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simulations†

Nicholas F. Francia, a Louise S. Price b and Matteo Salvalaglio *a

The control of the crystal form is a central issue in the pharmaceutical industry. The identification of

putative polymorphs through Crystal Structure Prediction (CSP) methods is based on lattice energy

calculations, which are known to significantly over-predict the number of plausible crystal structures. A

valuable tool to reduce overprediction is to employ physics-based, dynamic simulations to coalesce lattice

energy minima separated by small barriers into a smaller number of more stable geometries once thermal

effects are introduced. Molecular dynamics simulations and enhanced sampling methods can be employed

in this context to simulate crystal structures at finite temperature and pressure. Here we demonstrate the

applicability of approaches based on molecular dynamics to systematically process realistic CSP datasets

containing several hundreds of crystal structures. The system investigated is ibuprofen, a conformationally

flexible active pharmaceutical ingredient that crystallises both in enantiopure forms and as a racemic

mixture. By introducing a hierarchical approach in the analysis of finite-temperature supercell

configurations, we can post-process a dataset of 555 crystal structures, identifying 65% of the initial

structures as labile, while maintaining all the experimentally known crystal structures in the final, reduced

set. Moreover, the extensive nature of the initial dataset allows one to gain quantitative insight into the

persistence and the propensity to transform of crystal structures containing common hydrogen-bonded

intermolecular interaction motifs.

Introduction

Computational crystal structure prediction (CSP) methods rely
on lattice energy calculations to identify and rank putative
polymorphic structures. In the final stages of state-of-the-art
CSP workflows, lattice energy rankings are refined by
performing expensive calculations involving high quality,
periodic electronic structure calculations and introducing
entropic effects through free energy calculations.1–5 While the
quality of the methods employed in the final refinement and
ranking stage is constantly improving, their computational
cost is typically prohibitive and approaches to achieve a
rational reduction of the number of putative structures
predicted by lattice-energy based methods (CSP_0) are
needed.4,6 Both in industry and academia, CSP methods are
becoming increasingly popular given their success in
predicting experimental crystal forms starting from only the

molecule geometry.4,6–10 For the vast majority of these
methods, the different crystal packings are generated ignoring
thermal motion and assuming that the lattice energies are a
reasonable approximation of the thermodynamic stability of
experimental forms. These approaches, identified as CSP_0,11

have been widely used in the 6th CCDC CSP blind test,12

successfully reproducing the experimental forms. A limitation
in using local minima of the lattice energy landscape as
candidate polymorph structures is that the lattice energy
landscape is rugged, and its local minima grossly outnumber
the experimentally known polymorphs. This limitation makes
it impossible to distinguish possible new polymorphs from
artefacts of the CSP_0 static models. In fact, those states
characterised by small barriers should coalesce to
significantly more stable structures or melt at finite
temperature and pressure.1,11,13 Furthermore, it has been
shown that the ensemble of configurations accessible
corresponding to a single polymorph at ambient temperature
can correspond to multiple lattice energy minima.14

By introducing finite temperature and pressure effects, we
have recently proposed a workflow able to reduce the number
of putative polymorphs drastically. The procedure described
in ref. 15, applied to the cases of urea and succinic acid,
consists of:
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• Molecular dynamics (MD) simulations to equilibrate all
structures at 300 K and 1 bar.

• Automatically identify those states that are unstable or
cluster those that belong to the same dynamic ensembles
using structural probabilistic fingerprints.

• Perform enhanced sampling simulations on the cluster
centres to overcome MD limits and assess their stability.

In this work, we apply the approach introduced in ref. 15
to a dataset of 555 crystal structures of ibuprofen: an
application of the size and complexity typical of modern CSP
studies. Ibuprofen is a conformationally flexible, chiral
molecule possessing two enantiomers with different
pharmacological properties. S-Ibuprofen is the biologically
active one while R-ibuprofen needs to be transformed in the
body to its S-counterpart.16,17 This popular pain-relieving API
is commonly available in its racemic form I.18 A more
expensive enantiopure form, here labelled form E, contains
only the S-ibuprofen.19,20 More recently, a second less-stable
racemic form II was observed in a differential scanning
calorimetry experiment.21–23

