Manganese oxide nanomaterials boost cancer immunotherapy

Binbin Ding,†a Jun Yue,†b Pan Zheng,ac Ping’an Ma,ad and Jun Linb, ad

Immunotherapy, a strategy that leverages the host immune function to fight against cancer, plays an increasingly important role in clinical tumor therapy. In spite of the great success achieved in not only clinical treatment but also basic research, cancer immunotherapy still faces many huge challenges. Manganese oxide nanomaterials (MONs), as ideal tumor microenvironment (TME)-responsive biomaterials, are able to dramatically elicit anti-tumor immune responses in multiple ways, indicating great prospects for immunotherapy. In this review, on the basis of different mechanisms to boost immunotherapy, major highlighted topics are presented, covering adjusting an immunosuppressive TME by generating O2 (like O2-sensitized photodynamic therapy (PDT), programmed cell death ligand-1 (PD-L1) expression downregulation, reprogramming tumor-associated macrophages (TAMs), and restraining tumor angiogenesis and lactic acid exhaustion), inducing immunogenic cell death (ICD), photothermal therapy (PTT) induction, activating the stimulator of interferon gene (STING) pathway and immunoadjuvants for nanovaccines. We hope that this review will provide holistic understanding about MONs and their application in cancer immunotherapy, and thus pave the way to the translation from bench to bedside in the future.

1. Introduction

Different from traditional surgery, chemotherapy and radiotherapy, immunotherapy, a strategy that leverages the host immune function to fight against cancer, plays an increasingly important role in clinical tumor therapy and is considered as one of the most promising treatments for curing cancer thanks to its abscopal effects that inhibit and eradicate...
metastatic tumors.1–5 Currently, various strategies for immunotherapy are being developed, such as adoptive cell therapy, immune checkpoint blockade (ICB) therapy, cancer vaccine therapy and so on.6–10 However, in spite of the great success achieved to date in not only clinical treatment but also basic research, cancer immunotherapy still faces many huge challenges, like low response rates, severe treatment-associated adverse effects, acquired immunological tolerance and so forth.11 Furthermore, the complicated cancer-immunity cycle process and the immunosuppressive tumor microenvironment can further hinder the course of immunotherapy.12 Encouragingly, the development of materials science and nanotechnology offers new opportunities and prospects for cancer immunotherapy.13–17 To date, multifarious nanomaterials have been fabricated to boost anti-tumor immunotherapy through various mechanisms, which include three major strategies: nanomaterial-mediated combination immunotherapy through various mechanisms, which include three major strategies: nanomaterial-mediated combination therapy, adjustment of the immunosuppressive tumor microenvironment and construction of nanovaccines.18–22

In the past two decades, increasing attention has been paid to manganese oxide nanomaterials (MONs) and their derivatives for cancer treatment.30–33 In the past two decades, increasing attention has been paid to manganese oxide nanomaterials (MONs) and their derivatives.

Ping’an Ma

Ping’an Ma was born in Jilin, China, in 1982. He received his BS degree in Biology in 2005 at Northeast Normal University, and his PhD degree in Biochemistry in 2010 at Northeast Normal University. After graduation, he became Assistant Professor in Prof. Jun Lin’s group and was promoted to Professor in 2020. His research focuses on the synthesis and application of multifunctional inorganic nanoparticles for bioapplication, particularly the design and mechanism of platinum-based anticancer drugs.

Pan Zheng

Pan Zheng was born in Anhui, China, in 1991. She received her BS degree (2015) in pharmaceutical engineering from Hefei University of Technology, and her PhD degree (2021) in Polymer Chemistry and Physics under the guidance of Prof. Gao Li at Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Her current research focuses on the design and preparation of activatable nanomaterials for cancer treatment.

Jun Lin

Jun Lin was born in Changchun, China, in 1966. He received BS and MS degrees in Jilin University, and a PhD degree in Changchun Institute of Applied Chemistry (1995). His postdoctoral studies were performed at the City University of Hong Kong (1996), Institute of New Materials (Germany, 1997), Virginia Commonwealth University (USA, 1998), and the University of New Orleans (USA, 1999). He has been working as a Professor at CIAC since 2000. His research interests include bulk- and nanostructured luminescent materials and multifunctional composite materials, together with their applications in display, lighting, and biomedical fields.

