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Information gleaned from crystal structure databases has previously been reported on several

pharmaceutically relevant compounds to make knowledge-based predictions of polymorphism. Access to

a large dataset that is highly relevant to the molecules under study is considered to be essential for these

studies. We present a survey of the GlaxoSmithKline (GSK) database of small molecule crystal structures

containing X-ray diffraction results from GSK and heritage companies from the past 40 years for this

purpose. These structures were collected at different stages of the pharmaceutical pipeline and are not

limited to marketed products. We found that the GSK database matches the CSD Drug Subset in terms of

crystal descriptors, but not in the diversity of solid form space. Applying the hydrogen bond propensity

model to GSK polymorphs has demonstrated the increased value in using combined published and

proprietary data sources to build the training data sets. Within GSK, we have also shown the value of

applying knowledge-based predictions in the de-risking of active pharmaceutical ingredient forms of

development candidates. The work described here illustrates the importance of database curation to

improve the accuracy of the results obtained.

Introduction

Pharmaceutical materials scientists choose from the different
accessible solid states for each active pharmaceutical
ingredient (API) to develop a solid form, which exhibits the
properties and behaviour most suitable to produce a
successful drug product. The selection of this final solid form,
and the crystallisation route to produce it, are key milestones
in the drug development process. Solid state properties
critical to the success of the final dosage form are locked in
at this stage and these features contribute to determining the
safety, manufacturability and bioavailability of the drug.1

Single component free drugs, salts, hydrates, co-crystals and
occasionally even solvates are potentially viable options and
may be considered for selection if those solid forms have the
solid state properties required.2 It is also well known that
many APIs spontaneously crystallise in multiple arrangements
to form polymorphs.3 In polymorphs the molecular

components are the same but the overall arrangement is not,
differing in some combination of the molecular
conformation, hydrogen bonding and overall packing. These
changes can be subtle, significant or fall somewhere in
between. As a result, polymorphs of the same API will have
different physical properties, including features key to the
successful development of that API such as solubility,
dissolution rate, chemical and physical stability, melting
point and habit.3–5 Indeed, this is of such importance that
solid form screening is a regulatory requirement for new
drugs, to provide confidence in the safety and efficacy of the
product.6

Typically, experimental solid form screening to identify the
thermodynamically stable and relevant metastable polymorphs
are performed initially during the pre-formulation phase of drug
development, with more comprehensive screens being carried
out later on. The solid form which is most stable under
conditions relevant to the manufacturing and storage of the
drug product is typically preferred for development, so a wide
range of crystallisation conditions and storage protocols are
commonly explored to identify the most suitable stable solid
form for each candidate.2,7 Despite these efforts, unexpected
new polymorphs can still appear, even in well-screened systems.
Notable examples such as ritonavir8 and rotigotine9,10 show that
the late discovery of a new stable polymorph can result in
significant challenges to providing a safe and efficacious drug
product.2,11,12 Similar bioavailability issues were also
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encountered with other polymorphic drugs such as
chloramphenicol palmitate, oxytetracycline, carbamazepine,
atorvastatin calcium, axitinib, phenylbutazone, and rifaximin.13

It is clear that the best chance of finding the most stable
solid form comes from designing the widest experimental
screen possible, but it is not feasible to explore every possible
experimental condition in a reasonable timescale. It is
therefore crucial to understand the potential solid form
landscape for each candidate and to use that information to
do the right subset of experiments that will allow the
isolation of the stable form for every case.

One route for the investigation of solid form landscapes is
the application of structural chemistry knowledge derived
from the Cambridge Structural Database (CSD), which is a
collection of every organic, organometallic and metal–organic
crystal structure published and now totals over one million
entries. Data mining these structures using bespoke solid
form informatics tools14–16 developed by the Cambridge
Crystallographic Data Centre (CCDC) allows a deeper
understanding of the solid form, helps identify weaknesses
that may relate to the risk of alternate forms, reveals
opportunities for intervention and provides validation and
reassurance. Solid form informatics is not a replacement for
experimental work but a complementary tool which allows a
more informed experimental design to probe risks and
opportunities. Solid form informatics is now well established
and widely used within the pharmaceutical industry in drug
development.17–20

By evaluating a structure in the context of existing
knowledge in the CSD, it is relatively straightforward to
identify both common and unusual structural features. As
examples, an unusual conformation of a molecule, ring or
functional group, a geometrically unusual hydrogen bonded
interaction, or an unusual donor–acceptor combination may
suggest that alternative crystal forms without these
compromises could potentially exist.14–16 Statistics and
comparative CSD analysis can give answers easily and quickly
which can influence and advance the decision-making
process with respect to risk mitigation in solid form
selection.21

To draw useful conclusions from structural informatics
analyses the available training data must be relevant to the
compound of interest. Bryant et al.,22 as part of the advanced
manufacturing supply chain initiative (AMSCI) funded
advanced digital design of pharmaceutical therapeutics
(ADDoPT) project created the CSD drug subset (CSD-DS)
consisting of every published small molecule crystal structure
containing an approved drug molecule (8632 entries). A
strong overlap in molecular features including size and
flexibility between this drug subset and in-house crystal
structure data23 for AstraZeneca and Pfizer was demonstrated
providing support for the use of statistical informatics
models.

As the application of the models described here increases
it is valuable to demonstrate the relevance of the publicly
available data to modern drug candidates. This allows the

accuracy of these models to be assessed for pharmaceutical
solid form development. We report herein the first global
analysis of the GSK database of small molecule crystal
structures. Unlike the CSD-DS, the structures have been
obtained across the various stages of the pharmaceutical
pipeline and were originally collected to answer structural
problems. As such, the database is not limited to marketed
products but also includes medicinal chemistry leads,
candidate molecules, intermediates and impurities. As of
November 2019, there were 2473 entries in the database. It is
worth noting that as the structures were collected to answer
specific problems, there is no guarantee (indeed it is highly
unlikely) that all solid-state forms of a particular material are
contained within the database. In addition, the morphology
of many of the crystals studied was accurately recorded in the
GSK database, with many samples having been routinely
face-indexed.

