, 900 and 1500 K, with N = 128 and
Z = 5 meV. The vertical dashed black lines correspond to the phonon
energies �oLO and oLO around the KS energy that is used as origin of the
x-axis.

Fig. 10 Spectral function calculated at the CBM at 300, 900, 1500 K using
DM and CE methods. The vertical colored lines show the QP energy
calculated using non-linear (NL), on-the-mass-shell (OMS) and linear
approaches. The vertical dashed black lines correspond to �oLO. Z is set
to 5 meV and N = 128.
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respectively (the KS energy is set at 0 eV in each case).
Taken together, they determine the band gap shift in Fig. 8.
The QP peaks are located at the eNL energy. The DM-NL energy
differs from the CE-NL more noticeably at higher temperatures.
Since the latter contains higher orders of e–ph interactions, the
CE approach is more appropriate to determine the QP energy.
These energies are very close to the DM-OMS approximation, as
also observed in Fig. 8.

At the DM level, the frequencies of both plateaus are
disconnected from the QP energy, as discussed in the ESI†
S6.2. As the temperature increases, the nonpolaron plateau
seems to get closer to the QP peak. However, this is an artifact
of DM, as new states become accessible through S�. In DM, S+

gives contributions that start at +oLO counting from the KS
energy, independently of the temperature or position of the QP
peak. At higher temperatures, S� becomes larger and contributes
to the spectral function at �oLO. Since the band renormalization
is larger than �oLO, the �oLO plateau still appears to the right of
the QP peak, giving the impression that the plateau is shifting
with temperature, while it actually corresponds to another
plateau. Also, there is an un-intuitive behaviour with DM at
the VBM, where the broadening of the QP at 900 K seems wider
than at 1500 K. This is due to the overlap between the states
created by S+ at +oLO (counting from o = 0) and the QP peak.
More detailed analysis is deferred to S6.2 (ESI†).

For the CE approach, let us focus first on the CBM. At low
temperatures, S+ produces a plateau at the right energy
distance, +oLO, from the QP peak. When increasing the
temperature, the main QP becomes wider. It is easier to identify
features in the DM spectral function, because the self-energy
consists only of two terms, S+ and S�. In the CE instead, as it
consists of an exponential representation, higher order terms
mix the contributions from the QP peak with satellite features
in the spectral function. This smooths out the plateau, which is
no longer separate from the QP at higher temperatures,
although a weak peak is visible at 900 K, and a long tail is still
present at 900 K and 1500 K. Results are similar for the VBM
(Fig. 11). Unlike polar insulators, such as LiF and MgO,26 or the

Fröhlich model in the CE approach, there is no visible signa-
ture at +2oLO.

The spectral function close to the band edges was calculated
along a path between high-symmetry points in reciprocal space
(as commonly done in ARPES experiments). This allows us to
visualize the effects of phonons, and to compare the DM and
CE approaches in reciprocal space (see Fig. 12). For both
approaches we can perceive at 300 K a light red color just
above the yellow band at the CBM, which represents the
nonpolaronic signature. In DM, the plateau is located at
2.4oLO above the CBM quasi-particle peak, and as the tempera-
ture increases, the plateau shifts down about 0.32 eV, which
seems constant in this energy interval (the same shift can be
seen in the top plot of Fig. 10 with the shift of the plateau to
lower energy from 300 K to 900 K). The QP peak shifts down
from �0.179 eV to �0.367 eV when the temperature increases
from 300 K to 1500 K, respectively. See Table S6.1 (ESI†). In the
CE, the satellite band is located oLO away from the CBM QP
peak at 300 K. As temperature increases the QP mixes with the
nonpolaronic signature and increases the broadening. There is
also a huge broadening increase at the degenerate bands close
to the high-symmetry point X. The changes with temperature
and absolute energy resolution mean these features should be
visible experimentally, and we hope to stimulate more detailed
ARPES studies on intrinsic diamond as a model for
nonpolarons.

To compare more quantitatively, the DM calculated ARPES
was subtracted from the CE calculations in Fig. 13. The
intensity range is limited between �0.3 and 0.3 to detail the
view of the nonpolaronic signatures. For positive values the CE
has a higher spectral function, while the opposite occurs for
negative values. One can observe a broadening or/and shift
effect when transiting from DM (a thin line green or grey) to CE,

Fig. 11 Spectral function calculated at the VBM at 300, 900, 1500 (K)
using DM and CE methods. The vertical colored lines show the QP energy
calculated using non-linear (NL), on-the-mass-shell (OMS) and linear
approaches. The vertical dashed black lines correspond to �oLO. Z is set
to 5 meV and N = 128.