In biomedical applications, including bioimaging, biosensing, drug delivery and tumor therapy due to their excellent biocompatibility and unique physical/chemical properties.23–27 MONs are able to catalyze H+/hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) to oxygen (O\textsubscript{2}) and Mn2+, and oxidize glutathione (GSH) into oxidized glutathione (GSSH).28–30 As is well known, the tumor microenvironment (TME) characteristically displays hypoxia, mild acidity, and GSH/H\textsubscript{2}O\textsubscript{2} overproduction.31,32 Therefore, MONs as ideal TME-responsive biomaterials were designed to enhance the therapeutic efficiency by adjusting the immunosuppressive tumor microenvironment. For example, by overcoming tumor hypoxia, MONs can dramatically promote the tumor ablation in photodynamic therapy (PDT),33 sonodynamic therapy (SDT),34 and radiotherapy (RT).35 In addition, it has been proved that MONs can be used directly for photothermal therapy (PTT),36 ferroptosis,37 chemodynamic therapy (CDT),38 immunotherapy,39 etc. Overall, manganese oxide-based nanomaterials hold great promise and have made huge progress in biomedical applications, particularly in tumor therapy. Some recent reviews by different groups including ours have outlined the progress in synthesis, properties, imaging, biodetection and therapeutic applications of MONs.40–43 However, a comprehensive and specialized review on MONs for cancer immunotherapy has not been reported yet.

Inspired by the significant headway and great prospects of MONs in immunotherapy, herein, this review aims to provide a comprehensive overview of MONs and their derivatives for cancer immunotherapy. On the basis of different mechanisms to boost immunotherapy, major highlighted topics are presented, covering adjusting an immunosuppressive TME by generating O\textsubscript{2} (like O\textsubscript{2}-sensitized PDT, programmed cell death ligand-1 (PD-L1) expression downregulation, reprogramming tumor-associated macrophages (TAMs), and restraining tumor angiogenesis and lactic acid exhaustion), inducing immunogenic cell death (ICD), PTT induction, activating the stimulator of interferon gene (STING) pathway and immunoadjuvants for nanovaccines.
Finally, the current challenges and future directions of MONs for immunotherapy are further discussed. We believe that this review will bring more inspirations to not only cancer immunotherapy but also the further application and conversion of manganese oxide-related nanoplatforms.

2. Adjusting immunosuppressive TME by generating O_2

The outcome of immunotherapy is greatly limited to immunosuppressive TME. For instance, hypoxia, a characteristic feature of solid tumors, can bring about a series of adverse consequences...
on antitumor immune response, including upregulations of PD-L1 and tumor invasion-related signaling molecules like vascular endothelial growth factor (VEGF), which are mainly involved in angiogenesis and metastasis.\(^{45,52}\) Therefore, it is very necessary and important to modify immunosuppressive conditions and reshape the tumor immune microenvironment. As an excellent endogenous O\(_2\) donor by reacting with H\(_2\)O\(_2\)/H\(^+\), manganese oxide-based nano-systems show superior ability for adjusting immunosuppressive TME by overcoming tumor hypoxia.

2.1 O\(_2\)-Sensitized PDT

Classical PDT, a noninvasive therapy modality based on the photochemical reactions of photosensitizers (PSs) to generate cytotoxic intracellular reactive oxygen species (ROS), is an effective cancer therapeutic strategy.\(^{53,54}\) In particular, it has been demonstrated that PDT could not only kill cancer cells directly, but also elicit antitumor immune responses via release of tumor-associated antigens (TAAs), also called ICD.\(^{55–58}\) However, tumor hypoxia greatly limits the efficiency of O\(_2\)-dependent PDT.\(^{59}\) MONs can tremendously enhance PDT efficiency by reacting with H\(_2\)O\(_2\)/H\(^+\) to produce O\(_2\), and thus promote antitumor immunity.