Our analysis described here: offers insights into the
difference between proprietary and public domain data;
illustrates the relevance of including both CSD-DS and
proprietary structural data to build models for GSK
candidates; and demonstrates the structural informatics
methodology to explore the polymorph landscape of real
pharmaceutical candidates.

Results and discussion
Some definitions

In the remainder of this paper we use several terms to
describe different classes of crystal structure. The names of
different classes of structure have been a subject of debate24

and so we feel it is useful to clarify the exact definitions of
these terms used in this publication (Table 1). As we wish to
compare our results to those of Bryant et al.,22 our definitions
are broadly based on those in the previous paper.

Note that, other than free drugs, no class of crystal
structure is mutually exclusive; indeed, it is possible to have
a crystal structure that is in all the other classes at once. For
completeness whilst discussing definitions, we use the term
API in this paper to describe the biologically active substance
of a structure.25 This term is not necessarily interchangeable
with the free drug, since the API will include any salt counter
ions or co-crystal co-formers.

Identifying crystallisation families and assessing
polymorphism in the GSK database

Detailed manual analysis of the GSK database of 2473 crystal
structures identified eight structures that were deemed either
irrelevant (e.g. octasulfur) or to have sufficient errors as to
warrant their exclusion. In addition, eight structures were
found to be exact duplicates of other entries (i.e. the same
cell constants and R1 value) and a further 40 were adjudged
to be less preferred determinations of the same structure. All
of these were omitted, leaving 2417 structures for further
analysis. These criteria are consistent with those used in the
preparation of the CSD-DS.22
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In this phase of the analysis, we built crystallisation
families from the database. Any solid forms that might
reasonably be produced from a solvent crystallisation of an
API were regarded as being in such a family. To illustrate
this, an API in isolation or a hydrate and/or solvate of this
would be in a crystallisation family but a different salt for
instance would not; that salt would have its own family.
These groupings of solid state forms and their
interconversion either by crystallisation or desolvation are
important to understand in a pharmaceutical context since
the hydrated and solvated forms are often not desirable; a
better understanding of these families could help improve
the risk profile of APIs under development.

Crystallisation families in the GSK database were
identified by sorting and grouping the chemical formulas
and then manually inspecting the entries to ensure the
same API was present in each case. The initial intention
was to do this in an automated fashion by pulling together
entries with the same canonicalised SMILES for the highest
molecular weight component. This was not a successful
approach owing to a number of factors, the most notable
being the inability to discern the stereochemistry present.
Recognising different enantiomers and diastereomers
proved difficult without manual intervention, as did
separating structures that were single enantiomers versus
racemates. Although care was taken to ensure
stereochemical differences were taken into consideration,
potential atropisomers were considered to be the same
entity. This was on the basis that information on the
conversion rate was not available within the systems being
investigated. SMILES were helpful to identify molecules with
the same heaviest component formula and different atomic
connectivity but even this was hampered as it is dependent
on the correct and identical assignment of bond orders in
the database. The discovery that some of the entries within
the GSK database were in error or inconsistent was a
disappointment but perhaps one of the greatest learnings
from this exercise. As a result of this work, a detailed list of
database corrections has been drawn up.

Based on the above methodology, 137 crystallisation
families were identified in the GSK database. Fig. 1A shows
the count of families in the database based on the type of

members present in each, where an API could be a free drug
or salt (there are no co-crystal examples). We explain the
content of this Venn diagram in more detail by means of an
example. The intersection of all four sets contains the
number 5. This means there are five crystallisation families
in the database that contain at least: one structure of the API
alone, one hydrated form, one solvated form and one
hydrate/solvate. Note that an individual hydrate/solvate does
not occur at the intersection of hydrates and solvates since
this diagram describes the whole family, not individual
structures. By far the largest subset are the families that are
composed of only API polymorphs (43 families), followed by
the API and solvates (30 families) and the API and hydrates
(17 families). These proportions are not representative of
family compositions generally, since the search for
polymorphic structures and their differences is a primary

Table 1 Definitions of terminology

Term Definition

Free drug A structure containing a single type of component. Note that this classification can include structures with multiple
symmetry independent copies of a given molecule in the asymmetric unit; vis-à-vis any value of Z′.
It includes zwitterionic systems. This term has been applied whether the material is formally a proven
drug in its own right or not i.e. includes all organics, such as intermediates etc.

Salt A structure where any of the components are charged (not including zwitterions)
Hydrate A structure containing more than one type of component where at least one of the components is a water molecule
Solvate A structure containing more than one type of component where at least one of the components is a solvent

molecule other than water. A solvent was defined as being a liquid whose role is to dissolve the drug
in any stage of the synthetic process

Co-Crystal A structure containing more than one type of component where at least one of these components
is charge-neutral and not a solvate molecule, a water molecule or the free drug

Fig. 1 A. Distribution of crystallisation families in the GSK database B.
Percentage distribution of categories of hydrogen bonding interactions
in polymorphs.
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deliverable for X-ray diffraction studies in GSK. Since the
largest fraction of the crystallisation families corresponded to
polymorphic systems, these were reviewed separately in more
detail. The polymorphs were identified using the procedure
outlined in the Experimental section. Based on this analysis,
141 structures or 5.83% of the GSK database were
polymorphs, which is notably smaller than the proportion
reported in the CSD-DS (approximately 25%).22 The
difference is likely to be a result of the different primary
deliverables behind the two databases.