Here, in addition to demonstrating the method's
applicability to a dataset one order of magnitude larger than
previously attempted, we describe new tools implemented in
the analysis to handle sets of more than 500 CSP_0-generated
structures. In particular, we introduced a fast molecule-
dependent classification to reduce the time needed to
compare crystal structures and cluster equivalent geometries.
This improvement results in a rapid clustering analysis,
which was repeatedly deployed at regular steps during biased
simulations to systematically detect structural transitions
without following molecular trajectories one at a time, an
impractical task when dealing with several hundreds of
finite-temperature dynamic simulations. Moreover, the
application of the simulation workflow to a large dataset of
mostly hydrogen-bonded CSP_0 crystal packings has allowed
us to quantitatively analyse the emergence of conformational
and orientational disorder at finite temperature, and to
assess the persistence of H-bond interaction motifs. Finally,
we investigate the dependence of the unsupervised clustering
used to identify analogous structures on the choice of
collective descriptors at the basis of the probabilistic
fingerprints used to define a dissimilarity metric between
finite temperature crystal supercells. With the improvements
in efficiency introduced in this work, the reduction workflow
introduced in ref. 15 can be deployed efficiently to reduce
CSP_0 sets of the size and complexity approaching those of
real-world applications.

Methods
CSP_0 lattice energy landscape

The ibuprofen search was carried out using
CrystalPredictor1.9,24 which allows the molecule to assume
different conformations. In particular, we considered the two
torsional groups of angles (τ1, τ2) and (τ3, τ4), shown in Fig. 1,
that were separately varied from 0 to 360 degrees in 20 degree

steps. The anti conformation of the carboxylic acid group25–28

was not considered in the search, as the known experimental
structures of ibuprofen do not contain it. A recent study of
carboxyl groups25 showed that the neutral carboxyl group is
only observed in anti configurations in about 12% of crystal
structures, but of these, intramolecular hydrogen bonds
(which are not available in ibuprofen) dominate. Of
intermolecular hydrogen bond interactions of the carboxyl
group, just 3% contain the anti configuration.25 With the
workflow adopted in this work, it is highly unlikely that any
structures could change to the anti conformation during the
CSP_0 stage. However, as discussed in the following sections,
MD-based simulations are free to explore the entire
configuration space of individual molecules.

The search used molecular fragments taken from the ab
initio optimised molecule at the PBE0/6-31G(d,p) level of
theory. The fixed point charges used in this initial step are
obtained using the larger basis set aug-cc-pVDZ. The
parameters from the FIT potential29 with polar hydrogens30

were used for the repulsion–dispersion contributions to the
energy.

The search was performed in 59 space groups with one
molecule in the asymmetric unit cell. After removing the
duplicates, the structures are labelled as their rank order at
this stage, using the prefix R for racemic and E for
enantiopure depending on their symmetry.

The resulting unique structures were then optimised with
DFTB3-D3 (ref. 31) to relax atomic positions and remove the
possible unfeasible geometries derived from the use of rigid
fragments of the molecule. The accurate evaluation of the
lattice energies was performed with a single step DMACRYS32

calculation, using distributed multipoles obtained from the
PBE0/aug-cc-pVDZ charge density with GDMA2.2 (ref. 33) and
the repulsion–dispersion potential described in the previous
paragraph.29,30

After rescaling the lattice energies by Z, the 555 crystal
structures within 10 kJ mol−1 of the global minimum are
finally optimised with CrystalOptimizer2.4.7.1.34 The choice
of this energy cutoff was motivated by the study in ref. 2
which identifies 97% of the relative energies between

Fig. 1 The ibuprofen molecule showing atom labels and the four
torsional angles considered in the crystal structure generation, namely
τ1 (C12–C11–C10–C7), τ2 (C11–C10–C7–C8), τ3 (C5–C4–C2–C1) and τ4
(O1–C1–C2–C4).
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conformational polymorphs being below 10 kJ mol−1 and the
fact that all ibuprofen experimental forms are within this
range in our search. Both the crystal structure and molecular
conformation are optimised in a two-level method, with the
intramolecular energies and hessian evaluated at the PBE0/6-
31G(d,p) level of theory and the intermolecular energy
calculated from the distributed multipoles (extracted from
the charge density at the PBE0/aug-cc-pVDZ level of theory)
and the repulsion–dispersion parameters described above.
The smaller 6-31G(d,p) basis set was found to accurately
assess the conformation of the molecule, but it was not
sufficient to model the electrostatic forces of molecules in
the experimentally observed crystal structures, thus justifying
the use of the augmented basis set. This set of refined
structures comprises the CSP_0 landscape shown in Fig. 4A.