A representative example was presented by the Cai group, in which they prepared core–shell gold nanocage@manganese dioxide (AuNC@MnO\(_2\), AM) nanoparticles as tumor microenvironment-responsive O\(_2\) producers and near-infrared (NIR)-triggered ROS generators for O\(_2\)-sensitized immunogenic PDT (Fig. 1a and b).\(^{44}\) As shown in Fig. 1c, compared with other groups, enhanced ROS contents were observed in the AM + laser group, indicating that O\(_2\) produced by MnO\(_2\) can promote PDT. Next, the markers of ICD as a cornerstone of therapy-induced antitumor immunity were further tested and the results reveal that the AM + laser group can induce the most conspicuous calreticulin (CRT) exposure and adenosine triphosphate (ATP)/high mobility group protein B1 (HMGB1) release (Fig. 1d–f). The elevated immune response was examined by dendritic cells (DCs) maturity and interleukin 12 (IL-12) secretion using co-cultivation of mouse bone marrow-derived dendritic cells (BMDCs) and 4T1 cells (Fig. 1g and h). Next, in vivo study confirmed that AM under 808 nm laser irradiation not only ablated the primary tumor directly but also inhibited tumor metastasis and recurrence. In addition, the authors also found that AM can relieve tumor hypoxia by in situ oxygenation to remodel the immunosuppressive TME by decreasing regulatory T cell (Treg) expression. Similarly, other groups also reported that enhanced antitumor immunity can be achieved by O\(_2\)-sensitized PDT.\(^{60–66}\)

2.2 PD-L1 expression downregulation

Hypoxia-inducible factor-1\(\alpha\) (HIF-1\(\alpha\)) selectively up-regulates PD-L1 by binding to the hypoxia response elements (HRE) in the PD-L1 proximal promoter, which dampens the antitumor immune response.\(^{67,68}\) Hence, MONs as an O\(_2\) supplier can reduce PD-L1 expression by overcoming tumor hypoxia to boost immunotherapy. Based on this, Yu and co-workers prepared a multifunctional nanoregulator incorporating MnO\(_2\) particles and small molecular IPI549 (BMI) to reshape the tumor immune microenvironment (TIME) as displayed in Fig. 2.\(^{45}\) Here, IPI549, as a small molecular gamma isoform of phosphoinositide 3-kinase

Fig. 1. (a) Preparation procedure of core–shell gold nanocage@manganese dioxide (AuNC@MnO\(_2\), AM) and its applications in acid/H\(_2\)O\(_2\)-responsive oxygen-boosted PDT. (b) The therapeutic mechanism of AM for multimodal imaging-guided oxygen-boosted PDT. (c) ROS detection in 4T1 cells after treatment with AM and 808 nm laser irradiation (0.8 W cm\(^{-2}\), 3 min) by confocal microscopy. (d) Immunofluorescence microscopy of CRT expression on 4T1 cell surface after treatment with AM and laser irradiation. (e) Released ATP in the supernatant. (f) Released HMGB1 in the supernatant. (g) The expression of CD83 and CD86 of mature DC stimulated by ICD signal molecules. (h) Production of IL-12 in the culture supernatant. The asterisks indicate that differences between PBS and other treatments are statistically significant. **p < 0.01, ***p < 0.001. Reproduced with permission.\(^{44}\) Copyright 2018, Elsevier.
(PI3K\(_g\)) inhibitor, can switch macrophages from the immuno-suppressive M2-like phenotype to the pro-inflammatory M1-like state. Due to the synergistic effect of hypoxia alleviation via oxygen-generating reduction of MnO\(_2\) and PI3K\(_g\) inhibition, the nanoplatform achieved concurrent downregulation of PD-L1 expression and polarization of tumor associated macrophages (TAMs), suggesting effective tumor immunotherapy. Fig. 2c–e show that MnO\(_2\)-embedded nanoregulators resulted in a significant down-regulation of HIF-1\(_{\alpha}\) and PD-L1 expressions via immuno-fluorescence staining and western blotting assay.