The hydrogen bonding interactions in polymorphic
structures were obtained using a python script (see
Experimental section for details). Fig. 1B contains a
breakdown of these interactions. The percentage of
compounds with hydrogen bonding interactions that are
identical in the polymorphs (in terms of the identity of
donors and acceptors) is 39.7%. The hydrogen bonding
arrangement for polymorphs is different in 47.5% of cases.
The difference in hydrogen bonding across polymorphs
supports the use of the CCDC's hydrogen bond propensity
tool,26–28 in which the identification of possible polymorphs
is based on the likelihood of obtaining different hydrogen
bonding arrangements. The limitation of the HBP
methodology is that polymorphs with the same hydrogen
bonding cannot be distinguished from one another. The
finding presented here based on the GSK database is that
polymorphs with different hydrogen bonding are sufficiently
common to support the use of the HBP tool in the
pharmaceutical industry. 12.8% of the polymorphs were
found to have no hydrogen bonding interactions.
Comparison of the percentage of polymorphs from the GSK
database that exhibit hydrogen bonding (87.2%) with the
percentage of the total number of GSK structures (all 2417
structures) that are involved in hydrogen bonding (77.3%)
indicates agreement with the analysis done by Cruz-Cabeza
et al.,29 where it was found that compounds that are able to
hydrogen bond have higher tendency to form polymorphs
than those which do not. Despite the fact that the group of
polymorphs that do not exhibit hydrogen bonding are not as
frequently observed as those with hydrogen bonding, these
should not be overlooked and developments in the CCDC's
solid form tools (such as the aromatic analyser and the full
interaction maps) are beginning to address these cases.30,31

Another factor relating to polymorphism is chirality. It
was found by Cruz-Cabeza et al.29 that chiral molecules are
less prone to polymorphism than their achiral counterparts.
The sum of chiral arrangements were computed for
molecules of polymorphs (71 molecules). It turned out that
only 49.3% of the polymorphs have chiral arrangements, as
compared to all unique molecules of the GSK database (2009
molecules) where 59% have chiral arrangements. Hence,
these percentages agree with the work of Cruz-Cabeza et al.
suggesting that chiral molecules are less prone to
polymorphism; however, this percentage might not be
representative of the actual polymorphs obtained in
experimental screens.

Differences in the solid form distribution between the GSK
database and CSD-DS

The solid forms present in the whole GSK database were
analysed (see Experimental section for details). The Venn
diagram in Fig. 2 shows considerable differences between the
solid form distribution of the GSK database (2416 crystal
structures are shown as one structure is a clathrate that could
not be classified into the Venn diagram) and the CSD-DS
(8632 crystal structures).5 58.1% of crystal structures in the
GSK database are free drugs compared to 19.6% in the CSD-
DS. The percentage of forms that might be considered as
salts in the GSK database (23.1%) is approximately half of the
percentage in the CSD-DS as a whole (45.5%). Looking more
closely at the GSK salts, these could be sub-divided into three
categories, where the drug-like component was cationic
(19.5%), anionic (3.1%) or neutral (0.5%). The first two
categories are easy to understand and exemplified by
hydrochloride or sodium salts respectively. The final category
is less intuitive and results when the drug-like molecule is
neutral but other components present are charged. In many
of these cases there is chelation of the neutral species around
a metal cation. It should be noted that in some of the salt
cases, the largest organic component of a structure was not
the drug. Where possible, the classification into the above
three categories was based on a knowledge of the drug
component from internal registry databases. If this
information was not available, it was assumed that the
largest organic component was the drug.

The different balance between the free drug and salt
structures in the two databases is highly likely to be a result
of the GSK collection including pharmaceutically relevant
molecules from all parts of the pipeline, not just marketed
products: medicinal chemistry samples generated as part of
lead optimisation studies would rarely be prepared as salts
for instance. Another marked difference between the GSK

Fig. 2 Venn diagram detailing the solid form distribution of the GSK
database in comparison to the CSD-DS. Forms could be either free
drugs, salts, co-crystals, hydrates, solvates, or a combination of these.
Each of these forms is displayed by their percentage of occurrence in
each database.
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database and the CSD-DS is the number of co-crystal
structures (0.3% vs. 31.0% respectively). Historically, GSK has
not actively prioritised the development of co-crystal APIs
and this is reflected in the numbers. The above co-crystal
definition removes a number of GSK structures from this
category, in the case of salts where the drug-like molecule is
present as both a charged and a neutral molecule.

The total number of hydrated structures is found to be
17.2% in GSK and 20.4% in the CSD-DS. Despite the overall
differences in the composition already discussed, these
numbers for the hydrates are reasonably similar. This might
suggest that hydration as a phenomenon is not unduly
influenced by whether the pharmaceutical material is
charged and/or multicomponent. This seems a little
counterintuitive at first, as one might expect the salts more
prevalent in the CSD-DS to be more hydrated since they are
charged.7 There is a slight bias in that direction in the
figures, but it is not as pronounced as was expected and
more work may be needed to rationalise this finding further.
By comparison, there is a bigger difference in the number of
solvates found in the GSK and CSD-DS, 15.1% and 10.0%
respectively. This difference again probably comes down to
the composition of the two databases, mainly due to GSK
strategy, where questions (particularly from Discovery) could
often be answered using solvates whereas their existence in
marketed drugs would be seen as a clear disadvantage.

The crystal descriptor space of the GSK database and the
CSD-DS

R-Factor distribution of the GSK database and the CSD-
DS. In order to assess the quality of the small molecule
crystal structures in the GSK database, the R-factor of each
entry in the database was extracted. The R-factor for the
whole GSK database without duplicates was compared to the
CSD-DS without duplicates. The density, which is the relative
frequency of R-factor distributions of the two databases are
very similar as shown in Fig. 3, with comparable median
values: 4.66 for the GSK database and 4.70 for the CSD-DS. A
Mann–Whitney test, comparing the GSK and CSD-DS
distributions was performed, and the differences in the
medians were not shown to differ significantly (p-value =
0.48). We can conclude that, based on this broad metric,
small molecule crystal structures in the GSK database and
the CSD-DS are of similar quality.

