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Supramolecular luminescent materials in water have attracted much interest due to their excellent

tunability, multi-color emission, and environment-friendly behavior. However, hydrophobic

chromophores are often affected by poor solubility and aggregation-caused quenching effects in

aqueous media. Herein, we report a water-phase artificial light-harvesting system based on an AIE-type

supramolecular polymer. Specifically, dispersed nanoparticles in water were prepared from an AIE

chromophore-bridged ditopic ureidopyrimidinone (M) based supramolecular polymer with the assistance

of surfactants. By co-assembling the hydrophobic chromophores NDI as energy acceptor into the

nanocarriers, artificial light-harvesting systems (M–NDI) could be successfully constructed, exhibiting

efficient energy transfer and high antenna effects. Furthermore, the spectral emission of the system

could be continuously tuned with a relatively small number of acceptors. This work develops an efficient

supramolecular light-harvesting system in water, which has potential applications in dynamic

luminescent materials.
Introduction

Solar energy harvesting and transfer are key points during the
photosynthesis process.1 The natural light-harvesting systems
(LHSs) are complex supramolecular assemblies, in which large
numbers of chromophores need to be densely stacked for high
photosynthetic efficiency.2 In articial systems, scientists
usually designed special scaffolds to accommodate chromo-
phores to avoid aggregation-caused quenching (ACQ) and
enhance Förster resonance energy transfer (FRET) between
chromophores.3 Such scaffolds are ranging from macrocycles,4

DNA,5 and cyclic peptides.6 The introduction of aggregation-
induced emission uorogens (AIEgens) into this research eld
greatly simplies the construction process of special scaffolds.7

Specically, the strategy of combining AIEgens and self-
assembly, referred as supramolecular assembly-induced emis-
sion (SAIE), provides new motivations to develop new AIE
materials.8 Inspired by the above concept, a lot of AIE-type light-
harvesting materials by mimicking photosynthesis have been
fabricated for different applications, such as uorescent
probes,9 luminescent materials,10 bio-imaging,11 and
photocatalysis.12
ngzhou University, Changzhou, 213164,
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the Royal Society of Chemistry
Supramolecular polymers, driven by non-covalent interac-
tions between monomeric building blocks, show outstanding
reversibility, degradability, and stimuli-responsiveness, exhib-
iting broad potential applications in environmental and mate-
rials science.13 Supramolecular polymerization is an excellent
strategy for constructing LHSs, which not only can assemble
chromophores together to pack tightly but also can enhance
SAIE of the chromophores.14 Among different types of non-
covalent interactions, ureidopyrimidinone (UPy)-based
quadruple hydrogen bonding (QHB) displays great potential
on account of its strong binding constant and self-comple-
mentary.15 In our previous studies, QHB has been used by us to
construct various supramolecular polymers16 and other supra-
molecular architectures.17 In this work, we present the
construction of a light-harvesting system by employing QHB
supramolecular polymers with the AIE property.

The building block of the supramolecular polymer is a xed
tetraphenylethylene (FTPE)18 group bridged ditopic UPy mono-
mer (M), which also served as the energy donor (Fig. 1). Herein,
the FTPE group endows M with SAIE behavior, while the UPy
motif provides M with supramolecular polymerization capa-
bility via QHB. As a result, M can form AIE-type supramolecular
polymers in organic solvents, such as chloroform or dichloro-
methane (DCM). Furthermore, the supramolecular polymer can
be further self-assembled into water-dispersed NPs by using the
mini-emulsion method based on the surfactant cetyltrimethyl
ammonium bromide (CTAB). Moreover, by loading the synthe-
sized dye NDI as energy acceptor to the NPs, an articial LHS in
RSC Adv., 2021, 11, 30041–30045 | 30041
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Fig. 1 Schematic illustration of the construction of light-harvesting NPs based on M and NDI.
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aqueous media could be successfully fabricated. Due to the
FRET process between M and NDI, the aqueous NPs were
endowed with efficient light-harvesting capability and tunable
emission. In our system, each component plays multiple roles
to minimize the complexity of the system. For example,M is not
only a supramolecular polymerization unit, but also a light
harvesting antenna and energy donor. CTAB not only acts as
a surfactant, but also mimics membrane lipids in natural
photosynthesis. NDI has the dual-role of collecting energy from
M and achieving long-wavelength emission simultaneously.
Therefore, the M–NDI system appeared to be an interesting
light-harvesting platform with great potentials in luminescent
materials and bioimaging agents.
Results and discussion

Monomer M can be obtained by condensation of A and B in dry
CHCl3 at room temperature (Scheme 1 and Fig. S7–S9, ESI†).
Precursor A was synthesized according to our previous report,19
Scheme 1 Synthesis of M.