The residual HIF-1\(_{\alpha}\) will further dimerize with HIF-1\(_{\beta}\) to form HIF-1 and activate tumor invasion-related signaling molecules like VEGF and matrix metalloproteinase 9 (MMP-9). The Yuan group demonstrated that the expression of tumor invasion-related signaling molecules (VEGF and MMP-9) was obviously decreased under down-regulation of HIF-1 by the introduction of MnO\(_2\) nanoparticles, which helps to reduce the risk of metastasis.\(^{52}\)

2.3 Reprogramming TAMs

Normally, macrophages can be divided into two subtypes, the classically activated pro-inflammatory (M1) phenotype (attacking invaders) and the alternatively activated anti-inflammatory (M2) phenotype (healing damages).\(^{69}\) It has been revealed that M2 phenotype TAMs support tumor progression via secretion of pro-tumor cytokines such as IL-10, and thereby promote tissue repair and tumor recurrence including angiogenesis, matrix remodeling, and immunosuppression.\(^{70,71}\) In contrast, M1 phenotype TAMs exhibit classic antitumor activity by producing multiple cytotoxic cytokines like tumor necrosis factor alpha (TNF-\(\alpha\)) and IL-6.\(^{72,73}\) Another strategy of adjusting immuno-suppressive TME by MONs and their derivatives is to reprogram TAMs via the transformation of the M2 to the M1 phenotype.\(^{69}\) A typical example developed by the Liu group showed that polyethylene glycol (PEG)-modified chlorine e6 (Ce6)/doxorubicin (DOX)-loaded hollow manganese dioxide (H-MnO\(_2\)-PEG/C&D) was prepared for combination therapy favoring antitumor immune responses (Fig. 3a and b).\(^{46}\) Here, the tumor hypoxia was relieved by MnO\(_2\)-mediated decomposition of endogenous H\(_2\)O\(_2\) inside tumors, which not only improved the efficacy of chemo-PDT, but also reversed the immunosuppressive TME to favor anti-tumor immunity post treatment. Under an oxygen atmosphere and 660 nm light irradiation, both free Ce6 and Ce6-loaded MnO\(_2\) nanoparticles exhibited high cytotoxicity.
However, the phototoxicity of free Ce6 was found to be significantly lower, while the cell killing efficiency of Ce6-loaded MnO2 nanoparticles remained at high levels under hypoxic conditions. What's more, as displayed in Fig. 3c, compared with the untreated group, tumors in mice with i.v. injection of H-MnO2-PEG/C&D plus light irradiation showed markedly elevated macrophage infiltration within tumors from 0.8% to 8%, together with reduced population of M2 phenotype TAMs from 40% to 9.5% among all the TAMs. Furthermore, in the H-MnO2-PEG/C&D-injected mice under light exposure, the secretion of IL-10 in the supernatant of tumor lysates also decreased by 3.77 times (Fig. 3d); however, the content of IL-12 in tumors presented a significant increase (Fig. 3e), both suggesting remarkable M2 to M1 polarization within tumors.

2.4 Restraining tumor angiogenesis

The formation of blood vessels that supply nutrients and oxygen is very important for solid tumor growth and progression. Therefore, based on the vital function of abnormal vessels in the TME, anti-angiogenic therapy has become a widely studied therapeutic strategy. Sorafenib, as an anti-angiogenic agent, has been approved by the US Food and Drug Administration (FDA). However, hypoxia can result in severe resistance to sorafenib. To overcome this challenge, Chang et al. prepared NanoMnSor, which is composed of a MnO2 core and a lipid-poly(lactic-co-glycolic) acid (PLGA) shell loaded with sorafenib (Fig. 4). The authors confirmed that this nanomaterial is not only able to promote macrophage polarization toward the immunostimulatory M1 phenotype, but also leads to sorafenib-induced decrease in tumor vascularization by generating abundant O2. Additionally, the NanoMnSor treatment can reverse hypoxia-induced cell invasion and epithelial-to-mesenchymal transition (EMT), and thus significantly inhibit tumor metastasis. In brief, this study demonstrates the potential of oxygen-generating NanoMnSor, efficiently boosting anti-angiogenic therapy and immune responses. A similar result was also reported by He et al. and
bovine serum albumin (BSA)-modified sorafenib/Ce6-co-loaded MnO₂ nanocomposites were obtained to relieve immunosuppression during long-term anti-angiogenesis therapy.62