Space group and Z′ distribution of the GSK database and
the CSD drug subset. This analysis aims to quantify the
percentage of crystal structures that occupy twenty two of the
most common crystallographic space groups (Fig. 4A).32

There are differences in the distribution of the top three
ranking space groups for each of these databases. For the
GSK database and the CSD-DS, the top ranking space group
is the P21/c (30.8% and 26.3% respectively) whereas the
second ranking space group for the GSK database is P21
(17.5%) and the third is P212121 (17.3%); the second ranking
for the CSD-DS is P1̄ (23.3%) and third ranking is P21
(12.4%). Clearly GSK's database exhibits more examples of
the Sohncke space groups, which can support the packing of
chiral molecules, whereas the CSD-DS has more of the
centrosymmetric space groups composed of achiral
molecules and racemates.

The relative Z′ distribution profiles obtained for both
databases are shown in Fig. 4B. By far the most frequent
structures are those with Z′ = 1 in both the GSK database
(77.8%) and for the CSD-DS (72.5%). There are far more
structures containing symmetry (Z′ < 1) in the CSD-DS by
comparison to the GSK database. In particular, Z′ = 0.5
represents 12.06% for the CSD-DS but just 2.40% for the GSK
database. Closer inspection of Z′ = 0.5 structures in the CSD-
DS is illuminating. 98% of structures that are Z′ = 0.5 in the
CSD-DS have more than one distinct component in the
asymmetric unit, so the high observation in the CSD-DS of Z′
= 0.5 structures compared to GSK is an artefact of the high
number of co-formers that often straddle centres of symmetry
in the CSD set, and how Z′ is defined in these cases. The Z′ =
2 structures for the GSK database (17.05%) are slightly
greater than the CSD-DS (12.53%). Both these findings fit
with the larger number of Sohncke space groups in GSK,
since inversion symmetry in these are impossible and chiral
molecules tend to mimic a centrosymmetric arrangement33

and this requires two independent molecules to achieve.
Otherwise the broad Z′ profiles are similar for both
databases.

Fig. 3 R-Factor distribution for small molecule crystal structures in
the GSK database and the CSD-DS.

Fig. 4 A. Percentage distribution of space groups. B. Z′ for small
molecule crystal structures in the GSK database and the CSD-DS.
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Crystal and molecular descriptor distributions. Close-
packing is expected to lead to more energetically stable
structures34 and this feature can be assessed by looking at
packing coefficients, which is a ratio of occupied volume out
of the total cell volume for a crystal system. Given that the
packing coefficient of a structure is temperature dependent,
the mean, standard deviation and median were calculated for
the small molecule crystal structures at different
temperatures in the GSK database (Table S1 in ESI†). The
mean and median values at different temperatures are
essentially the same given the size of the standard deviation
for the mean, suggesting that the temperature effect is of
little significance to the natural variation according to the
structure's packing. Hence, it was felt justified to plot the
packing coefficients at all temperatures as one distribution
for the GSK database and to compare this with the CSD-DS.

The packing distributions of these two databases are very
similar as shown in Fig. 5A and also agree well with those
values originally reported for aromatic molecules by
Kitaigorodskii (0.6–0.8).35 The difference in the median
values for these packing coefficients were investigated with a
Mann–Whitney test and shown to be significant (Table S2†).
This analysis uses highly relevant datasets to confirm the
typical range of packing coefficients for drug-like crystal
systems. This allows future low density materials to be
identified clearly as a risk early in development, further
allowing mitigating development activities to be targeted.

As part of the packing coefficient analysis, an attempt was
made to understand structures at the extremes (in the tails)
of the GSK distribution. The most obvious reason for
structures with low packing coefficients was the use of
SQUEEZE procedures.36 These have not generally been used
for GSK structures (with a preference for modelling
disordered solvent whenever possible) but in some cases
there was no alternative. A ConQuest search was performed
on the GSK database in an attempt to identify structures that
used SQUEEZE and to see the effect of this on the packing
coefficient. Fourteen structures were identified as using
SQUEEZE, with nine of these have packing coefficients
between 0.46 and 0.59, which is within the tail of the
distribution.

To gain a better understanding of GSK structures with low
packing coefficients the percentage void volume density
distributions (relative ratio) were obtained for both databases
as illustrated in Fig. 5B. 9.40% of the CSD-DS has a non-zero

percentage void volume (see Experimental section for the
definition used to calculate void space) whereas the GSK
database has a higher percentage (15.39%) of structures with
a non-zero percentage void volume, which could be attributed
to the CSD-DS containing a larger proportion of marketed
products in which the drug substances have optimised solid
state properties.

The number of hydrogen bond pairs (HBP) in each
structure was computed with a script written in Python (refer
to Experimental section for details). The HBP distributions of
the two databases are very different as shown in Fig. 5C,
where the distribution of the CSD-DS is shifted towards
higher HBP values. The mean value for the CSD-DS is 6,
compared to just 3 in the GSK database. This could be
explained by the predominance of free drugs in the GSK
database (58% of the total solid form distribution) in
comparison to the CSD-DS that has fewer of these forms and
more salts, which are generally capable of exhibiting more
hydrogen bonding interactions. The lack of co-crystals in the
GSK entries may also have an impact here. Another
interesting finding is that 22.7% of the structures in the GSK
database exhibit no H-bonding, which is a much higher
percentage than the CSD-DS structures where only 4.8% of
the structures do not display any H-bonding.

For the molecular descriptor space analysis, unique
molecules in the GSK database (2099 molecules) and the
CSD-DS (778 molecules) were considered in an attempt to
draw out relations to observed crystal descriptors. The
increased percentage of GSK structures with no H-bonding
interactions in comparison to the CSD-DS comes in line as
well with the log P distribution (Fig. 6A), where for the GSK
database it is shifted towards higher values, with a mean
value of 3.17 ± 2.24, indicating that the molecules are more
hydrophobic in nature in comparison to the CSD-DS with a
mean value of 1.79 ± 2.65.