Fig. 12 Calculated ARPES spectra using DM (top) and CE (bottom) at the
bottom of the conduction band. Zero was set to the CBM energy in the DM
approach. The calculations were done at temperatures equal to 300, 900
and 1500 K. To be able to observe the presence of the additional signature
present in the spectral function at VBM and CBM (a line just above the main
QP peak on the CBM), the intensity scale of the density of states (in colors)
was limited to 0.3. The plateau is visible for the different temperatures in
the DM approach and the broadening changes slightly. This is opposite to
CE, where we can only see the plateau at 300 K, due to mixing between
the broader QP and the nonpolaronic feature.
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which surrounds the green or grey line by a yellow or red area.
In some parts of the band structure, such as the bottom of the
conduction band close to the high symmetry point L, one can
observe a tail to higher energies and an asymmetry close to the
QP peak, as the weight at the QP energy using DM (blue), is
spread to the tail within CE (yellow). As the temperature
increases from 300 K in Fig. 13a, 900 K in Fig. 13b, to 1500 K
in Fig. 13c, the broadening increases, especially for states close
to the Fermi level. The shift of the QP peak from DM to CE as
seen in Fig. 10 and 11 is not visible in the full band structure, as
the scale of the energy in the calculated ARPES spectra is much
wider than the energy shift.

Individual ARPES images for CE and DM can be found in
Fig. S6.4 (ESI†). The dispersion of bands is noticeable and
qualitatively comparable with measured ARPES images in
boron-doped diamond.74–76 However, doping lifts the degeneracy
and lowers the Fermi energy below the VBM, making it difficult to
observe polaronic features, the plateau or even the QP peak at the
VBM. The only observation we have found of experimental
polaronic signatures in ARPES is in surface hydrogen-
terminated on diamond,12 showing several satellite signatures
offset by multiples of oLO from the QP.

3.2 Contribution due to long-range and short-range fields

In this section, we employ the Fourier-based interpolation
technique discussed in Section 2.5 to analyze the contribution
given by the SR and LR quadrupolar fields to the e–ph scattering
potentials. More specifically, we compare the unit cell average of
the (local part) of the e–ph scattering potential55

�Vka;q ¼
1

O

ð
O
drVka;qðrÞe�iq�r; (18)

for several q-points along a high-symmetry path. Three different
approaches are used to dissect the contributions to %V. In the first
one, the LR contribution is given by VLka;qðrÞ, the potential of the

model in eqn (17). Dynamical quadrupoles are given by

Qbg
ka = (�1)k+1Qk|ebga|, (19)

with e the Levi-Civita tensor, k the atom index and Qk = 2.52. In
the second approach, the SR part is obtained by Fourier-
interpolating55 the short-ranged Wk,a(r, R), in which quadrupole
fields have been removed from Vka,q(r). Finally, the total e–ph
scattering potential is obtained by performing explicit DFPT
calculations for all the q-points of the path. Fig. 14 compares
the results obtained with these three approaches. Note, in
particular, the jump discontinuity in the DFPT values for q - G,
that is due to the LR quadrupolar potential. As discussed in
ref. 5, a proper treatment of the LR quadrupole terms is
necessary for an accurate interpolation of e–ph matrix elements
in the long-wavelength limit. According to our results for dia-
mond, however, an e–ph self-energy evaluated with e–ph matrix
elements obtained from the LR model potential alone (eqn (17))
cannot reproduce the results obtained with e–ph matrix
elements including both the SR and the LR part. In diamond,
short-range crystal fields provide the most significant contribu-
tion to the QP formation with only a small influence of

Fig. 13 Calculated spectral function difference between the CE and DM,
ACE (o) �ADM(o) at (a) 300 K, (b) 900 K, and (c) 1500 K. To highlight
the nonpolaronic signature near the VBM and CBM, the intensity scale of
the density of states (colormap) was limited to �0.3. For positive values
(red and yellow colors), the CE has more intensity than DM, and
the opposite happens for the negative values (blue and grey colors).
Comparatively with the narrow bands of DM, the CE approach has a much
broader spread of the QP weight. Around most of the high symmetry
k-points the broadening is almost symmetric, except L, where it is
asymmetric, creating a tail.
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long-range quadrupoles. We can estimate the real space distance
beyond which quadrupolar long-range fields dominante short-
range ones, by determining the point in the reciprocal lattice
around G where the short-range potential becomes equal to the
long-range one. By doing so, one can estimate a radius of
interaction between the short-range fields and the electronic
carrier. This distance is of |q| E 0.18 in fractional units,
represented by the two vertical dashed lines in Fig. 14. In the
direct lattice it corresponds to around 18.3 Å, or around 7 unit
cells in real-space, showing that diamond could be described as
a medium polaron or larger. Note that we are determining an
approximate interaction radius and not the size of the polaron
itself. Further calculations should be carried out to estimate the
polaron radius as in ref. 77 and 78.