Structure preparation and atom typing

The General Amber Force Field35 has been used to describe
the ibuprofen molecule. Atom types are assigned with the
AmberTools suite36 while point charges are assigned with the
AM1-BCC model.37 Simulations are performed with the
Gromacs MD package.38,39 This requires atomic coordinate
files to be written in the order specified by the reference
forcefield topology. Hence, all atoms in crystal cells must be
rearranged to match the forcefield index. This is done by
transforming molecules in graphs and applying the VF2
graph match algorithms40 available in the Python library
NetworkX.41 Finally, in order to see possible transitions or
formation of orientational disorder in a relatively small
computational time, for each crystal we generated a supercell
of at least 200 molecules. The simulation boxes are chosen to
have a nearly cubic shape with each cell edge around 4.5 nm.

Energy minimisation

We optimised the atoms' positions using the steepest descent
algorithm. The neighbour lists are updated every 10 steps
using the Verlet cutoff scheme. Electrostatic and van der
Waals interactions are calculated using a cutoff of 1.0 nm
while long-range interactions are treated with the smooth
particle mesh Ewald (PME)42 and Lennard-Jones PME. After a
first atoms' position optimisation, we used LAMMPS to relax
the cell parameters (feature not available in Gromacs), using
InterMol43 to convert the molecular forcefield. A second
energy minimisation with Gromacs is performed to take into
account differences between the two packages.43 Finally, the
GAFF lattice energies are estimated with the equation:

Elatt ¼ Ecrystal

nmols
−Evacuum (1)

where Evacuum is the energy of the isolated molecule and nmols

is the number of molecules in the supercell.

Equilibration at finite temperature and pressure

We performed a 3 ns simulation in the canonical ensemble
at 300 K, followed by 4 ns in the isothermal–isobaric

ensemble at 300 K and 1 bar. We used the velocity Verlet
integrator with a 1 fs timestep. We controlled the
temperature with the Bussi–Donadio–Parrinello thermostat44

and equilibrated the systems at 1 bar for the first 1 ns
using the Berendsen anisotropic barostat45 and then
switched to the Parrinello–Rahman barostat46 for the
following 3 ns.

Probabilistic fingerprints

Effective descriptors of the different geometries generated
should be able to handle the displacement of atomic positions
from equilibrium in finite-temperature simulations and
efficiently capture the differences between crystal packings. In
this context, we previously proposed15 a set of system-
dependent probability densities that describes the relative
position, relative orientation and possible conformations,

F i ¼ pi rCOMð Þ; pi θ ⃑
� �

; pi ϕ ⃑
� �� �

, as the fingerprint of each crystal
when dealing with flexible molecules. PLUMED 2 (ref. 47)
has been extensively used to analyse trajectories and
generate distributions. An example of the inputs used to
generate the components of the structural fingerprints
described here are available on PLUMED-NEST, the public
repository of the PLUMED consortium,48 as
plumID:21.019.

In the case of ibuprofen, the term pi(rCOM) represents
the radial distribution function of centres of mass of
molecules in the ith crystal structure. The relative
orientation of molecules in the ith crystal structure is

described by the 2D probability density distribution pi θ ⃑
� �

,
a function of the intermolecular angles θ1 and θ2,
obtained from two orthogonal vectors connecting the
atoms C6–C8 and C7–C4 of the aromatic ring of the
molecule, as shown in Fig. 2A. Finally the conformational

contribution to Fi, pi ϕ ⃑
� �

, was defined following the
conformational analysis reported in ref. 49, which employs
the 2D distribution of the global (ϕ1) and local (ϕ2)
torsional angles shown in Fig. 2A. The former represents
the relative orientation of the two substituents of the
aromatic ring while the latter captures the relative
position of the methyl groups. In this approximation,
molecules can adopt six possible conformational states. In
order to assess the generality of the choice of relatively
coarse conformational descriptors, we compared it with an
alternative, more fine-grained representation, making use
of two 2D distributions (pi(τ1, τ2) and pi(τ3, τ4), Fig. 1).
The two different approaches, despite the difference in
level of detail, and of the associated computational cost,
lead to similar results. Within the conformational
fingerprints we did not include descriptors of the syn/anti
periplanar conformational isomerism of the carboxylic acid
group. We have a posteriori validated this choice by
analysing all trajectories, and observing that out of the
555 crystal structures analysed we observed only once the
spontaneous transition of a few molecules to the anti
conformation, in correspondence to the onset of disorder
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in a high energy structure. This confirms that the
spontaneous occurrence of anti conformers observed in
disordered ibuprofen systems27,28 is unlikely in crystalline
packings. Finally, the probabilistic fingerprints are
complemented by an additional parameter used to classify
structures based on their chirality.