Furthermore, the molecular weight, flexibility, and
branching density distribution profiles were obtained for

Fig. 5 (A). Packing coefficient distribution. (B) Percentage void volume
density distribution (C) number of hydrogen bonding pairs (HBP)
distribution. For small molecule crystal structures in the GSK database
and the CSD-DS.

Fig. 6 (A). LogP (B) molecular weight and (C) flexibility (flexibility =
int(100*rotatable bonds/total bonds) (D) extent of branching is walk
count, which is the return of the number of walks of order 2 that start
and end at the same atom, density (relative ratio) distribution for small
molecules crystal structures in the GSK database and the CSD drug
subset.
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both databases (Fig. 6B–D respectively). Flexibility is defined
as integer * (100*rotatable bonds/total bonds), where the
rotatable bonds percentage distribution were obtained for
each database. Branching37 is the return of the number of
walks of order 2 that start and end at the same atom which
is an indication of the branching within a molecule. The
mean MW value for the GSK molecules is 399 g mol−1 as
compared to the CSD-DS molecules, which is 324 g mol−1.
The mean value of the flexibility for GSK molecules is 14 ± 8
as compared to the CSD DS molecules 15 ± 13. Finally, the
mean branching value for GSK molecules is 61 as compared
to CSD DS molecules, which is 41. It is noted that Mann–
Whitney tests were performed on each of the GSK and CSD-
DS distributions in Fig. 6 showing no significant difference
in flexibility but a significant difference in each of the others
(see Table S2 in ESI†). The molecular weight and extent of
branching distribution profiles for the GSK dataset are
shifted towards higher values, which might contribute to the
decreased values of the packing coefficient distribution.38

Flexibility does not correlate with these observed trends since
the medians were not shown to differ significantly. However,
it has been previously reported that crystalline molecules,
tend to have low molecular weight and generally are simpler
structures with a lower number of rotatable bonds. On the
contrary, uncrystallisable molecules tend to be more
structurally complex and flexible molecules which makes
them harder to crystallise.39 It is noted as well that the walk
count/branching descriptors are used in machine learning
methods for the prediction of crystallisability of small
organic molecules.40,41

The benefits of combining datasets when building
knowledge-based models of hydrogen bond propensity

The hydrogen bond propensity (HBP) model approach is used
for predicting the likelihood of hydrogen bonding between
donors and acceptors in a crystal structure, helping in
rationalising stable and metastable crystalline forms.26,42 The
model implements logistic regression and uses training data
obtained with a survey method based on the CSD system that
works by categorising the hydrogen bonds and extracting
model parameter values employing descriptive structural and
chemical properties from three-dimensional organic crystal
structures. Predictions are then formed based on two-
dimensional features of the input test structure.

In this section, we show the importance of having a good
coverage of functional groups when using HBP to build a

reliable model. An interesting example that illustrates this is
the molecule, GW825964X. We investigate whether the
statistical analysis of hydrogen bonds in the publicly
available CSD-DS alone is sufficient to predict the likelihood
of the hydrogen bonding for GW825964X, or if there is value
in incorporating the proprietary data in the GSK database.
The GSK database contains a much smaller number of
structures but they are highly relevant, and it often includes
close analogues from the same chemical series. Training
datasets were built from GSK, CSD-DS, and combined GSK/
CSD-DS data to build three comparative models, which were
used to evaluate the performance and predictive power of
these models.

The HBP model performance was evaluated using
different training data sets of GSK, CSD-DS, and a
combination of the two by comparing the area under the
curve (AUC) (Table 2). The GSK database exhibits a larger
dataset than the CSD-DS training set when mined for relevant
structures. However, two functional groups were not well
represented using either the GSK training set or the CSD-DS
alone, whereas a combination of GSK and CSD-DS ensured
that all functional groups are well represented. This indicates
there is value in collecting more structures for compounds
containing certain functional groups that are poorly
represented in the CSD-DS, in order to build better models
for compounds containing these features in the future.

Plots of the mean hydrogen bond (H-bond) co-ordination
versus mean H-bond propensity were generated by the HBP
models using the three different types of training sets (GSK,
CSD-DS, and GSK + CSD-DS) for two polymorphs of
GW825964X and are shown in Fig. 7A–C respectively. Using
two of the training sets (GSK and GSK + CSD-DS) as shown in
Fig. 7A and C respectively, the more stable form exhibits
higher mean H-bond co-ordination and mean H-bond
propensity values. With the CSD-DS training set alone
(Fig. 7B), the more stable form exhibits a lower H-bond
propensity value.

The cause for the lower propensity in the CSD-DS data set
is the low representation of the amide carbonyl acceptor
compared to the sulfonyl acceptor. The more stable structure
contains a hydrogen bond to this carbonyl, whereas the less
stable structure contains a hydrogen bond to the sulfonyl.
The model underestimates the likelihood of the hydrogen
bond to the carbonyl as compared to the sulfonyl (see Tables
S3–S8†).

In the GSK training set there are also two
underrepresented groups, but neither form hydrogen bonds

Table 2 HBP model approach. Area under the curve (AUC), functional group representation, and data size of different training sets of GSK, CSD-DS,
and a combination of GSK and CSD-DS

Polymorphs of GW825964X

Training set AUC Number of well represented functional groups Data size

GSK 0.93 Two not well represented 729
CSD-DS 0.90 Two not well represented 450
GSK + CSD-DS 0.92 All well represented 1179
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in the two structures, and so the relative impact of these
being under-represented in the model is small (see Tables
S9–S11 ESI†).