Even if a quadrupole long-range field is present, it can be
noticed from Fig. S6.3 (ESI†) that its importance disappears

when calculating the scattering matrix elements, and there is
thus negligible contribution from long-range fields to the
nonpolaron spectral function. The maximum value of |gjq

nmk|
is of 0.97, close to the effective coupling constant found
experimentally in surface hydrogen-terminated on diamond
of 1.1.12

The negligible contribution of long-range fields can also be
observed in the spectral function and the self-energy in Fig. 15.
The self-energy of the long-range is almost zero, meaning that
there is no interaction between the electrons and the phonons
that could produce long-range fields, leading to a single peak at
the KS energy of the non-interacting system. The short-range
field results are almost identical to those of the full DFPT
potential.

4 Conclusion

First-principles e–ph calculations for diamond reveal spectro-
scopic signatures that originate from a quasiparticle that can be
called nonpolaron: a bound electron state dressed with pho-
nons in a non-polar system. We expect such signatures to be
generic and occur in other covalent crystals.

In diamond, unexpectedly, the contribution to the for-
mation of the nonpolaron from the long-range quadrupole
fields is negligible and the binding is mainly generated by
the short-range fields.

The calculations were done using both the standard Dyson–
Migdal approach and the cumulant expansion. According to the
CE, the signature of a nonpolaron is a plateau in the spectral
function, starting one phonon energy (corresponding to the
highest frequency mode) above the main QP peak. The plateau
shape is at variance with the satellite peaks seen in polar
systems, each separated from the QP peak or the previous
replica by the LO phonon energy.

As in polar materials, we find that the QP is not properly
captured in one shot NL-DM (although it might be improved
by self-consistency in G). It yields an incorrect temperature
dependence of the DM QP peak, which is not linear at high
temperatures. The DM approximation also yields a wrong
position for the plateau structure, which is located at �oLO

relative to the KS value, independently of the position of the QP.
Calculations of the ZPR within CE and using the DM on-the-

mass-shell approximation give similar results, and are in good
agreement with experimental values of the ZPR. In addition,
the cumulant expansion method delivers a physically correct
nonpolaron energy, and the inclusion of the higher order terms
in the e–ph interaction provides a more ‘‘realistic’’ view of the
spectral function. The calculated ARPES spectrum of diamond
around the band gap shows a broader dispersion within CE
compared to Dyson–Migdal.

Finally, in order to obtain the spectral functions, self-
energies, ZPR and temperature dependence of the band gap,
convergence with respect to the q-mesh and the broadening
parameter Z were carefully studied. The real part of the QP self-
energy converges quickly in opposition to the imaginary part.

Fig. 14 Unit-cell average and absolute value of the total DFPT scattering
potential (green) compared with the long-range part (blue) and the short-
range contribution (orange). The three subplots corresponds to the e–ph
potential generated by the displacement of a C atom along one of the
three reduced directions x̂, ŷ, ẑ. Both atoms present the same | %Vq|.

Fig. 15 (a) The spectral function and (b) the self-energy of diamond at
CBM calculated at T = 300 K. The self-energy of the long-range field is
negligible and leads to a single peak, at the KS energy. The short-range
field calculations overlap with the total DFPT calculation, confirming it is
the main contributor to the total spectra.
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The narrow QP broadening at the VBM and CBM implies a very
strong sensitivity of the imaginary part of the self-energy to
convergence, and the imaginary Z introduced in the Green’s
function should be chosen carefully. Our study showcases the
combination of convergence techniques to reduce computa-
tional cost, in particular: the Sternheimer equation, which
substitutes empty bands by a linear response equation, and
the Kramers–Kronig relation, which replaces a difficult fre-
quency integration by the use of a pre-calculated complex
self-energy.

This paper motivates further research, both experimental
and theoretical, on the topic of non-polar phonon modes in
interacting electron–phonon systems.
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