Structural (dis)similarity and clustering

The similarity between two fingerprints, Fi and Fj, is
quantitatively determined by computing the Hellinger
distance, Hij, between each equivalent distribution, defined
as:

Hij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −BC pi; pj

� �r
(2)

where BC pi; pj
� �

¼ Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi ξ ⃑
� �

pj ξ ⃑
� �q

dξ ⃑ is the Bhattacharyya

coefficient and ξ is the vector variable used. The distance
between structures i and j, Δij, is finally defined as the norm

of the vector of Hellinger distances: Δij ¼ HrCOM
ij ;Hθ ⃑

ij ;H
θ ⃑
ij

h i			 			.
However, prior to the clustering analysis, we want to

remove those structures that are unstable at finite
temperature and pressure and melt or develop into a
disordered packing. Two strategies have been adopted in this
context in order to take into account the emergence of both
orientational and conformational disorder. Firstly,
orientational disorder is considered by comparing the
distribution of the intermolecular torsional angle, p(θ1), of
the structures with an uniform distribution typical of the
liquid state, pU(θ) = 1/2π, hence:

Hiℓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2π

pi θð Þ
r

dθ

s
(3)

In a second step the emergence of conformational disorder is
assessed. To this aim we consider the torsional angle space
pi(ϕ1, ϕ2), which presents six basins corresponding to stable
conformers.49 We can thus identify all the possible
conformations the molecules adopt in a structure by
detecting which of these basins are populated. We identify as
conformationally disordered, the structures that contain 3 or
more molecular conformations. Note that point defects such
as single molecules undergoing conformational transitions in
the crystal bulk,49 do not distort significantly the probability
density pi(ϕ1, ϕ2) and would not yield the incorrect
classification of locally disordered structures as new putative
polymorphs.

We can now group together the finite-temperature putative
polymorphs that coalesce to the same geometry. In order to
reduce the number of comparisons needed, we can exploit
two properties that we have already determined for each
structure, namely the chirality and the conformations the
molecules adopt in the crystal. Δij is therefore calculated only
between structures that share the same chirality and

conformer composition, drastically reducing the number of
comparisons necessary to perform a full clustering of the
trajectories, and resulting in the distance matrix in Fig. 2B.
To each of the resulting subgroups, corresponding to square
sub-regions of the dissimilarity matrix Δ in which the value
Δij is defined (see Fig. 2B), we applied the fast search and
find of density peaks (FSFDP) clustering algorithm.50 The
structure with the lowest potential energy in each cluster is
taken for the next step.

Metadynamics

In order to overcome MD timescale limitations and sample
possible slow transitions, we performed well tempered
metadynamics (WTmetaD) simulations51 on the cluster
centres. In WTmetaD, an adaptive bias potential acts on a
limited number of degrees of freedom, called collective
variables (CVs), pushing the system to explore more
efficiently its configuration space. The choice of CVs is
motivated by the need to enhance structural fluctuations
without specifically leading the transformation along a
specific pathway. To this aim we used density and potential
energy, a choice that has the advantage of being general and
computationally efficient and therefore suitable for large sets
of structures. Given their generality, these CVs can be applied
to every crystal but are expected to enhance transitions only
between similar structures and have a reduced accuracy in
computing the free energy differences between two specific
crystal structures. The bias potential is updated every 1 ps
with Gaussians characterised by an initial height of 2 kJ
mol−1 and a width of 10 kg m−3 for the density and 2 kJ
mol−1 for the potential energy. These simulations are
performed using Gromacs patched with PLUMED 2.47 The
work performed on the system through the introduction of a
bias potential at a time t is represented by the reweighting
factor, C(t),52 defined as:

C tð Þ ¼ 1
β
log

Ð
dse −βG sð ÞÐ

dse −β G sð ÞþV s;tð Þð Þ (4)

where β = 1/kBT, G(s) is the Gibbs free energy and V(s, t) the
bias potential. We searched for possible transitions by
looking at the distance RMSD (DRMSD) between pairs of
atoms of different molecules using the initial structure as
reference. By using the PLUMED' COMMITTOR function, in
conjunction with DRMSD, we stopped simulations exceeding
the value of 0.3 Å. This value guarantees stopping the
simulation and saving computational time in those
trajectories that show a large distortion of the crystal
packing, usually associated with the melting. In addition, to
automatically detect transitions between similar geometries
not captured by the distance RMSD, we perform a cluster
analysis every time C(t) increases by 0.5 kJ mol−1. Finally,
persistent structures are ranked based on their energy in the
unbiased simulations.
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Results

The CSP_0 analysis identified the global minimum, structure
R227, as the experimental Form I with an RMSD30 of 0.014 Å
between the CSP_0 structure and the experimental structure
minimised with the same computational method. The search
was performed considering Z′ = 1. Hence the enantiopure
form E, which has Z′ = 2, cannot be found. The high-energy
structure R5596 approximately reproduces the geometry of
form II with an RMSD15 of 0.66 Å. However, the packing
similarity analysis revealed a poor overlap between the two
structures. We included in the finite-temperature analysis
also the experimental structures IBPRAC16 (ref. 18) (form I),
JEKNOC12 (ref. 19) (form E) and IBPRAC04 (ref. 22) (form II)
available in the Cambridge Structural Database (CSD)53 in
order to monitor their evolution and predicted persistence
throughout the different steps of the reduction process. From
a lattice energy perspective, the difference in stability of the
experimentally known polymorphs predicted at the CSP_0
stage is significant. Form E is found to be at +5.02 kJ mol−1

from form I, while form II is at +16.87 kJ mol−1. The large
scale set of crystal structures simulated at finite temperature
and pressure displays a significant variability attested by the
14 different hydrogen-bonding motifs identified in the CSP_0
dataset. The motifs search was carried out using the CSD-
Material module in Mercury.54 The ring R2

2(8) motif55 is the
dominant intermolecular interaction motif, recorded in more

than half of the structures, including all the experimental
ones. H-Bonded chains also account for a significant
proportion of the structures in the initial dataset, with 151
unit cells displaying the C1

1(4) motif and 41 unit cells
stabilised by the C1

1(2) one.
Lattice energies are very sensitive to the method used, so

when comparing the CSP_0 energies to GAFF, differences are
expected. In general, GAFF tends to overestimate the lattice
energy differences. Despite this, form I is found to be among
the most stable structures, 4th in the ranking. Form II was
confirmed to be very high in energy, at +28.15 kJ mol−1 from
the global minimum. Form E is located between them at
+8.77 kJ mol−1, confirming the relative ranking obtained at
the level of theory deployed in the CSP_0 step.

The reduction process starts by equilibrating all structures
at 300 K and 1 bar. Fig. 3, shows that around 40% of the
structures melt or present disorder after 4 ns of dynamic
simulation in the NPT ensemble. The remaining structures
are then clustered based on their chirality and molecule
conformations.

In the largest group of racemic structures, molecules show
conformational flexibility along the local torsional angle (see
Fig. 2), producing two peaks in the conformational
component of the structural fingerprint. Experimental form
II is among these with less than 10% of the molecules in the
supercell assuming a distorted conformation. In this step,
molecules are free to rearrange and adopt the anti

Fig. 2 Clustering of the finite-temperature structures. (A) For each structure, we identify a set of structural fingerprints able to distinguish the
different geometries. For the relative position of molecules, we calculate the radial distribution function of the centres of mass. For the relative
orientation, we define two sets of vectors connecting atoms C6–C8 and C7–C4 of each molecule, and calculate the angles, θ1 and θ2, between
them. The possible conformations are detected by looking at the C1–C2–C10–C11 and C7–C10–C11–H11 torsional angles, here labelled with ϕ1 and
ϕ2. The resulting distributions form the fingerprint of each structure. In the interest of simplicity, a supercell of 48 molecules is shown here but
typical simulation boxes contain more than 200 molecules. (B) The similarity between each pair of structures is given by the norm of the Hellinger
distances between distributions. This is calculated only between structures that share the same chirality and molecule conformation resulting in a
distance matrix that avoids negligible comparisons and saves computational time.
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conformation of the carboxylic acid group. However, only one
high-energy disordered structure ends up having some
molecules in this conformation.