The coordination score does not change from model to
model as these are based on pre-calculated information from
the CSD. The model only considers the donors or acceptors
in isolation, and so are less affected by a lack of data in the
CSD for the more chemically specific functional groups used
to build the training dataset. The scores differ here (see

Coordination_Score Table S12 in ESI†) because the amide
carbonyl is generally more likely to accept the observed
number of hydrogen bonds than the sulfonyl carbonyl in the
two structures.

This analysis highlights the benefit of combining our in-
house database with the CSD-DS to build more statistically
certain HBP models. This shows the value of incorporating as
much relevant data as possible into knowledge based
modeling methods.

Assessing crystal morphology in the GSK database

Morphology is a key quality attribute for processing and
manufacturing unit operations (e.g. filtration, flow and
agglomeration) in pharmaceutical manufacturing.43,44

Delivering consistent particles with acceptable mechanical
properties is therefore also an essential consideration in the
form selection process. Database driven prediction that could
lead to purposeful modification of morphologies would be a
valuable tool, so the morphology data available in the GSK
database was assessed in some detail. The morphologies of
the small molecule crystals captured in the GSK database
were first categorised into 1D (e.g. needle, rod), 2D (e.g. plate,
lath) and 3D (e.g. prism, block). Further details of how this
classification was achieved can be found in the ESI.† As
shown in Fig. 8A, the morphology has not been captured for
just over half of the GSK database, in many cases for
structures that were collected before the introduction of
crystallographic information files. Whilst the number
missing morphology information was high, a study of the
remaining 45% was felt valuable since in many cases the
information available was very reliable, including full face-
indexing. Returning to the morphology categories defined
above, there is a higher percentage proportion of 2D (38.3%)
and 3D (39.9%) crystal structures in the GSK database
compared to 1D (21.8%) (Fig. 8B). It is worth noting that this

Fig. 7 Plot of mean H-bond co-ordination versus mean H-bond
propensity for the models using (A) GSK training set, (B) CSD-DS
training set, and (C) GSK+CSD-DS training set for GW825964X
(structure X_2947A1 is experimentally more stable than structure
X_2915A1), min. donor co-ordination P(n) value set to 0.05 and min.
acceptor co-ordination P(n) value set to 0.05.

Fig. 8 (A) Percentage distribution of morphology for small molecule
crystal structures in the GSK database. (B) Count of hydrogen bond
dimensionality of small molecule crystal structures with 1D, 2D, and
3D morphology. (C) Relationship between the HDB (discrete, chains,
sheets and networks) of the structure with the external crystal
morphology.
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distribution is representative of the crystal structures that
have been collected and the lower percentage of the 1D
crystals could be partly attributed to the fact that, from an
experimental point of view, good diffraction data are
generally harder to collect from these.

The hydrogen bond dimensionality (HBD) (see
Experimental section: protocol for generating molecular
descriptor distributions) is a useful descriptor to assess the
networks formed, and its distribution has been investigated
in relation to the morphology of the small molecule crystals
studied as part of the GSK database. This analysis aims to
seek a correlation between the dimensionality of hydrogen
bonding networks and the morphology of the crystals. HBD
could be categorised as: discrete (when molecules do not
possess hydrogen bonds or hydrogen bonds are formed in
discrete units without any long-range extension; chains
(when there are chains of hydrogen bonded molecules);
sheets (when there are hydrogen bonded sheets); and
networks (with extensive interconnected hydrogen bonding
in all directions). As shown in Fig. 8C, for the 1D and 2D
morphologies, the HBD has a similar distribution, with the
chains HBD being the most frequent, followed by discrete,
sheets and finally, networks. This does not indicate any clear
correlation existing between HBD and morphology. For the
3D morphology crystal structures however, the discrete HBD
is clearly the most frequent followed by chains, sheets, then
networks. This is clearly different and warrants further
consideration. The count of 3D structures with discrete HBD
was shown to be different from the count of non-3D
structures with discrete HBD and we used a chi-squared test
to show that this was significant. This is not only due to a
lack of any hydrogen bonding because for discrete HBD
structures hydrogen bonds are found in 51.7% of 3D
structures and in similar proportion of 45.3% of all
structures.

One hypothesis is that the lack of long range hydrogen
bonding in these discrete structures leads to the greater
influence of van der Waals' interactions and more even
growth in all directions, subject to BFDH considerations.
Work to investigate this further might include a closer
inspection of the unit cell dimensions and indeed the
difference between observed and BFDH calculated
dimensions. Having accurately face-indexed crystals in GSK
would help in this regard.

Conclusions

In this work the first global analysis of the GSK database of
small molecule crystal structures has been reported. The
survey has demonstrated some notable differences between
this proprietary dataset and the public Cambridge Structural
Database-drug subset (CSD-DS). Both databases are of a
historic nature and may no longer represent typical
molecules under active consideration today and neither
dataset is comprehensive due to the different reasons for
data collection and publication. Given this the subsets are as

complete as possible, bearing in mind quality considerations.
In the GSK database there is a predominance of crystal
structures of free drugs, with a reduced number of salts and
almost no co-crystals. Despite this, the number of hydrates is
similar and solvates are more prevalent in the GSK
structures.

Crystallisation families of structures containing the same
API have been identified in the GSK database and structures
for related polymorphs identified. The number of the latter
are generally quite low however since most GSK structures
have arisen from individual requests where a single structure
was used to answer the problem in hand. The resulting study
of the hydrogen bonding in these polymorphs was very
informative. A large number of polymorph pairs in the GSK
dataset have been shown to have different hydrogen bonding
arrangements. This is highly encouraging for the use of the
CCDC's HBP tools for the prediction of alternative
polymorphs.

The R-factor distribution for the GSK database and the
CSD-DS were comparable. On the basis of this broad metric,
the structures in the GSK database and the CSD-DS are
regarded as being of a similar quality. A greater difference
was observed when considering the space groups and Z′
values in the two databases. The GSK database favors
Sohncke space groups that can contain chiral molecules and
consequently, there are fewer Z′ = 1/2 and more Z′ = 2
structures.