2.5 Lactic acid exhaustion

Lactic acid, the most ubiquitous component of TME, is ceaselessly produced by the aerobic glycolysis of tumor cells for energy production. It has been confirmed that the mass of lactic acid is adverse to antitumor immunotherapy.78–80 To this end, the Zhang group proposed an innovative intra/extracellular lactic acid exhaustion strategy for synergistic antitumor metabolic therapy and ICB therapy.48 Firstly, red blood cell membrane (mRBC)-encapsulated 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO, glycolysis inhibitor)/lactate oxidase (LOX)-co-loaded hollow MnO₂ (HMnO₂) nanoparticles (denoted as PMLR) were synthesized as presented in Fig. 5a. In this work, LOX was introduced to catalyze the oxidation reaction of lactic acid with O₂, and the byproduct could be further catalyzed by HMnO₂ to generate O₂ for lactic acid oxidation (Fig. 5b–d). At the same time, the intracellular nanosystem can further release the glycolysis inhibitor to intercept the source of lactic acid and ATP supply for antitumor metabolic therapy. The data showed that the PMLR nanosystem could ceaselessly remove lactic acid, and then bring about an immunocompetent TME and notably enhance the efficiency of anti-PD-L1 therapy.

3. ICD induction

The dying tumor cells after drug treatment can generate damage-associated molecular patterns (DAMPs), including CRT, heat shock proteins (HSP70 and HSP90), HMGB1, and ATP, which can further stimulate the engulfment of dying tumor cells by immature DCs, resulting in DC maturation.81–84 This functionally peculiar type of cell death is termed “ICD”.85,86 As mentioned

![Fig. 4 Schematic representation of the mechanism by which NanoMnSor can serve as a theranostic anticancer agent. Oxygen generated from NanoMnSor, which is composed of a MnO₂ core and a lipid-poly(lactic-co-glycolic) acid (PLGA) shell loaded with sorafenib, alleviates tumor hypoxia and modulates the TME. (1) NanoMnSor treatment overcomes hypoxia-driven resistance to sorafenib and reduces cancer cell proliferation in hepatocellular carcinoma (HCC). (2) NanoMnSor ameliorates the immunosuppressive TME by reducing the hypoxia-induced tumor infiltration of TAMs. (3) NanoMnSor suppresses metastasis in HCC by attenuating hypoxia-induced epithelial-to-mesenchymal transition (EMT). (4) NanoMnSor treatment enhances antiangiogenic effect of sorafenib via hypoxia alleviation. (5) NanoMnSor potentially serves as a magnetic resonance imaging (MRI) contrast agent (CA). Reproduced with permission.47 Copyright 2020, American Chemical Society.]
above, manganese oxide-based nanoplatforms play a subsidiary role in assisting PDT-induced ICD by creating a favorable micro-environment. However, the intrinsic immunogenicity and ICD induction of MONs are still unclear. Until recently, as far as we know, our group first demonstrated that MONs can intrinsically induce ICD via CDT and ferroptosis inductions due to highly efficient CD^15OH generation and GSH depletion capabilities. After that, the Yu group also found that MnO$_2$ nanoflowers (MNFs) can efficiently induce ICD in cancer cells under nutrient-deprived conditions (Fig. 6a and b). The two studies help to break the stereotype of the subsidiary role of MONs in cancer immunotherapy. As exhibited in Fig. 6c and d, compared with the groups treated with full media, amino-acid-deprived (AA$^-$) media and MNFs + full media, MNFs + AA$^-$ media-incubated 4T1 cells showed significantly increased exposure level of ecto-CRT and ATP/HMGB1 release acting as “eat me” signals and “find me” signals, respectively. Next, the underlying mechanism of the MNF-mediated ICD under nutrient-deprived conditions was further studied and the authors explained that MNFs in nutrient deficiency might elicit the autophagy machinery that in turn contributes to the induction of ICD. Based on these findings, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a drug that specifically targets endothelial cells and damages the tumor vasculature system (blood vessels) to cut off nutrient supply, was chosen for synergistic cancer starvation-immunotherapy in combination with MNFs.