The clustering analysis shows that only a few states
coalesce into common finite-temperature crystal structures
while most of them preserve their geometry. The stable form
I is one of the few systems that produce a cluster, and it is
among the most populated ones. On the other hand, form II
formed a small cluster with the CSP_0 structure that best
matches its geometry while no structure transformed to a
configuration compatible with form E.

Cluster centres are then subject to WTmetaD simulations. In
order to automatically analyse trajectories and detecting
transitions as a function of the work performed by the WTmetaD
bias, fingerprints are generated at every increment of 0.5 kJ mol−1

of C(t) or by looking at the last frames of those trajectories
stopped due to large fluctuations of the DRMSD (see the methods
section). Every time fingerprints are generated, clustering is
performed, identifying structures that convert and are thus
removed from the count of independent, persistent structures.

As shown in Fig. 3, the number of persistent putative
polymorphs decreases throughout the workflow. By the end of
the analysis, from the initial set of 555 CSP_0 lattice energy
minima, we retain 205 persistent structures, corresponding to a
65% of reduction. All experimental structures came out as
thermodynamically stable, preserving their geometry during
finite-temperature biased simulations. In Fig. 4A, we show the
lattice energy landscape at 0 K and depict them based on their
behaviour at 300 K.

Orientationally disordered structures at finite-temperature
are on average, located at higher energies in the 0 K
landscape than the structures exhibiting conformational
disorder. Persistent crystal structures at 300 K span over the
entire lattice energy range. The overlap in lattice energy
between the distributions of labile and persistent crystal

structures highlights how a reduction of the lattice energy
landscape based solely on lattice energy is insufficient and
would actually miss high energy experimental structures like
form II. The resulting finite-temperature crystal energy
landscape, in Fig. 4B, shows a general decrease in the
potential energy difference for those structures that survive.

Among the dominant hydrogen-bonding motifs, the ring
motif R2

2(8) and the chain motif C1
1(4) were shown to be more

persistent than the average, with a decrease in number of
structures of 29% and 41%, considering all stable structures.
While being present in the final set, the chain motif C1

1(2)
tended to convert to the more stabilising C1

1(4). Looking at
the rare motifs, 9 of them disappear during the analysis.
Motifs D3

3(10), R
3
3(12), R

3
3(6), R

4
4(8), R

6
6(12) and R6

6(24) all result
in melted structures while motifs C2

2(6), R2
2(6) and R4

4(12)
transform to other motifs.

Discussion

Through an MD-based reduction of the lattice energy landscape
we drastically reduced the number of putative polymorphs of
Ibuprofen. Form I, the most stable experimentally known
polymorph came out as second in the final ranking with
structure R4124 being the global minimum (see the ESI† for a
complete list of crystal structures, energies and labels).
However, many structures converted to the experimental form,
suggesting that form I could act as kinetic trap for labile states.
Form I and the enantiopure form E were able to preserve their
CSP_0 geometry with little variation due to the molecular
motion. In form II, a few molecules dynamically change
conformation during biased and unbiased simulations,
showing the possibility of dynamic disorder in the crystal at
standard conditions. This is evidenced also by the presence of
two conformationally disordered structures, R2315 and R6595,
that resemble form II. Structure R5596, which presents

Fig. 3 Sankey diagram describing the number of states that survives at each step. The 555 CSP_0-structures are initially divided based on their
chirality. All steps are shown with different colours. Removed structures, in grey, result in a disordered packing or transform to another geometry.
The clustering performed to metadynamics simulations at different steps of deposited work is shown with a blue scale. From an initial set of 555
geometries we are able to reduce the number of structures to 205.
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geometrical similarities with form II at 0 K, effectively converts
to the experimental one at 300 K.