A similar distribution of packing coefficients is found in
the two databases. Structures treated with the SQUEEZE
procedure occupy the lower coefficient GSK tail. The number
of hydrogen bonded pairs in the GSK database are much
lower than the CSD-DS whereas percentage void volume,
molecular weight, and flexibility density distributions are
higher for the GSK database, which are factors that could
contribute to the shift of the packing coefficient distribution
towards lower values for the GSK database.

A study of the morphology of GSK's crystals involved
segregating these into 1D, 2D and 3D categories. The 3D
morphology crystals, which are most suited for the
pharmaceutical industry due to their enhanced handling and
processing characteristics, were the most abundant in the
GSK database. However some caution is required when
considering this as they are also the easiest to measure
experimentally. Perhaps more interestingly, an analysis of the
hydrogen bond dimensionality shows that structures with no
directionality (hence where van der Waals' forces play a larger
role) clearly favor the 3D morphologies.

The work described in this paper greatly increases the
understanding of the contents of the GSK database and
demonstrates the value of this small number of chemically
relevant additional structures in models assessing polymorph
stability. It has highlighted the need for large amounts of
accurate and relevant crystal structure data to build more
reliable hydrogen bond propensity (HBP) models, and it
demonstrates the value of using them in de-risking API forms
of pharmaceutical candidates. In order to extract useful
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information in this way, particularly using automated scripts,
the contents of the database need to be carefully curated to
ensure consistency. The work also emphasises the advantages
of the database such as the accurate recording of the
morphology of many of the crystals that have been routinely
face-indexed. This would allow for the successful analysis of
the factors impacting the formation of crystal structures with
different morphologies, which would also be invaluable to
the development of modelling and prediction algorithms for
crystal habits and strategies for habit modification. Overall,
the data analysed could be used for building more reliable
models for the prediction of materials properties and
improvement of the performance of GSK materials, aiding
crystal engineering and de-risking materials selection earlier
in the drug development process to the benefit of patients.

Experimental

Initial attempts to inspect the internal GSK database using
python scripts produced some unexpected results and
manual inspection of these revealed some logical but
computationally ‘hard to fix’ issues. The level of
crystallographic interpretation needed to get robust results
was such that a decision was made to fully review the GSK
database contents before carrying out the data mining
activities described herein. Although the work related to
duplicates, polymorphs and crystallisation families outlined
below yielded the final lists of these, the analysis of the
initial script-produced output speeded up the crystallographic
decision making in many cases, as the necessary structural
comparisons had already been carried out.

Building a master spreadsheet

To document the review and extract some of the information
presented in this paper, a master spreadsheet was prepared
using Microsoft Excel for Office 365 (evolving version
numbers). The starting point for this spreadsheet was to
output tab delimited relevant information for all the GSK
database entries using CCDC ConQuest [all references to
CCDC ConQuest and CCDC Mercury relate to version 2020.1
(Build 280 197)]. Additional columns were added to record
the solid form, crystallisation family and polymorph
information. A final column was used to log future
corrections needed for the internal database. A line number
based on the order of the entries at the start of the work was
also included on each row. This was summed at the bottom
of the file to flag if any lines in the spreadsheet were
accidentally deleted during the manual editing processes that
were to follow. In the next step of the spreadsheet
preparation, Excel was used to sort the file contents based on
the chemical formula column. Once sorted automatically in
this way, the spreadsheet had to be manually sorted again
since the component containing the highest number of
carbon atoms was not always the first listed in the formula.
With the sorting completed on the component containing
the highest number of carbon atoms, the spreadsheet was

inspected line by line. If the sorted component formula was
unique then clearly this structure could never be considered
as a duplicate, a polymorph or part of a crystallisation family.
In such cases, the solid form information (see below) was
completed in the spreadsheet and the result was briefly
viewed in CCDC Mercury to sanity check the entry before
continuing to the next row. On the basis of the sanity check,
eight structures in the database were considered not worthy
of further consideration, either in terms of their non-
pharmaceutical content or their incomplete or inappropriate
modelling. These eight structures were removed from further
analysis and ultimately will be removed from the GSK
database.

Identifying duplicates and polymorphs

If the inspection of the spreadsheet showed two or more
entries having the same formula with respect to all the
components present, work was carried out to establish the
relationship between the structures. A generally trivial step
was checking whether the chemical connectivity was the
same. Clearly if not then the structures represent different
materials and the entries are unrelated. If the connectivities
were the same, the next thing considered were any chiral
centres present. To be duplicates or polymorphs, the
materials would have to display the same stereochemistry:
careful separation of diastereoisomers, single enantiomers
and racemates (with due consideration to the space group)
significantly reduced the number of related structures. If the
entries were still judged to be the same entity (and now also
considering the centrosymmetric structures as well) then a
decision was taken on whether the entries represented
duplicate structures or polymorphs. Eight exact duplicates
(i.e. the same structure entered into the database twice) were
easily identified by observing identical cell constants,
R-values, molecule overlays and packing similarities. One of
each pair of these structures was marked for removal from
the database and not used for data mining. Separating
redeterminations of the same structure and polymorphs was
harder and was carried out by considering the following in
CCDC Mercury: the space group and unit cell constants; a
visual and a scripted (compare_loaded_crystals_by_pattern.
py) comparison of the simulated XRPD patterns; the
molecule overlay; and the packing similarity. If the decision
was that the structures were duplicates (redeterminations
effectively) they were kept in the database for completeness
but only one of each was considered for the data mining
described below. This led to the removal of a further 40
structures from the analysis. Generally speaking (unless there
was a compelling reason otherwise) the structure with the
lowest R-value was the one kept for further study. All
polymorph structures were kept for analysis.