4. PTT activation

It has been proved that PTT facilitates the in situ release of tumor-derived protein antigens (TDpas) and other immune stimulating substances by eliciting the immunogenic death of autologous tumor cells, which can trigger a robust immune response. MnO$_2$ nanomaterials with intense absorption in the near infrared region possess photothermal conversion capability and can be used for PTT. Hence, MONs are capable of activating antitumor immunity by releasing autologous antigens via PTT induction. A recent example reported by Fan et al. reveals this process well. As shown in Fig. 7a, thermosensitive poly(N-isopropylacrylamide-dopamine methacrylamide) (PND) nanogels were synthesized firstly and then MnO$_2$ nanoparticles (MnO$_2$ NPs) were formed in the network of the PND nanogels (MnO$_2$@PND) via an in situ mineralization process.
The photothermal effect of MnO₂ NPs induced ICD to release mass autologous TDPAs under near-infrared irradiation. At the same time, an injectable hydrogel like an “antigen reservoir” can capture the antigens generated by PTT due to the existence of catechol groups, and thus achieve lasting anti-tumor immune response (Fig. 7b). Under continuous 808 nm laser irradiation (1.0 W cm⁻²) for 10 min, the temperature changes (∆T) of PBS and PND dispersions were smaller than 8 °C, while the ∆T of the MnO₂@PND dispersion (100 mg mL⁻¹) achieved was up to 34 °C, suggesting that the photothermal effects were originated from MnO₂ NPs. The photothermal conversion efficiency (η) of MnO₂@PND was determinate to be 33.2%. Furthermore, under 808 nm laser irradiation, MnO₂@PND-treated cells showed the highest level of CRT exposure and the highest release of HMGB1. In vivo study demonstrated that the obtained MnO₂@PND nanogels eliminated the primary tumors completely and effectively suppressed distal/rechallenged tumors, showing great potential in PTT-induced immunotherapy.

5. Activating the STING pathway

The cyclic GMP-AMP synthase (cGAS)/STING pathway, as an endogenous mechanism in an innate immune system, can activate antitumor immune responses through the spontaneous secretion of type I interferon (IFN-I) and pro-inflammatory cytokines. Recently, increasing attention has been paid to STING-mediated stimulation of the innate immune system because it is very important for spontaneous induction of antitumour T-cell immunity. Meanwhile, it should be noted that Mn²⁺ ions in the cytoplasm as an alarmin and an activator in innate immune system, have potential to activate intracellular STING pathway. Inspired by this, Hou et al. constructed doxorubicin (DOX)-loaded and phospholipid (PL)-coated amorphous porous manganese phosphate (APMP) nanoparticles (PL/APMP-DOX NPs). After systemic administration, this nanomaterials release DOX for inducing DNA damage and Mn²⁺ to augment cGAS/STING activity, and thus promote DC maturation, cytotoxic T lymphocyte (CTL) induction, natural killer cell (NK) recruitment, and type I IFN/TNF-α expressions, indicating that this innate immunity nanoactivator has the potential to amplify antitumor immunotherapeutic efficacy. Using a similar principle, Sun and co-workers developed a straight and versatile strategy for in situ STING-activating vaccination (ISSAV) by converting a primary tumor towards a therapeutic STING vaccine. For this purpose, they prepared cancer cell membrane (CM)-encapsulated MnO₂ NPs and immobilized photothermal agent (DiR) (CMM-DiR). As presented in Fig. 8a–d, on the one hand, CMM-DiR induced the exposure of numerous TAAs by hyperthermia, thus transforming the primary tumors into TAAs. On the other hand, CMM-DiR realized burst release of Mn²⁺ to activate the STING pathway and build a therapeutic STING vaccine in conjunction with TAAs. Accordingly, the primary tumor possessed the dual functions as adequate antigens and STING agonist depots. Additionally, the degradation of MnO₂ also generated numerous O₂ and increased the pH value of TME, which was more conducive to
the infiltration of the T lymphocyte. In short, the ISSAV proposed by this paper brings inspiration for cancer vaccinations and personalized immunotherapy.