30042 | RSC Adv., 2021, 11, 30041–30045
while intermediate B was prepared according to literature
report.20 The association of M monomers through QHB was
conrmed by 1H NMR. The characteristic N–H signals occurred
in the down eld region (between 10.0 and 14.0 ppm) indicates
that the UPy units are dimerized by QHB (Fig. S7, ESI†).
Through the logarithmic curve of specic viscosity versus
monomer concentration, it can be found that the slope (2.02)
has not changed (Fig. S1, ESI†), indicating that M can form
a supramolecular polymer when the concentration is very low
(<2 mM).

In order to study the AIE property of M, the uorescence
spectra of M in mixed hexane/DCM solutions were studied. It
showed no emission when M was dissolved in the pure good
solvent DCM (Fig. 2a). When increasing the poor solvent hexane
to 92%, a moderate emission was shown. As hexane increased
to 98%, the intensity of the spectrum shows an enhanced
increase. By utilizing a mini-emulsion approach, we fabricated
water-dispersed NPs from supramolecular polymer of M. 50 mL
solution of M ([M] ¼ 10 mM) in DCM was added to an aqueous
Fig. 2 (a) Fluorescence spectra of M versus hexane fraction in DCM/
hexane mixtures. (b) Fluorescence spectra of molecule M in DCM and
NPs ofM in water upon excitation at 390 nm. Insets: the Tyndall effect
of (1)M in DCM and (2) NPs ofM in water; photographs of (3)M in DCM
and (4) NPs ofM in water under UV lamp irradiation. [M] ¼ 5 � 10�5 M.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 DLS data of (a) NPs ofM and (c) NPs ofM–NDI in water at 25 �C.
TEM images of (b) NPs of M and (d) NPs of M–NDI ([M] ¼ 5 � 10�5 M,
[NDI] ¼ 5 � 10�7 M).
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solution of CTAB (10 mL, [CTAB] ¼ 1 mM), followed by ultra-
sonication for 30 min to produce the NPs. The obtained NPs
solution of M ([M] ¼ 5 � 10�5 M) showed an obvious Tyndall
effect, suggesting the existence of large number of nano-
assemblies (Fig. 2b, inset (2)). By contrast, in the solution of
M in DCM no Tyndall effect was observed, indicating thatMwas
fully dissolved in the solvent (Fig. 2b, inset (1)). Moreover, the
Fig. 4 (a) Normalized absorption spectra (solid line) and emission spectr
NPs of M in water with different concentrations of NDI, [M] ¼ 5 � 10�5

10�5 M, [NDI] ¼ 5 � 10�7 M. (d) Energy transfer efficiency (FET) and ante

© 2021 The Author(s). Published by the Royal Society of Chemistry
solution of M NPs displayed a bright yellow uorescence under
a UV lamp, suggesting that the SAIE behavior was occurring
(Fig. 2b, inset (4)). The absolute uorescence quantum yield of
the sample was measured to be 2.91% (Fig. S3a, ESI†). On the
contrary, the solution of M in DCM has no uorescence under
a UV irradiation (Fig. 2b, inset (3)). Meantime, the uorescence
measurements of M in different forms showed that there is no
emission spectrum in DCM, but there is a strong emission
spectrum in aqueous media (Fig. 2b). The strong emission ofM
NPs in water is owing to the restrict motion of FTPE group
inside the NPs. These above results indicate that supramolec-
ular polymeric NPs of M have been successfully constructed
with the help of CTAB in water.

The size and morphology of the NPs were further charac-
terized by dynamic light scattering (DLS) and transmission
electron microscopy (TEM). DLS of the M NPs showed that they
are well-dened nanoaggregates with the Z-average hydrody-
namic diameter of 180–200 nm (Fig. 3a). The TEM image of the
MNPs displayed a regular spherical morphology with diameters
about 150 nm, good agreement with the DLS data (Fig. 3b). The
hydrophobic micro-environment provided by CTAB and the
entangled supramolecular polymers resulted in the efficient
encapsulation of the acceptor molecules, which could be loaded
into the NPs by mini-emulsifying them simultaneously with M.
The morphology of the obtained M–NDI NPs was then also
characterized by DLS and TEM (Fig. 3c and d). Compared with
the M NPs, the NDI-loaded one also exhibit well-dened
a (dashed line) of M and NDI, respectively. (b) Fluorescence spectra of
M. (c) Fluorescence decay profiles of NPs of M and M–NDI, [M] ¼ 5 �
nna effect (AE) at different M/NDI ratios.

RSC Adv., 2021, 11, 30041–30045 | 30043
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spherical shape, but are larger in size, which might be due to
the hydrophobicity of the acceptor uorophore.