Identifying crystallisation families

In a crystallisation family, the API has to be the same but the
overall formula could differ in terms of the amount of solvent
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and/or water that is present. Checking that APIs were the
same was done analogously to that just described for
duplicates and polymorphs. Once all the structures
containing a particular API were identified, the make-up of
the family was assessed. If a family contained one or more
API only structures then the family was considered part of
the API set of Fig. 1A. If it also contained one or more
hydrate structures, it was also in the Hydrates set of Fig. 1A
and so on. Note that this broad classification does not
distinguish between the amount of water in a hydrate or the
amount (or number of types) of solvent in a solvate.

Identifying hydrogen bonding interactions in polymorphs

The hydrogen bonding interactions in polymorphic
structures were obtained using a python script
(hbp_dims_calculation.py) where a mol2 file of the
polymorphs was used as input. The interactions were
classified as the same, different or no interactions according
to the method described in ESI.†

Assessing crystal morphology in the GSK database

The morphology distribution was obtained by the habit
description of each GSK entry in the CIF file extracted from
the in-house database using the crystal_habit.py script. The
morphology of the small molecule crystal structures was
categorised as 1D, 2D, and 3D according to the criteria
described in the ESI.† The hydrogen bond dimensionality
and hydrogen bonding interactions were computed from a
mol2 file of the GSK structures using hbp_dims_calculation.
py.

Preparation of solid form distributions

Our work described here was done in comparison to the work
done by Bryant et al. assessing the solid form space of all the
CSD-DS including duplicate values, stereoisomers and
families etc. (8632 structures; currently only 8614 are
retrieved due to changes in the identifiers of the
CSD_Drug_Subset_cleanup.gcd file). All the statistics for the
CSD-DS are reported as published by Bryant et al.22 The GSK
entries were manually categorised (using the definitions of
free drugs, salts, co-crystals, hydrates and solvates outlined at
the start of the Results and discussion section) in the above
spreadsheet based on the chemical formula and where
necessary, viewing the database entry using CCDC Mercury.
The salts were subdivided in the spreadsheet depending on
whether the drug-like component was cationic, anionic or
neutral. In salts with two organic fragments, if it was unclear
which represented the drug component, GSK registration
information was taken into consideration. If such
information was not available, the largest organic fragment
was considered the drug-like component. The resulting solid
form distribution was extracted from the master spreadsheet.

Crystal descriptor space for the GSK database

The final list of 2417 structures was used for this analysis.
Crystal descriptors were computed for the GSK database
(without the duplicates and identical structures as already
described) and were compared to the CSD-DS without
duplicates (best_representative_full_subset_updated.gcd file).
The R-factor to assess the quality of the two databases was
obtained using the crystal_r_factor.py script. The older
structures in the GSK database have been assigned an
arbitrary R-value of 10 are not considered in the analysis. The
space group and Z′ distributions of the GSK database and the
CSD drug subset were obtained using the Space_group_GSK.
py and crystal_z_prime.py scripts. Packing coefficients and
temperature (K) were extracted for the GSK database (using
crystal_packing_coefficient.py and entry_temperature.py) in
order to compute the mean, median, and standard deviation
values at different temperatures to investigate the
temperature effect and its significance in relation to the
natural variation according to the structure's packing. The
packing coefficient distribution was also obtained for the
CSD-DS. SQUEEZEd GSK structures were found using a CCDC
Conquest search with the word SQUEEZE with the all text
option. Void volume density (using default settings: grid
spacing 0.7 and probe radius 1.2 Å) and hydrogen bonding
pair distributions for the GSK database and CSD-DS were
obtained using the crystal_void_analysis.py and
hbp_dims_calculation.py scripts. Mann–Whitney statistical
tests which included statistical analysis on each of the GSK
and CSD-DS distributions were performed using the
Mann_Whitney.py script. The chi2 statistical test was
performed for the morphology data using the chi2_statistics.
py script. Histogram and KDE plots were generated for the
CSD-DS and GSK structures using the matplotlib 3.1.0 (ref.
45) and seaborn 0.9.0 packages.46

Protocol for generating molecular descriptor distributions

For the molecular descriptor space analysis, we considered
2099 unique molecules in the GSK database and 778
molecules in the CSD-DS. SMILES were generated for all
structures and are matched with the SMILES of APIs/Free
drugs obtained with Helium for Excel 4.0.29.0 (an in-house
plug-in powered by ChemAxon)47 based on the GSK Registry
Number. The SMILES of all GSK compounds were
canonicalised using Helium for Excel then MW, flexibility,
logp distributions, and the sum of chiral atoms and bonds
were generated using Helium for Excel. The extent of
branching/walk counts for the heaviest components in each
structure, were generated from a mol2 file using the
walk_count.py script. The same protocol was followed for the
CSD-DS molecules (best_representative_molecule_updated.
gcd). KDE plots were generated for CSD-DS and
GSK molecules using matplotlib and seaborn packages. A
Mann–Whitney test, which included statistical analysis on
each of the GSK and CSD-DS distributions, was performed to
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ensure that the differences in the medians of distributions
were statistically significant.

Hydrogen bond propensity analysis on GW825964X
polymorphs

The hydrogen bond propensity (HBP) tool in CCDC Mercury
was applied on two GW825964X crystal structures with the
identifiers, X_2915A1 and X_2947A1. The model output can
be found in the ESI.† As part of selecting suitable fragments,
the default fragments were output from the HBP tool as
CCDC ConQuest template (cqt) files. Then each fragment file
(Table S13†) was used in a CCDC search for related structures
containing relevant and similar fragments. The results of
these searches were used to build training sets for each of
the polymorphs from GSK data, CSD-DS data, and a
combination of GSK and CSD-DS data (Table 2). Logit models
prepared from each training set (Tables S9–S11†) were built
in the HBP tool and, along with coordination scores
generated for the functional groups present (Table S12†),
were used to prepare a propensity prediction tables and
charts (Tables S3–S8,† Fig. 7).

Python scripts

The python scripts listed in this section can be found in the
ESI.†
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