6. Immunoadjuvant

Immunoadjuvant refers to a substance which is injected into the body prior to the antigen or after mixing with antigen, which can non-specifically change or enhance the body’s specific immune response to the antigen, and thus plays an adjuvant role. Alum adjuvant, as the most widely used immunoadjuvant, has been applied in dozens of vaccine products. However, the long-term retention effect and possible toxicity of aluminum adjuvants limit their future applications. Finding appropriate and safe immunoadjuvants has always been a major challenge. Inspired by biodegradable properties and the biosafety of MONs, our group first reported that MnO$_x$ nanospikes (NSs) can serve as immunoadjuvants for cancer nanovaccine-based immunotherapy (Fig. 9a–d). Compared with traditional immunoadjuvants, using MnO$_x$ as a immunoadjuvant has the following merits: (a) MnO$_x$ is biodegradable, avoiding in vivo long-term retention; (b) manganese is one of the essential elements in the human body and MnO$_x$ possesses good biosecurity; (c) MnO$_x$ can modulate immunosuppressive TME by the production of O$_2$ and the consumption of H$^+$; (d) MnO$_x$ NSs with large mesopores structures show high antigen loading capacities; (e) MnO$_x$ can intrinsically induce ICD via CDT and ferroptosis induction, triggering dying tumor cells to generate DAMPs; (f) MnO$_x$ NSs display TME-responsive magnetic resonance (MR)/photoacoustic (PA) dual-mode imaging capacities. Moreover, MnO$_x$ NSs prepared by a fast aqueous phase synthesis method at room temperature avoids complicated nanomaterial modulation, which is beneficial for future applications. Next, in vivo tests further testified that the corporate administration of adjuvants and antigens showed the best DC maturity, T-cell activation, cytokine secretion and tumor growth inhibition in comparison with adjuvants and antigens alone, indicating that MnO$_x$ can act as an immunoadjuvant to enhance in vivo specific immune responses. Very recently, Chen’s group also reported a new nanovaccine comprising the Receptor-Binding Domain (RBD) of the spike protein and the manganese...
nanoadjuvant (MnARK) for inducing potent protective immunity against the novel coronavirus.104 They found that even at a 5-fold lower antigen dose and with fewer injections, mice immunized with the MnARK vaccine displayed stronger neutralizing abilities against the infection of the pseudovirus (≈270-fold) and live coronavirus (≥8-fold) in vitro than that of Alum-adsorbed RBD vaccine (Alu-RBD). In brief, the above two works reveal that MONs as new-style immunoadjuvants are feasible and possess broad prospects in vaccines.

7. Conclusions and outlook

In this review, we have summarized the recent advances in MONs and their derivatives for cancer immunotherapy. According to the different mechanisms for boosting immunotherapy, major highlighted topics are introduced, such as the adjustment of an immunosuppressive TME by generating O₂ (including O₂-sensitized PDT, PD-L1 expression downregulation, reprogramming tumor-associated macrophages, restraining tumor angiogenesis and lactic acid exhaustion), ICD induction, PTT activation, activation of the STING pathway and immunoadjuvants for nanovaccines.

In short, MON-based nanoplatforms like an all-rounder are able to dramatically elicit anti-tumor immune responses in multiple ways, which have the most obvious advantages over other nanomaterials in cancer immunotherapy. Hence MONs can be designed to promote immune responses and therapeutic outcomes simultaneously through several mechanisms. For complex immune systems and TME, it is very important for obtaining an ideal treatment effect. Additionally, we should also pay more attention to the latest discoveries about MONs in immunotherapy, including activation of the STING pathway and serving as immunoadjuvants for nanovaccines. Do manganese adjuvants become the next generation of adjuvants like classical aluminium adjuvants? It may be an important one of the future research directions. Furthermore, some other challenges still persist and remain to be solved, like large-scale production, potential toxicity analysis, in-depth study of MON-related immune mechanisms and so on. It is very urgent and highly desired that multidisciplinary cooperation will promote a more rapid clinical translation of MONs. We hope
that this review will provide a holistic understanding about MONs and their application in cancer immunotherapy, and thus pave the way to the bench to bedside translation in the future.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

This work is financially supported by the Science and Technology Cooperation Project between Chinese and Australian Governments (2017YFE0132300), the National Natural Science Foundation of China (Grant No. NSFC 51720105015, 51929201, 51922097, 51772124 and 51872282), the Key Research Program of Frontier Sciences, CAS (YZDY-SSW-JSC018), the Postdoctoral Innovative Talents Support Program (BX2021360) and the Youth Innovation Promotion Association of CAS (Grant No. 2017273).

References

Journal of Materials Chemistry B

Review

43 X. Liu, Y. Zhou, W. Xie, S. Liu, Q. Zhao and W. Huang, Small Methods, 2020, 4, 2000566.

View Article Online