The light-harvesting properties of the NDI-loaded NPs were
further investigated. As shown in Fig. 4a, the absorption wave-
length of NDI overlaps well with the emission peak of the M
NPs, making the possibility of efficient FRET between the M
(donor, D) and NDI (acceptor, A). Upon the addition of NDI to
the NPs, when excited at 390 nm the uorescence intensity ofM
at 565 nm dramatically decreased. Meantime, the emission
peak of NDI at 640 nm continuously increased (Fig. 4b). More-
over, a remarkable change in uorescence color from yellow to
red was observed (Fig. 3c, inset). Furthermore, the absolute
uorescence quantum yield of M–NDI (A/D ¼ 1%) exhibited
a remarkable increase (13.35%, Fig. S3b, Table S2, ESI†), which
might be because in this ratio NDI can harvest most of the
excitation energy from M and subsequently emit as much as
possible. To further conrm the occurrence of the energy-
transfer process, time-resolved uorescence spectroscopy was
investigated. The uorescence lifetime of the M NPs (Fig. 3c)
was tted as a double exponential decay, which showed s1 ¼
1.61 ns and s2 ¼ 6.61 ns when monitored at 565 nm (Fig. S2,
Table S1, ESI†). On the contrary, in the M–NDI system (A/D ¼
1%), the uorescence lifetimes decreased to s1 ¼ 0.60 ns and s2
¼ 4.87 ns respectively when monitored at 565 nm, indicating
that the excitation energy was indeed transferred from the
donorM to the acceptor NDI and that theM–NDI LHS had been
successfully fabricated. In order to evaluate the capability ofM–

NDI LHS, both the energy-transfer efficiency (FET) and the
antenna effect (AE) were further investigated. Notably, FET

represents the absorbed donor energy by the acceptor compared
to the overall excitation energy of the donor; while AE is the
amplication factor of the acceptor uorescence when exciting
the donor instead of directly exciting the acceptor. The FET of
such system was 58.2% when co-assembling 1% NDI with M
(Fig. S4 and Table S3, ESI†). Notably, the FET values gradually
decreased with the decrease of NDI ratio (Fig. 4). Moreover, an
AE value of 16.0-fold emission enhancement was observed when
Fig. 5 (a) The CIE chromaticity diagram of photoluminescence color
changes by varying the ratios of chromophores. (b) The fluorescence
spectra of M in water with different concentrations of NDI. (c)
Photographs of NPs in water with different M–NDI ratios. [M] ¼ 5 �
10�5 M.

30044 | RSC Adv., 2021, 11, 30041–30045
M/NDI ¼ 500/1 (Fig. 4, Fig. S5, and Table S4, ESI†), indicating
that the obtained M–NDI NPs can serve as an efficient LHS in
aqueous media. We also carried out a control experiment. By
employing the precursor A which bears FTPE core but without
UPy group as antenna and energy donor (Fig. S6, ESI†), very
poor energy transfer efficiencies and antenna effects for the
system were observed, indicating that the quadruple hydrogen
bonded supramolecular polymer are crucial for fabricating the
LHSs.

The efficient M–NDI LHS creates a promising method to
tune the uorescence of the NPs in aqueous media. The system
shows a ratio-dependent emission color change. As shown from
the CIE 1931 chromaticity diagram (Fig. 5a), the NPs of M
locates in the yellow area without the energy acceptor NDI.
However, with the ratio of NDI increased from 3000 : 1 to
100 : 1, the uorescence color of the LHS in water changed from
yellow through orange to bright red gradually (Fig. 5b and c),
indicating that an efficient energy transfer process had
happened from the energy donorM to the energy acceptor NDI.
It should be noting that this energy-transfer materials can be
stored in water for a long time (1–2 weeks) without photo-
bleaching. The reason for this is not only due to the efficient AIE
property induced by FTPE group in M, but also because of the
high delity of the QHB supramolecular polymers which was
wrapped and stabilized by CTAB micelles.
Conclusions

In summary, we have fabricated an efficient articial energy-
transfer light-harvesting system in aqueous media based on
supramolecular polymer. The supramolecular polymer was
constructed by an FTPE group bridged ditopic UPy molecule M
through quadruple hydrogen bonding. With the assistance of
CTAB, the supramolecular polymers can further form stable
nanoparticles in water by mini-emulsion method. By co-
assembling hydrophobic uorescent dye NDI simultaneously,
an efficient articial light-harvesting system M–NDI could be
successfully constructed based on FRET process. By taking the
advantages of SAIE, the ratio of donor and acceptor in nano-
particles could be easily controlled and the emission of the
materials could be easily tuned with efficient energy-transfer
and antenna effect. The composition of the system is rela-
tively simple, and each module shows multi-functions, which
provides the possibility for practical application. Therefore, the
aqueous light-harvesting system developed here may have
potential applications in dynamic luminescent materials and
bio-imaging area.
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