The R2
2(8) motif is the most frequent intermolecular

interaction motif in the final set being present in 119 structures
and is dominant among the low-energy structures. From Fig. 4C,
we can see that structures associated with this motif, are most
likely to preserve their H-bonds. However, other motifs seem to
be favoured at 300 K compared to their initial number in the
CSP_0 set. In particular, the chain motif C1

1(4) has a similar
persistence to R2

2(8) and is present in 10 of the 18 enantiopure
structures, including the most stable one (E6134). This could
indicate that the hydrogen-bonded carboxylic acid dimer of the
R2
2(8) pattern is favoured during the nucleation or growth

process. The rotation of the carboxyl group is associated with the
inter-conversion between motifs C1

1(2) and C1
1(4) with the balance

shifted towards the latter. Interestingly, 12 structures are shown
to be persistent at finite-temperature and pressure despite the
lack of H-bonding motifs and their high potential energy. The

use of highly polar solvents that preclude H-bonding interactions
could favour the formation of these structures.56

In Fig. 4A, the states that are effectively persistent at finite
temperature and pressure are shown as blue dots. From the
probability density on the right of the same figure, we can
see that some of these are high energy structures. This
implies that the use of energy cutoff, although often
necessary, can lead to the removal of relevant geometries
from the analysis. In this case, the ibuprofen form II could
have been ignored being higher in energy than the typical
energy cutoffs used, usually in the range 5–15 kJ mol−1.

Conclusions

In this work, we have tackled the systematic reduction of a
large-scale dataset of CSP_0 crystal structures, including 555
putative crystal structures of ibuprofen by systematically
applying MD simulations.15 To scale up one order of

Fig. 4 Comparison between the crystal energy landscape at 0 K and 300 K. (A) CSP_0 lattice energy landscape. The symbols highlight how the
static states at 0 K will behave at 300 K and 1 bar. Structures that are persistent and thermodynamically stable at finite temperature and pressure are
represented with blue dots. Structures that develop a disorder are shown with a green triangle or orange square whether it is orientational or
conformational. The plot on the right shows how these three groups are distributed over the energy axis. (B) Final finite-temperature crystal energy
landscape obtained with GAFF with the experimental forms I, II and E highlighted in red, orange and green. (C) Behaviour of the surviving H-bonding
motifs at finite temperature and pressure, with the four most common shown in the blue boxes. For each of them, we show the number of
structures that preserve or convert to that motif at the end of the analysis (in blue), those that result in a disordered structure (in green or orange
whether the disorder is conformational or orientational) or transform to another motif (in red), rescaled by their initial occurrence in the CSP_0 set.
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magnitude in the number of crystal structures considered,
compared to previous studies, we implemented new
strategies to further increase the efficiency of the clustering
and analysis protocols, drastically reducing the need for
manual inspection of the trajectories in different steps. In
particular, through a systematic conformational analysis, we
could automatically detect disorder formation in the
simulation box. Moreover, partitioning a priori the distance
matrix in subsets based on the number and type of
conformers present in the crystal structure, small and fast to
manage, allowed us to efficiently repeat the clustering
analysis at regular intervals during the metadynamics
simulations. This procedure allowed us to detect transitions
under progressively enhanced fluctuations of the supercells'
density and lattice energy. The systematic setup and analysis
of 555 trajectories, which altogether amounts to 8 μs across
multiple MD protocols, is made possible by an ad hoc Python
library, available at github.com/mme-ucl/pypol.

Applying this approach to a set of 555 CSP_0-generated
structures of ibuprofen resulted in a 65% reduction of the
number of predicted structures, leading to a group of 205
persistent lattice structures. All the experimentally known
structures persisted throughout the analysis with minor
variations from their original geometry. In this work we have
decided to probe the persistence of crystal structures associated
to energy perturbations of the order of 2.5 kJ mol−1. Sampling
larger energy scales is likely to yield further reductions in the
number of crystal structures. Interestingly, despite the
significant variability in the intermolecular interaction motifs
present in the initial dataset (14), we find that the motifs R2

2(8)
and C1

1(4) are dominant in the final set.
The approach that we propose in this work will enable a

rational reduction of crystal energy landscapes by identifying
and removing crystal structures that are short lived at finite-
temperature from further analysis, typically performed with
computationally expensive electronic structure methods. We
envisage the application of the proposed approach as a physics-
based alternative to a straightforward application of an energy-
cutoff.

In fact, as shown in Fig. 4A, labile and persistent structures'
distributions in energy are overlapped, and a cut-off based
reduction of the initial set would be prone to removing from
further analysis interesting, long-lived putative polymorphs.

By taking advantage of the implementation discussed and
tested in this work, we can now study CSP_0 crystal energy
landscapes of scale and complexity approaching those of
real-world applications.
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